Motivated by the challenges faced by standard methods in solving nonlinear fractional and q-fractional models with strong memory effects, this study develops numerical approaches capable of handling these complex behaviors more effectively. The proposed techniques are tested on four representative fractional and q-fractional initial value problems for several values of the order $ \alpha \in $ $ [0.5, 1] $ and $ q \in (0, 1) $. In particular, the major aim of this work is to propose two generalizations of the higher-order Taylor method: The first one is the fractional Taylor method, and the second one is the q-fractional Taylor method. These methods will then be used to find approximate solutions for several fractional and q-fractional initial value problems. Numerous numerical comparisons will be performed to verify the effectiveness of our proposed generalizations.
Citation: Iqbal M. Batiha, Sharaf Aldeen O. Albteiha, Hamzah O. Al-Khawaldeh, Shaher Momani. Generalizations of higher-order Taylor method: Fractional and q-fractional approaches for initial value problems[J]. AIMS Mathematics, 2026, 11(1): 483-510. doi: 10.3934/math.2026021
Motivated by the challenges faced by standard methods in solving nonlinear fractional and q-fractional models with strong memory effects, this study develops numerical approaches capable of handling these complex behaviors more effectively. The proposed techniques are tested on four representative fractional and q-fractional initial value problems for several values of the order $ \alpha \in $ $ [0.5, 1] $ and $ q \in (0, 1) $. In particular, the major aim of this work is to propose two generalizations of the higher-order Taylor method: The first one is the fractional Taylor method, and the second one is the q-fractional Taylor method. These methods will then be used to find approximate solutions for several fractional and q-fractional initial value problems. Numerous numerical comparisons will be performed to verify the effectiveness of our proposed generalizations.
| [1] | N. R. Anakira, A. Almalki, D. Katatbeh, G. B. Hani, A. F. Jameel, K. S. Al Kalbani, et al., An algorithm for solving linear and non-linear Volterra integro-differential equations, Int. J. Adv. Soft Comput. Appl., 15 (2023), 69–83. |
| [2] | G. Farraj, B. Maayah, R. Khalil, W. Beghami, An algorithm for solving fractional differential equations using conformable optimized decomposition method, Int. J. Adv. Soft Comput. Appl., 15 (2023), 187–196. |
| [3] | M. Berir, Analysis of the effect of white noise on the Halvorsen system of variable-order fractional derivatives using a novel numerical method, Int. J. Adv. Soft Comput. Appl., 16 (2024), 294–306. |
| [4] |
M. A. Hammad, R. Khalil, Conformable fractional heat differential equation, Int. J. Pure Appl. Math., 94 (2014), 215–221. https://doi.org/10.12732/IJPAM.V94I2.8 doi: 10.12732/IJPAM.V94I2.8
|
| [5] |
M. W. Alomari, I. M. Batiha, S. Momani, P. Agarwal, M. Odeh, Surpassing Taylor method: Generalized Taylor method for solving initial value problems, Bol. Soc. Parana. Mat., 43 (2025), 1–13. https://doi.org/10.5269/bspm.75572 doi: 10.5269/bspm.75572
|
| [6] |
Y. F. Luchko, H. M. Srivastava, The exact solution of certain differential equations of fractional order by using operational calculus, Comput. Math. Appl., 29 (1995), 73–85. https://doi.org/10.1016/0898-1221(95)00031-S doi: 10.1016/0898-1221(95)00031-S
|
| [7] |
N. Allouch, I. M. Batiha, I. H. Jebril, S. Hamani, A. Al-Khateeb, S. Momani, A new fractional approach for the higher-order q-Taylor method, Image Anal. Stereol., 43 (2024), 249–257. https://doi.org/10.5566/ias.3286 doi: 10.5566/ias.3286
|
| [8] |
A. A. Al-Nana, M. W. Alomari, I. M. Batiha, The modified Taylor method for approximating solutions of initial value problems, Int. Rev. Model. Simul., 17 (2024), 5. https://doi.org/10.15866/iremos.v17i5.25176 doi: 10.15866/iremos.v17i5.25176
|
| [9] |
I. M. Batiha, I. H. Jebril, A. Abdelnebi, Z. Dahmani, S. Alkhazaleh, N. Anakira, A new fractional representation of the higher-order Taylor scheme, Comput. Math. Methods, 2024 (2024), 2849717. https://doi.org/10.1155/2024/2849717 doi: 10.1155/2024/2849717
|
| [10] | I. M. Batiha, S. A. O. Albteiha, S. Momani, On q-fractional calculus: Foundations and theoretical insights, In: Recent Developments in Fractional Calculus: Theory, Applications, and Numerical Simulations, Springer, Cham, 235 (2025), 123–145. https://doi.org/10.1007/978-3-031-84955-8_6 |
| [11] | M. W. Alomari, W. G. Alshanti, I. M. Batiha, L. Guran, I. H. Jebril, Differential q-calculus of several variables, Results Nonlinear Anal., 7 (2024), 109–129. |
| [12] |
L. T. Watson, Numerical linear algebra aspects of globally convergent homotopy methods, SIAM Rev., 28 (1986), 529–545. https://doi.org/10.1137/1028157 doi: 10.1137/1028157
|
| [13] |
A. M. Wazwaz, A new algorithm for calculating Adomian polynomials for nonlinear operators, Appl. Math. Comput., 111 (2000), 33–51. https://doi.org/10.1016/S0096-3003(99)00063-6 doi: 10.1016/S0096-3003(99)00063-6
|
| [14] | H. F. Ahmed, Fractional Euler method: An effective tool for solving fractional differential equations, J. Egypt. Math. Soc., 26 (2018), 38–43. |
| [15] |
P. L. Butzer, U. Westphal, An introduction to fractional calculus, Appl. Fract. Calc. Phys., 2000, 1–85. https://doi.org/10.1142/3779 doi: 10.1142/3779
|
| [16] |
K. K. Ali, S. Tarla, M. R. Ali, A. Yusuf, Modulation instability analysis and optical solutions of an extended (2+1)-dimensional perturbed nonlinear Schrödinger equation, Results Phys., 45 (2023), 106255. https://doi.org/10.1016/j.rinp.2023.106255 doi: 10.1016/j.rinp.2023.106255
|
| [17] |
F. H. Jackson, On $q$-difference integrals, Am. J. Math., 32 (1910), 305–2314. https://doi.org/10.2307/2370183 doi: 10.2307/2370183
|
| [18] |
W. A. Al-Salam, Some fractional $q$-integrals and $q$-derivatives, P. Edinburgh Math. Soc., 15 (1966), 135–140. https://doi.org/10.1017/S0013091500011469 doi: 10.1017/S0013091500011469
|
| [19] |
R. P. Agarwal, Certain fractional $q$-integrals and $q$-derivatives, Math. Proc. Cambridge, 66 (1969), 365–370. https://doi.org/10.1017/S0305004100045060 doi: 10.1017/S0305004100045060
|
| [20] |
R. P. Agarwal, V. Lupulescu, D. O'Regan, G. U. Rahman, Fractional calculus and fractional differential equations in nonreflexive Banach spaces, Commun. Nonlinear Sci., 20 (2015), 59–73. https://doi.org/10.1016/j.cnsns.2013.10.010 doi: 10.1016/j.cnsns.2013.10.010
|
| [21] |
P. Stempin, W. Sumelka, Approximation of fractional Caputo derivative of variable order and variable terminals with application to initial/boundary value problems, Fractal Fract., 9 (2025), 269. https://doi.org/10.3390/fractalfract9050269 doi: 10.3390/fractalfract9050269
|
| [22] | I. Podlubny, Fractional differential equations: An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, San Diego: Academic Press, 198 (1998). |
| [23] |
T. Blaszczyk, K. Bekus, K. Szajek, W. Sumelka, On numerical approximation of the Riesz–Caputo operator with the fixed/short memory length, J. King Saud Univ. Sci., 33 (2021), 101220. https://doi.org/10.1016/j.jksus.2020.10.017 doi: 10.1016/j.jksus.2020.10.017
|
| [24] |
M. Stynes, E. O'Riordan, J. L. Gracia, Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation, SIAM J. Numer. Anal., 55 (2017), 1057–1079. https://doi.org/10.1137/16M1082329 doi: 10.1137/16M1082329
|
| [25] |
D. Li, C. Wu, Z. Zhang, Linearized Galerkin FEMs for nonlinear time-fractional parabolic problems with non-smooth solutions in time direction, J. Sci. Comput., 80 (2019), 403–419. https://doi.org/10.1007/s10915-019-00943-0 doi: 10.1007/s10915-019-00943-0
|
| [26] |
D. Li, W. Sun, C. Wu, A novel numerical approach to time-fractional parabolic equations with nonsmooth solutions, Numer. Math.-Theory Me., 14 (2021), 355–376. https://doi.org/10.4208/NMTMA.OA-2020-0129 doi: 10.4208/NMTMA.OA-2020-0129
|
| [27] |
W. Yuan, D. Li, C. Zhang, Linearized transformed $L^{1}$ Galerkin FEMs with unconditional convergence for nonlinear time-fractional Schrödinger equations, Numer. Math.-Theory Me., 16 (2023), 398–423. https://doi.org/10.4208/nmtma.OA-2022-0087 doi: 10.4208/nmtma.OA-2022-0087
|