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1. Introduction

The human immunodeficiency virus (HIV) primarily targets CD4+ T lymphocytes. HIV infection
ultimately leads to the gradual collapse of the patient’s immune system, which results in acquired
immunodeficiency syndrome (AIDS) [1]. The process of HIV infection is complex and dynamic,
involving multiple components and cell types of the human immune system [2]. HIV enters susceptible
cells through specific receptors and co-receptors, such as the CD4 receptor, which reside on the
surface of target cells. After binding these receptors on the target cell surface, the virus releases
its core material into the cell through membrane fusion. Inside the cell, the viral RNA is reverse-
transcribed into DNA, which is then integrated into the host cell’s genome to form a provirus. The
provirus can remain latent within the cell or undergo active replication, thus producing new viral
particles [3]. During the early stages of infection, the body’s non-specific immune response is first
activated, thereby recognizing and clearing some infected cells. Subsequently, specific antibodies are
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produced that bind to viral particles, thus preventing further infection of other cells and modulating
the immune response to promote viral clearance. As the infection progresses, the number of CD4+ T
lymphocytes gradually decreases, and eventually leads to severely impaired cellular immune function
and immunodeficiency [4].

As mentioned in [5], a time-adaptive finite element method was developed to tackle the parameter
identification problem for the following system of ODEs, which describe the dynamics of HIV
infection with drug therapy:

du1

dt
= f1(u(t), η(t)) = s − ku1(t)u4(t) − µu1(t) + (η(t)α + b)u2(t),

du2

dt
= f2(u(t), η(t)) = ku1(t)u4(t) − (µ1 + α + b)u2(t),

du3

dt
= f3(u(t), η(t)) = (1 − η(t))αu2(t) − δu3(t),

du4

dt
= f4(u(t), η(t)) = Nδu3(t) − cu4(t),

(1.1)

where u1(t), u2(t), u3(t), and u4(t) represent the population sizes of uninfected target cells, infected
target cells before reverse transcription, infected target cells after completed reverse transcription, and
free virus particles, respectively. The values of the remaining model parameters are adopted from [5];
the study employed a local time-mesh refinement algorithm to identify the time-varying parameter of
drug efficacy, thus demonstrating its effectiveness and robustness.

In addition to standard virus-to-cell infections, alternative transmission modes significantly
influence viral dynamics. Cell-to-cell transmission can facilitate the spread and immune evasion, as
shown in models such as [6–8]. In [9], the authors developed and analyzed a stochastic HIV model with
dual infection modes and delays, revealing how noise intensity critically determines viral persistence or
extinction. Guo et al. [10] further integrated antiretroviral therapies and latent reservoirs, and revealed
that CTL efficacy is crucial to achieve a functional cure even under potent drug treatment, and that
cell-to-cell transmission can undermine therapeutic outcomes. Furthermore, the infection process
can be modulated by the host’s immune environment. Regarding cytokine-enhanced viral infection,
as explored by Wang et al. [11], illustrates how inflammatory signals (e.g., from pattern recognition
receptors) can upregulate viral receptors on target cells, thereby creating a positive feedback loop that
exacerbates infection.

The role of cytotoxic T lymphocyte (CTL) responses in controlling HIV infection has been
extensively modeled to understand its dynamical impact. A series of studies have progressively
refined this modeling framework [12–14]. These works not only establish the stability of the proposed
models but also confirm through numerical simulations, that CTLs reduce viral load and infected cell
counts by eliminating infected cells, while increasing the population of uninfected CD4+ T cells.
For example, Elaiw and Alshamrani [13] established a foundational model that demonstrated that
a strong CTL response can clear infections, provided the immune activation rate exceeds a critical
threshold, while also and highlighted the potential destabilizing effect of silent cell-to-cell spread.
Ren et al. [14] introduced intracellular delays and saturated immune responses, thereby showing that
these biological realities can induce rich dynamics, including stability switches and Hopf bifurcations,
thus emphasizing the nonlinear and time-lagged nature of CTL-mediated control. Sutimin et al. [15]
developed a mathematical model incorporating cell-to-cell transmission of HIV-1 and CTL immune

AIMS Mathematics Volume 11, Issue 1, 558–577.



560

response to evaluate and compare the efficacy of RTI and PI combination therapies, finding RTI to be
more effective in reducing infection. These models underscore the pivotal regulatory role of CTLs in
suppressing HIV replication, primarily through the direct elimination of virus-producing cells, which
forms the biological rationale for incorporating CTL dynamics in our current framework.

Our study extends the ordinary differential equation (ODE) system from [5] to incorporate the
CTL immune response, thus investigating a more biologically realistic scenario of HIV transmission
dynamics. Following the analytical frameworks established in prior studies [16–18], we systematically
examine the existence and local stability of all system equilibria. To identify the key parameters which
govern the system’s behavior, we perform a global sensitivity analysis on both the basic reproduction
number and the immune response reproduction number using the Latin Hypercube Sampling-Partial
Rank Correlation Coefficient (LHS-PRCC) method [19, 20]. Furthermore, we investigate how these
critical parameters vary with different levels of drug efficacy. This work provides theoretical insights
to understand HIV persistence and to optimize therapeutic strategies.

This paper is structured as follows: in Section 2, we develop an HIV dynamics model that
incorporates antiretroviral therapy, CTL immune response, and two types of infected cells; in Section 3,
we prove the positivity and boundedness of the solutions and define the basic and immune reproduction
numbers; in Section 4, we analyze the stability of the infection-free equilibrium, the infected but
immune-free equilibrium, and the infected equilibrium with immunity under different threshold
conditions; in Section 5, we provide numerical simulations to illustrate the dynamical behaviors; in
Section 6, we use the LHS-PRCC method to identify key parameters that influence the reproduction
numbers and examine the impact of drug efficacy on the dynamics; and finally, in Section 7, we present
the discussion and conclusions.

2. Model formulation

To mechanistically capture the dynamics of HIV infection, it is essential to recognize that
infected cells can be partitioned into distinct virological states: the pre-reverse transcription (Pre-
RT) and post-reverse transcription (Post-RT) stages [21]. This distinction is fundamental because
reverse transcription represents a rate-limiting step in the viral life cycle. Zack et al. [22] provided
the direct experimental evidence for the Pre-RT stage, thereby showing that incomplete reverse
transcripts in quiescent cells constitute a labile, pre-integration intermediate which can be reactivated
to complete reverse transcription (transitioning to a Post-RT-like state) upon cellular activation. The
intracellular virological distinction has direct implications for immune recognition. The stage of viral
replication likely determines the surface antigen presentation of infected cells, thereby influencing their
susceptibility to CTL-mediated killing [12–14]. To capture this interplay between intracellular viral
progression and the host immune response, and building upon the modeling frameworks established in
references [5,18], we formulate an HIV model that incorporates reverse transcriptase inhibitors (RTIs)
and two subclasses of infected CD4+ T cells:
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dT
dt

= λ − dT (t) − kT (t)V(t) − βT (t)I2(t) + (α + ηφ)I1(t),

dI1

dt
= kT (t)V(t) + βT (t)I2(t) − (α + φ + σ1)I1(t),

dI2

dt
= (1 − η)φI1(t) − σI2(t) − pI2(t)Z(t),

dV
dt

= NσI2(t) − cV(t),

dZ
dt

= qI2(t)Z(t) − bZ(t).

(2.1)

Here, T (t) represents the concentration of uninfected CD4+ T cells at time t. Infected CD4+ T cells
are divided into two subclasses, namely I1(t) and I2(t), which are the concentrations of Pre-RT infected
cells and the concentration of infected CD4+ T cells of the Post-RT subclass at time t, respectively. V(t)
stands for the viral load at time t. Z(t) represents the concentration of CTLs at time t. The parameter
inequality d < σ1 indicates that infected cells have a higher mortality rate compared to healthy cells;
this is because extensive HIV replication and assembly within infected cells disrupts normal cellular
structures and functions, which leads to accelerated apoptosis [23]. The parameters used in model (2.1)
and their biological interpretations are summarized in Table 1.

Table 1. Parameters used in model (2.1).

Parameter Definition
λ Recruitment rate of uninfected T cells
d Death rate of uninfected T cells
k Virus-to-cell infection rate
β Cell-to-cell infection rate
α Reverting rate of Pre-RT infected cells return to uninfected cells
η Dosage of the reverse transcriptase inhibitor (drug efficacy)
φ Transition rate from Pre-RT infected cells to post-RT infected cells
σ Death rate of infected cells
σ1 Death rate of Pre-RT infected cells
p Rate of CTL-mediated clearance of post-RT infected cells
N Total number of viral particles produced by an infected cell
c Clearance rate of viruses
q Production rate of CTLs by productively infected cells
b Death rate of CTL immune cells

3. Preliminary results

In this section, we first investigate the positivity and boundedness of solutions of model (2.1).

AIMS Mathematics Volume 11, Issue 1, 558–577.



562

3.1. Positivity and boundedness of solutions

Based on the actual characteristics of the HIV viruses, we assume the following initial conditions
for model (2.1):

T (0) > 0, I1(0) > 0, I2(0) > 0, V(0) > 0, Z(0) > 0. (3.1)

Theorem 3.1. Any solution of (2.1) that satisfies (3.1) is positive.

Proof. Let (T (t), I1(t), I2(t),V(t),Z(t)) be any solution of (2.1). By way of contradiction, suppose at
least one of the component is not positive. Let

W(t) = min{T (t), I1(t), I2(t),V(t),Z(t)}.

Then, as W(0) > 0, there exists t1 > 0 such that W(t1) = 0 and W(t) > 0 for 0 ≤ t < t1. We claim
that I1(t1) = 0. Otherwise, I1(t) > 0 for t ∈ [0, t1]. This combined with the first and the third equations
of (2.1), gives T (t) > 0 and I2(t) > 0 for t ∈ [0, t1], respectively. Then, using I2(t) > 0 for t ∈ [0, t1] and
the fourth equation of (2.1), we get V(t) > 0 for t ∈ [0, t1]. Clearly, Z(t) > 0 for t > 0 from the fifth
equation of (2.1). Thus W(t1) > 0, a contradiction to the choice of t1. This proves the claim. However,
it follows from T (t) ≥ 0, I2(t) ≥ 0, and V(t) ≥ 0 for t ∈ [0, t1], that we can get I1(t) > 0 for t ∈ [0, t1]
from the second equation of (2.1), which is a contradiction to I1(t1) = 0. This completes to the proof.

The follow result shows that the solution of model (2.1) with (3.1) remains ultimately bounded.

Theorem 3.2. Solutions of model (2.1) that satisfy the initial conditions (3.1) are ultimately
uniformly bounded.

Proof. Let (T (t), I1(t), I2(t),V(t),Z(t)) be any solution. Define the following:

H(t) = T (t) + I1(t) + I2(t) +
p
q

Z(t).

Differentiating H(t) yields the following:

dH(t)
dt

= λ −

(
dT (t) + σ1I1(t) + σI2(t) +

bp
q

Z(t)
)
≤ λ − MH(t),

where M = min{d, σ, σ1, b}. Then, we have lim sup
t→∞

H(t) ≤ λ
M . Therefore, for any sufficiently

small ε ≥ 0, there exists t2 > 0 such that H(t) ≤ λ
M + ε for t ≥ t2. Then, for t ≥ t2,

dV(t)
dt ≤ Nσ( λM +ε)−cV(t), which implies lim sup

t→∞
V(t) ≤ Nσ( λM +ε)

c . Sinceε is arbitrary, lim sup
t→∞

V(t) ≤ Nσλ
cM .

This completes the proof.
From the proof of Theorem 3.2, we can easily see that the set

Ω =

{
(T (t), I1(t), I2(t),V(t),Z(t)) ∈ R5

+0 : T (t) + I1(t) + I2(t) + Z(t) ≤
λ

M
and V(t) ≤

Nδλ
cM

}
,

where

R5
+0 = {(T (t), I1(t), I2(t),V(t),Z(t)) ∈ R5|T (t) > 0, I1(t) > 0, I2(t) > 0,Z(t) > 0}

is a positively invariant set for model (2.1).
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3.2. The basic reproductive number and equilibria

Clearly, model (2.1) always admits a disease-free equilibrium E0 = (T 0, I0
1 , I

0
2 ,V

0,Z0) = (λd , 0, 0,
0, 0). With the next generation matrix method, the matrices for the new infection terms F and transition
terms V are as follows:

F =


0 βT 0 kT 0

0 0 0
0 0 0

 , V =


α + φ + σ1 0 0
−(1 − η)φ σ + pZ0 0

0 −Nσ c

 ,
respectively. Here, the matrix V encompasses all transitions out of the infected compartments (Pre-
RT and Post-RT cells), including natural death, immune-mediated clearance, and progression between
stages. Its diagonal entries represent the total removal rates (e.g., through natural death or immune
clearance) from the corresponding compartment. The off-diagonal entries represent transitions into
a compartment from another infected state. For instance, in our model, the term (1 − η)φ appears
as an off-diagonal entry that denotes the progression from Pre-RT cells (I1) to the Post-RT cells (I2),
while Nσ represents the production of virus from the Post-RT cells (I2).

The basic reproduction number R0 of model (2.1) is given by the following:

R0 = ρ(FV−1)

=
βT 0cφ(1 − η) + σNT 0kφ(1 − η)

cσ(α + φ + σ1)

=
λφ(1 − η)(βc + σNk)

dcσ(α + φ + σ1)
.

The derived basic reproduction number can be biologically interpreted as follows:

R0 =
λ

d︸︷︷︸
(I)

×
φ(1 − η)
α + φ + σ1︸       ︷︷       ︸

(II)

×

(
βc + σNk

cσ

)
︸         ︷︷         ︸

(III)

.

Term (I): λ
d is the steady-state number of susceptible target cells (T 0) in the absence of infection,

thus representing the pool of cells available for the virus to infect.
Term (II): φ(1−η)

α+φ+σ1
is the probability that a newly infected cell enters the chronically infected state (I2)

rather than being cleared by the immune system or dying naturally. Here, (1−η) quantifies the reduction
in cell-to-cell transmission due to partial inhibition.

Term (III): βc+σNk
cσ =

β

σ
+ Nk

c combines two distinct infection pathways:
β

σ
denotes the number of new susceptible cells infected via cell-to-cell transmission per chronically

infected cell, where β is the infection rate, and 1
σ

is the average lifespan of a chronically infected
cell. Nk

c denotes the number of new susceptible cells infected per virion, where k is the cell-to-cell
transmission rate, N is the burst size, and 1

c is the average lifespan of a free virion.
Thus, R0 > 1 represents the expected number of secondary chronically infected cells (I2) produced

by a single chronically infected cell introduced into a fully susceptible target cell population, thus
accounting for both free-virus and cell-to-cell transmission modes under partial inhibition.
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In addition to the equilibrium E0, when R0 > 1, model (2.1) also admits an infected but immune-free
equilibrium E = (T , I1, I2,V ,Z), where Z = 0, and T , I1, I2, V are given by the following:

T =
cσ(α + φ + σ1)

φ(1 − η)(βc + σNk)
=

T 0

R0
, I1 =

λ
(
1 − 1

R0

)
σ1 + φ(1 − η)

, I2 =
φ(1 − η)I1

σ
,V =

Nφ(1 − η)I1

c
.

According to [16], we define the CTL immune response reproduction number R1 for model (2.1)
as follows:

R1 =
q
b

I2 =
qλφ

(
1 − 1

R0

)
(1 − η)

bσ(σ1 + φ(1 − η))
.

Note that qI2 represents the number of newly activated and differentiated CTL cells per unit time
through viral antigen present in the absence of CTL immune response, and 1

b is the average survival
time of CTL cells. Multiplying these two quantities gives the expected number of cytotoxic T
lymphocytes produced by one CTL cell during its lifetime, stimulated by cells in the effectively
infected state.

When R1 > 1, there exists a unique infected equilibrium with immunity E∗ = (T ∗, I∗1, I
∗
2,V

∗,Z∗),
where

I∗2 =
b
q
,V∗ =

Nbσ
cq

, I∗1 =
b(σ + pZ∗)
qφ(1 − η)

,T ∗ =
c(α + φ + σ1)(σ + pZ∗)
φ(1 − η)(βc + σNk)

,

and
Z∗ =

σ

p
·

1
λφ(1 − η) + bR0σ(σ1 + φ(1 − η))

·
1

bR0σ(σ1 + φ(1 − η))
· (R1 − 1).

In the next section, we conduct a detailed stability analysis of these equilibria and present the local
stability conditions for each.

4. Stability of the equilibria E0, E, and E∗

In this section, we study the local and global stability of three equilibria: The infection-free
equilibrium, the infected but immune-free equilibrium, and the infected equilibrium with immunity.

Let Ê = (T̂ , Î1, Î2, V̂ , Ẑ) be an equilibrium of (2.1). Then, the Jacobian matrix at Ê is as follows:

J(Ê) =


−d − kV̂ − βÎ2 α + ηφ −βT̂ −kT̂ 0

kV̂ + βÎ2 −(α + φ + σ1) βT̂ kT̂ 0
0 (1 − η)φ −σ − pẐ 0 −pÎ2

0 0 Nσ −c 0
0 0 qẐ 0 qÎ2 − b


.

Theorem 4.1. When R0 < 1, the infection-free equilibrium E0 of model (2.1) is locally asymptotically
stable; alternatively, it is unstable if R0 > 1.

Proof. The characteristic equation of J(E0) is as follows:

∆E0(S ) = (S + d)(S + b)q1(S ) = 0,
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where
q1(S ) = (S + α + φ + σ1)(S + σ)(S + c) − (1 − η)φT 0[β(S + c) + Nσk].

Besides the eigenvalues S 1 = −d and S 2 = −b, the others are determined by q1(S ) = 0. If R0 > 1,
then q1(0) = (α + φ + σ1)σc(1 − R0) < 0. Note that lim

S→∞
q1(S ) = ∞. Then, q1(S ) = 0 has a positive

root, hence E0 is unstable. Now, assuming R0 < 1, we claim that all roots of q1(S ) = 0 have negative
real parts. Otherwise, let S ∗ be one root of q1(S ) = 0 with Re(S ∗) ≥ 0. Then, we have the following:

1 =

∣∣∣∣∣∣ (1 − η)φβT 0

(S ∗ + α + φ + σ1)(S ∗ + σ)
+

(1 − η)φkT 0Nσ
(S ∗ + α + φ + σ1)(S ∗ + σ)(S ∗ + c)

∣∣∣∣∣∣
≤

∣∣∣∣∣∣ (1 − η)φβT 0

(S ∗ + α + φ + σ1)(S ∗ + σ)

∣∣∣∣∣∣ +

∣∣∣∣∣∣ (1 − η)φkT 0Nσ
(S ∗ + α + φ + σ1)(S ∗ + σ)(S ∗ + c)

∣∣∣∣∣∣
≤

(1 − η)φT 0β

σ(α + φ + σ1)
+

(1 − η)φT 0Nk
c(α + φ + σ1)

= R0.

This leads to a contradiction. Therefore, when R0 < 1, E0 is locally asymptotically stable.
In fact, the local stability of E0 implies its global stability.

Lemma 4.1. (Fluctuation lemma [24]) Let f : (t0,∞)→ R be bounded and continuously differentiable.
Then, there exist sequences tn, sn → ∞ with the following properties:

f (tn)→ f∞, f ′(tn)→ 0, f (sn)→ f∞, f ′(sn)→ 0 as n→ ∞,

where

f∞ = lim sup
t→∞

f (t) and f∞ = lim inf
t→∞

f (t).

Theorem 4.2. If R0 < 1, then the infection-free equilibrium E0 of model (2.1) is globally
asymptotically stable.

Proof. By Lemma 4.1, it suffices to show that E0 is globally attractive. Let (T (t), I1(t), I2(t), V(t), Z(t))
be any solution of model (2.1). Then, it is bounded and continuously differentiable on (0,∞).

Let tn be a sequence with tn → ∞ such that V(tn) → V∞ and V ′(tn) → 0 as n → ∞. Then, by the
fourth equation of (2.1), we have the following:

dV(tn)
dt

= NσI2(tn) − cV(tn).

Letting n→ ∞ gives either

0 ≤ NσI∞2 − cV∞

or

V∞ ≤
Nσ
c

I∞2 .
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Similarly, from the third equation, we get the following:

I∞2 ≤
(1 − η)φ

σ
I∞1 .

Define L(t) = T (t) + I1(t). We have the following:

dL
dt

= λ − dT (t) − [(1 − η)φ + σ1]I1(t).

Since d < σ1,

dL
dt
≤ λ − d(T (t) + I1(t)) = λ − dL(t).

We have lim sup
t→∞

(T (t) + I1(t)) ≤ λ
d , which implies T∞ ≤ λ

d .

Now, let sn be a sequence with sn → ∞ such that I1(sn)→ I∞1 and I′1(sn)→ 0 as n→ ∞. Evaluating
the second equation of (2.1) at sn and letting n→ ∞ gives the following:

0 ≤ kT∞V∞ + βT∞I∞2 − (α + φ + σ1)I∞1 .

This, together with V∞ ≤ Nσ
c I∞2 , T∞ ≤ λ

d , and I∞2 ≤
(1−η)φ
σ

I∞1 , implies that

0 ≤
kNσ

c
I∞2 T∞ + βI∞2 T∞ − (α + φ + σ1)I∞1

≤
(1 − η)φ

σ
(
kNσ

c
+ β)T∞I∞1 − (α + φ + σ1)I∞1

≤ (α + φ + σ1)(R0 − 1)I∞1 .

By R0 < 1, we get I∞1 = 0. Then, from I∞2 ≤
(1−η)φ
σ

I∞1 , we have I∞2 = 0. From dZ(t)
dt = qI2(t)Z(t) − bZ(t),

we have Z∞ = 0. To sum up, we have shown I∞1 = I∞2 = V∞ = Z∞ = 0; hence,

lim
t→∞

I1(t) = lim
t→∞

I2(t) = lim
t→∞

V(t) = lim
t→∞

Z(t) = 0. (4.1)

To finish the proof, we show that lim
t→∞

T (t) = λ
d . This is done by showing T∞ ≥ λ

d as T∞ ≤ λ
d . In fact,

let un be a sequence such that un → ∞, T (un) → T∞, and T ′(un) → 0 as n → ∞. Then, from the first
equation of (2.1) obtain the following:

dT (un)
dt

= λ − dT (un) − kT (un)V(un) − βT (un)I2(un) + (α + ηφ)I1(un).

Letting n→ ∞, with the help of (4.1), we get T∞ = λ
d . This completes the proof.

Theorem 4.3. When R0 > 1 and R1 < 1, the infect but immune-free equilibrium E of model (2.1) is
locally asymptotically stable.

Proof. The characteristic equation at the equilibrium E is as follows:

∆E(S ) = (S + b − qI2)q2(S ) = 0,
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where

q2(S ) = (S + d)(S + α + φ + σ1)(S + σ)(S + c)

+ (S + σ)(S + c)[S + (1 − η)φ + σ1](kV + βI2)

− (S + d)(1 − η)φ[βT (S + c) + T Nkσ].

From S + b − qI2 = 0, we obtain S = b(R1 − 1), which is negative as R1 < 1. Our goal is to prove that
all the other eigenvalues determined by q2(S ) = 0 have negative real parts. By way of contradiction.
Suppose S is a root with a non-negative real part. Then, we have q2(S ) = 0 or equivalently∣∣∣∣∣∣1 +

[S + (1 − η)φ + σ1](kV + βI2)
(S + α + φ + σ1)(S + d)

∣∣∣∣∣∣ =

∣∣∣∣∣∣ (1 − η)φ[βT (S + c) + T Nkσ]
(S + α + φ + σ1)(S + σ)(S + c)

∣∣∣∣∣∣
<

∣∣∣T ∣∣∣ · R0

T 0 = 1.

Define F1 =
∣∣∣∣1 +

(S +(1−η)φ+σ1)(kV+βI2)
(S +α+φ+σ1)(S +d)

∣∣∣∣. Assume S = x + yi, where x is the real part and y is the imaginary
part of the eigenvalue. Substituting it into F1 gives the following:

F1 =

∣∣∣∣∣∣1 +
[x + yi + (1 − η)φ + σ1](kV + βI2)
(x + yi + α + φ + σ1)(x + yi + d)

∣∣∣∣∣∣
=

∣∣∣∣∣∣1 +
[x + yi + (1 − η)φ + σ1](kV + βI2)

[(x + α + φ + σ1)(x + d) − y2] + yi · (2x + α + φ + σ1 + d)

∣∣∣∣∣∣ .
(4.2)

Set A = (x + α + φ + σ1)(x + d) − y2, B = 2x + α + φ + σ1 + d, and rationalize the denominator of the
fraction in (4.2) to obtain the following:

F1 =

∣∣∣∣∣∣1 +
[x + yi + (1 − η)φ + σ1](kV + βI2)

A + yiB

∣∣∣∣∣∣
=

∣∣∣∣∣∣1 +
[x + yi + (1 − η)φ + σ1](kV + βI2)(A − yiB)

(A + yiB)(A − yiB)

∣∣∣∣∣∣
=

∣∣∣∣∣∣1 +
[x + yi + (1 − η)φ + σ1](kV + βI2)(A − yiB)

A2 + B2y2

∣∣∣∣∣∣
= |1 + W1 + W2i| ,

where

W1 =
y2(x + α + ηφ + d)(kV + βI2) + [x + (1 − η)φ + σ1](kV + βI2)(x + α + φ + σ1)(x + d)

A2 + B2y2 ,

W2 =
y(kV + βI2)[(x + α + φ + σ1)(x + d) − y2]

A2 + B2y2

−
y(kV + βI2)(2x + α + φ + σ1 + d)[x + (1 − η)φ + σ1]

A2 + B2y2 .

As x ≥ 0, we know W1 > 0. It follows that

F1 = |1 + W1 + W2 · i| =
√

(1 + W1)2 + W2
2 > 1,
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which is a contradiction to the assumption that F1 < 1. Therefore, when R0 > 1 and R1 < 1, E is
locally asymptotically stable.

Now, we consider the local asymptotical stability of E∗. The characteristics equation at E∗ is
given by

∆E∗(S ) = S 5 + a1S 4 + a2S 3 + a3S 2 + a4S + a5,

with the relations

I∗2q = b, T ∗ =
c(α + φ + σ1)(σ + pZ∗)
φ(1 − η)(σNk + βc)

,
βc(α + φ + σ1)(σ + pZ∗)

(σNk + βc)
< (α + φ + σ1)(σ + pZ∗).

We obtain the following:

a1 = σ1 + σ + α + c + d + φ + kV∗ + pZ∗ + βI∗2 > 0,

a2 = αd + cd + cφ + dφ + ασ + cσ + cσ1 + dσ + dσ1 + φσ + σσ1 + αc + I∗2Nkσ + I∗2Z∗βp

+ I∗2βc + I∗2βφ(1 − η) + I∗2βσ + I∗2βσ1 + Z∗αp + Z∗bp + Z∗cp + Z∗dp + Z∗pφ + Z∗pσ1

+
I∗2Nkσ2

c
+

I∗2NZ∗kpσ
c

+
I∗2Nkσσ1

c
+

I∗2Nkφσ
c

(1 − η) −
βc(σ + Z∗p)(α + φ + σ1)

(βc + Nkσ)
> αd + cd + cφ + dφ + cσ + cσ1 + dσ + dσ1 + αc + I∗2Nkσ

+ I∗2βc + I∗2βφ(1 − η) + I∗2βσ + I∗2βσ1 + Z∗bp + Z∗cp + I∗2Z∗βp

+ Z∗dp +
I∗2Nkσ2

c
+

I∗2NZ∗kpσ
c

+
I∗2Nkσσ1

c
+

I∗2Nkφσ
c

(1 − η) > 0,

a3 = cdφ + αcσ + αdσ + cdσ + cdσ1 + cφσ + dφσ + cσσ1 + dσσ1 + I∗2NZ∗kpσ + Z∗bpσ1

+ Z∗cpσ1 + Z∗dpσ1 + I∗2Nkσ2 + I∗2βcφ(1 − η) + I∗2βcσ + I∗2βcσ1 + Z∗αbp + Z∗αcp

+ I∗2βφσ(1 − η) + Z∗bcp + Z∗αdp + Z∗bdp + Z∗cdp + I∗2βσσ1 + Z∗bpφ + Z∗cpφ + Z∗dpφ

+ I∗2Z∗bβp + I∗2Z∗βcp + αcd + I∗2Nkφσ(1 − η) + I∗2Z∗βpφ(1 − η) + I∗2Nkσσ1 + I∗2Z∗βpσ1

+
I∗2Nkφσ2

c
(1 − η) +

I∗2Nkσ2σ1

c
+

I∗2NZ∗kpφσ
c

(1 − η) +
I∗2NZ∗kpσσ1

c
+

I∗2NZ∗bkpσ
c

− c(σ + Z∗p)(α + φ + σ1) −
βcd(σ + Z∗p)(α + phi + σ1)

βc + Nkσ
> Z∗αbp + I∗2Nkσ2 + I∗2βcφ(1 − η) + I∗2βcσ + I∗2βcσ1 + cdσ + cdσ1 + I∗2Z∗βpσ1

+ I∗2βφσ(1 − η) + Z∗bcp + Z∗bdp + Z∗cdp + I∗2βσσ1 + Z∗bpφ + Z∗bpσ1 + cdφ

+ I∗2Z∗bβp + I∗2Z∗βcp + αcd + I∗2Nkφσ(1 − η) + I∗2Z∗βpφ(1 − η) + I∗2Nkσσ1 + I∗2NZ∗kpσ

+
I∗2Nkφσ2

c
(1 − η) +

I∗2Nkσ2σ1

c
+

I∗2NZ∗kpφσ
c

(1 − η) +
I∗2NZ∗kpσσ1

c
+

I∗2NZ∗bkpσ
c

> 0,

a4 = Z∗αbcp + I∗2βcσσ1 + Z∗bcpφ + Z∗bcpσ1 + Z∗bcdp + I∗2βcφσ(1 − η)
+ I∗2Nkφσ2(1 − η) + I∗2Z∗βcpφ(1 − η) + I∗2Nkσ2σ1 + I∗2Z∗βcpσ1 + Z∗αbdp

+ I∗2Z∗bβcp + I∗2Z∗bβpσ1 + I∗2Z∗bβpφ(1 − η) + I∗2NZ∗bkpσ + Z∗bdpσ1 + Z∗bdpφ

+
I∗2NZ∗bkpφσ

c
(1 − η) + I∗2NZ∗kpφσ(1 − η) +

I∗2NZ∗bkpσσ1

c
+ I∗2NZ∗kpσσ1 > 0,
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and

a5 = Z∗bp[αcd + cdφ + cdσ1 + I∗2βcφ(1 − η) + I∗2βcσ1 + I∗2Nkφσ(1 − η) + I∗2Nkσσ1] > 0.

Applying the Routh-Hurwitz criterion [25], it follows that all roots of ∆E∗(S ) = 0 have negative real
parts if and only if Hi > 0 (i = 1, 2, 3, 4, 5):

H1 = a1 > 0,
H2 = a1a2 − a3 > 0,

H3 =

∣∣∣∣∣∣∣∣∣
a1 a3 a5

1 a2 a4

0 a1 a3

∣∣∣∣∣∣∣∣∣ = a3H2 − a1(a1a4 − a5) > 0,

H4 =

∣∣∣∣∣∣∣∣∣∣∣
a1 a3 a5 0
1 a2 a4 0
0 a1 a3 a5

0 1 a2 a4

∣∣∣∣∣∣∣∣∣∣∣ = a4H3 − a2a5H2 + a5(a1a4 − a5) > 0,

H5 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a1 a3 a5 0 0
1 a2 a4 0 0
0 a1 a3 a5 0
0 1 a2 a4 0
0 0 a1 a3 a5

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= a5H4 > 0.

(4.3)

Then, we can obtain the following theorem:

Theorem 4.4. If R1 > 1 and condition (4.3) holds, then the infected equilibrium with immunity E∗ of
model (2.1) is locally asymptotically stable.

5. Numerical results

In this section, we perform numerical simulations to quantitatively study the dynamics of
model (2.1). The initial condition is given by IC = (T (0), I1(0), I2(0),V(0),Z(0)). We consider
three different initial conditions: IC1 = (1200, 50, 25, 1, 0.1), IC2 = (800, 100, 65, 200, 1),
and IC3 = (400, 200, 110, 1000, 0.5), which represent different stages of infection. The temporal
trajectories of uninfected cells (T ), Pre-RT infected cells (I1), Post-RT infected cells(I2), viral load (V),
and CTL immune cells (Z) under the three scenarios are illustrated in Figures 1–3.

First, we demonstrate the stability of the infection-free equilibrium E0 as shown in Figure 1. Using
the parameter values of η = 0.91, with the remaining parameters taken from Table 2, we obtain a basic
reproduction number of R0 = 0.78 < 1. The simulation shows that during the early stage, the viral
load exhibits a transient, low-level peak but is rapidly cleared, thus failing to establish a persistent
infection. The populations of Pre-RT infected cells and Post-RT infected cells show a brief, limited
increase before declining to zero. Healthy CD4+ T cells experience a modest initial depletion but
gradually recover and stabilize, while the CTL immune response is transiently activated due to the
brief antigenic stimulus. This dynamic evolution is consistent with Theorem 4.2, which states that the
infection-free equilibrium E0 is globally asymptotically stable when R0 < 1.
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Table 2. The list of parameter values for the different numerical simulations.

Parameter Value Unit Source
λ 10 mm−3 · day−1 [5]
d 0.01 day−1 [5]
k 2.4 × 10−5 mm−3 · day−1 [5]
β 10−5 mm−3 · day−1 [5]
α 0.05 day−1 [5]
φ 0.4 day−1 [5]
σ1 0.015 day−1 [5]
σ 0.26 day−1 [5]
p 2.4 × 10−6 mm−3 · day−1 [10]
N 1000 virions · cell −1 [5]
c 2.4 day−1 [5]
q 1 × 10−5 mm−3 · day−1 [10]
b 0.01 day−1 [10]

Figure 1. The infection dynamics illustrating the stability of the disease-free equilibrium E0.

Using the parameter values η = 0.35, N = 1500, and k = 3.5 × 10−5, along with the remaining
parameters from Table 2, we obtain R0 = 12.25 > 1 and R1 = 0.03 < 1. The time series in
Figure 2 show that during the initial stage of HIV infection, the viral load V sharply increases and
then stabilizes at a high level, thus indicating persistent viral replication when R0 > 1. The populations
of Pre-RT infected cells and Post-RT infected cells persist without declining, while the concentration of
healthy CD4+ T cells significantly decreases and remains at a low level. The observed convergence of
all state variables to steady levels provides numerical evidence for the local asymptotic stability of the
infected but immune-free equilibrium E, which is in full agreement with the analytical condition R0 > 1
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and R1 < 1 given in Theorem 4.3.

Figure 2. The infection dynamics illustrating the stability of the infected but immune-free
equilibrium E.

Using the parameter values η = 0.4, q = 8×10−4, and b = 0.001, and the remaining parameters from
Table 2, we obtain R0 = 5.18 > 1 and R1 = 23.37 > 1. Following the Routh-Hurwitz stability criterion
described in Theorem 4.4, and using the given parameter values, the coefficients of the characteristic
polynomial are obtained as follows:

a1 = 4.020924, a2 = 4.441039, a3 = 0.058312, a4 = 0.003299, a5 = 0.000012.

The corresponding Hurwitz determinants are calculated as follows:

H1 = a1 = 4.020924,
H2 = a1a2 − a3 = 17.798770,
H3 = a3H2 − a1(a1a4 − a5) = 0.984579,
H4 = a4H3 − a2a5H2 + a5(a1a4 − a5) = 0.002331,
H5 = a5H4 = 0.000000027972.

Clearly, all determinants H1 through H5 are strictly positive; therefore, the Routh-Hurwitz stability
conditions are satisfied. The time series in Figure 3 show the corresponding dynamics. These
simulation results confirm the local asymptotic stability of the infected equilibrium with immunity E∗

when R0 > 1 and R1 > 1, which is in full agreement with Theorem 4.4.
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Figure 3. The infection dynamics illustrating the stability of the infected equilibrium with
immunity E∗.

6. Sensitivity analysis and drug efficacy

In this section, we conduct a global sensitivity analysis using the LHS-PRCC method [19, 20] to
identify the key parameters that influence R0, R1 and to simulate the system dynamics under different
drug efficacy conditions.

6.1. Sensitivity analysis

The basic reproduction number (R0) and the CTL immune reproduction number (R1) are crucial to
predict the dynamics of HIV infection. In this section, we employed the LHS-PRCC method to perform
a global sensitivity analysis and identify the model parameters that most significantly influence R0, R1.
We adopted the following classification criteria based on the absolute value of the PRCC: strong
correlation for |PRCC| > 0.5, moderate correlation for 0.3 < |PRCC| ≤ 0.5, and weak correlation
for |PRCC| ≤ 0.3. Assuming all parameters follow a uniform distribution, we generated 1000 sample
values for each parameter within the ranges specified in Table 2 using LHS. The central (baseline)
values of these ranges are also listed in the same table for reference.

Figure 4 shows that the basic reproduction number R0 is most sensitive to the parameters η, k,
N, λ, and c, with corresponding PRCC values of −0.92, 0.87, 0.76, 0.78, and −0.61, respectively.
Consistent with their PRCC signs, N, k, and λ are positively correlated with R0, whereas η, c, the
natural death rate of target cells (d), and the clearance rate of infected cells (α) are negatively correlated.
Notably, the parameters with the strongest influence (|PRCC| > 0.5) are primarily associated with viral
infection and clearance (the infection rate k, viral clearance rate c, drug efficacy η, and burst size N)
and target cell supply (recruitment rate λ and natural death rate d). In contrast, parameters related to
the latent reservoir and the death rate of productively infected cells show weaker correlations. These
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findings indicate that in model (2.1), the dynamics of HIV infection are predominantly governed by
the processes of target cell availability, viral infection, and clearance. Consequently, maintaining
a high drug efficacy (η) through consistent medication adherence emerges as a critical factor for
suppressing R0 and aiding immune recovery.

Figure 4. Sensitivity analysis of R0 with respect to key parameters.

Figure 5 shows that the CTL immune reproduction number R1 is most sensitive to the CTL-related
parameters: The production rate q (PRCC = 0.96) and the death rate b (PRCC = –0.92). Other
notable influences include the death rate of productively infected cells σ (PRCC = –0.68) and the
recruitment rate of target cells λ (PRCC = 0.47). Overall, the parameters that promote CTL activity
or survival (q, λ) are positively correlated with R1, whereas those that limit it (b, σ) or enhance viral
clearance (η, c) are negatively correlated. The dominant influence of q and b underscores that, once the
immune response is activated, the balance between CTL proliferation and survival becomes the critical
determinant of whether the immune system can effectively control the infection.

Figure 5. Sensitivity analysis of R1 with respect to key parameters.

6.2. Drug effects

We analyzed the effect of drug therapy, represented by the parameter η, through numerical
simulations. The model tracks the dynamics of uninfected CD4+ T cells (T ), Pre-RT infected
cells (I1), Post-RT infected cells (I2), viral load (V), and CTL cells (Z). The simulations
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employed three different initial conditions: IC1 = (1200, 50, 25, 1, 0.1), IC2 = (800, 100, 65, 200, 1),
and IC3 = (400, 200, 110, 1000, 0.5). We used the following parameter set: λ = 14, d = 0.012,
k = 3.8 × 10−5, σ1 = 0.016, β = 1.8 × 10−5, α = 0.038, φ = 0.45, σ = 0.25, p = 3.0 × 10−6,
N = 1600, c = 2.5, b = 0.006, q = 2.2 × 10−4. To evaluate the effectiveness of the reverse
transcriptase inhibitor, we performed simulations for three drug efficacy values: η = 0.3, 0.5, 0.7. The
corresponding basic reproduction numbers were R0 = 17.79, 12.7, 7.62, and the immune reproduction
numbers were R1 = 1.84, 1.77, 1.59, respectively. As shown in Figure 6, the therapeutic efficacy (η)
substantially influenced the dynamics of all cell populations and the viral load.

Figure 6. The effects of different drug efficacy levels (η = 0.3, 0.5, 0.7) on the dynamics of
T, I1, I2,V,Z.

From a biological perspective, a higher drug efficacy leads to a significant increase in the
concentrations of uninfected CD4+ T cells and pre-reverse transcription infected cells. This indicates
that reverse transcriptase inhibitors effectively block HIV infection, protect target cells from infection,
and inhibit the transition of pre-reverse transcription infected cells to the post-reverse transcription
subclass, resulting in an accumulation of the former. Conversely, as the drug efficacy increases, the
viral load and the number of cells in the post-reverse transcription subclass decrease substantially. This
demonstrates that the inhibitors effectively suppress viral spread by interrupting the infection cascade
and eliminating the source of viral production. These results collectively demonstrate that therapeutic
effectiveness is paramount to control viral replication and preserve immune function.

7. Conclusions

This study developed an HIV infection model that incorporated CTL immune responses,
antiretroviral therapy (ART), Pre-RT infected cells, and Post-RT infected cells capable of producing
virus. First, we established the positivity and boundedness of the solutions of model (2.1). Second,
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we discussed the existence of equilibria. The basic reproduction number R0 and the immune
reproduction number R1 determine the dynamical behavior of the system: when R0 < 1, the disease-
free equilibrium E0 is globally asymptotically stable, which implies that the virus will eventually be
cleared; when R0 > 1 and R1 < 1, the infected but immune-free equilibrium E is locally asymptotically
stable, meaning the infection becomes chronic without a successfully activated CTL immune response;
and when R1 > 1, the infected equilibrium with immunity E∗ is locally asymptotically stable, which
indicates a chronic infection with a persistent CTL immune response.

The sensitivity analysis revealed that the drug dosage η is negatively correlated with R0, thus
indicating that reverse transcriptase inhibitors suppress the infection process and inhibit the virus-
producing source. This, in turn, increases the concentrations of uninfected cells and Pre-RT infected
cells, while decreasing the concentrations of Post-RT infected cells and viral load. Furthermore,
when R0 > 1, the CTL immune level declines over time, thus suggesting that chronic HIV infection
ultimately leads to immune imbalance.

This model provides a theoretical basis to optimize drug therapy (such as increasing drug efficacy (η)
and the recovery rate of infected cells (α)) and target key parameters for intervention (such as viral
yield N and infection rate k). In our constructed model, we assumed that only the drug efficacy changes
while other parameters remain constant to investigate its effect on the dynamics of T , I1, I2, V , and Z.
However, in reality, altering the drug efficacy may lead to changes in other parameters, along with
the influence of physiological factors such as age, gender, and pathological conditions. How these
combined factors affect the dynamics of viral load remains a topic for further study.

It should be noted that our stability analysis has limitations. First, all stability results were
local; proving global stability remains an open challenge. Second, the high-dimensional Routh-
Hurwitz conditions, while necessary, are algebraically complex and limit biological interpretability.
Additionally, model simplifications (linear CTL response, mass-action incidence) may not capture
saturation or delays present in vivo. To address these limitations, future work should aim for global
stability proofs, incorporate nonlinear functional responses and pharmacokinetics, and explore spatial
or stochastic extensions to better reflect biological complexity.
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