Research article Special Issues

New solitary wave solutions for the triplet coupled nonlinear Schrödinger system incorporating fractional effects

  • Published: 06 January 2026
  • MSC : 35C08, 35R11, 37K40

  • New traveling wave solutions for the nonlinear fractional Schrödinger equation (FSE), obtained using conformable fractional derivatives, are presented in this paper. Despite extensive research on classical and fractional Schrödinger models, a systematic development of accurate traveling wave solutions employing conformable operators in conjunction with effective symbolic approaches remains lacking. To bridge this gap, we employ a Hamiltonian-based technique, a variational formulation via the Ritz method, and the modified Sardar subequation method. The fractional governing model is reduced to a nonlinear ordinary differential equation through a complex traveling wave transformation, which is analytically solved to yield new families of solutions. Two- and three-dimensional graphical representations of the solution's physical properties are presented, emphasizing the wave dynamics of the proposed fractional model.

    Citation: Tahani A. Alrebdi, Nauman Raza, Saima Arshed, F. Alkallas, Abdel-Haleem Abdel-Aty. New solitary wave solutions for the triplet coupled nonlinear Schrödinger system incorporating fractional effects[J]. AIMS Mathematics, 2026, 11(1): 420-443. doi: 10.3934/math.2026018

    Related Papers:

  • New traveling wave solutions for the nonlinear fractional Schrödinger equation (FSE), obtained using conformable fractional derivatives, are presented in this paper. Despite extensive research on classical and fractional Schrödinger models, a systematic development of accurate traveling wave solutions employing conformable operators in conjunction with effective symbolic approaches remains lacking. To bridge this gap, we employ a Hamiltonian-based technique, a variational formulation via the Ritz method, and the modified Sardar subequation method. The fractional governing model is reduced to a nonlinear ordinary differential equation through a complex traveling wave transformation, which is analytically solved to yield new families of solutions. Two- and three-dimensional graphical representations of the solution's physical properties are presented, emphasizing the wave dynamics of the proposed fractional model.



    加载中


    [1] S. Saifullah, N. Fatima, S. Abdelmohsen, M. Alanazi, S. Ahmad, D. Baleanu, Analysis of a conformable generalized geophysical KdV equation with Coriolis effect, Alex. Eng. J., 73 (2023), 651–663. https://doi.org/10.1016/j.aej.2023.04.058 doi: 10.1016/j.aej.2023.04.058
    [2] C. Qiao, X. Long, L. Yang, Y. Zhu, W. Cai, Calculation of a dynamical substitute for the real Earth-Moon system based on Hamiltonian analysis, ApJ, 991 (2025), 46. https://doi.org/10.3847/1538-4357/adf73a doi: 10.3847/1538-4357/adf73a
    [3] P. Li, R. Gao, C. Xu, Y. Li, A. Akgül, D. Baleanu, Dynamics exploration for a fractional-order delayed zooplankton phytoplankton system, Chaos Soliton. Fract., 166 (2023), 112975. https://doi.org/10.1016/j.chaos.2022.112975 doi: 10.1016/j.chaos.2022.112975
    [4] C. Xu, E. Balci, Hunting cooperation and gestation delay in a prey-predator model with fractional derivative, J. Appl. Anal. Comput., 16 (2026), 1035–1053. https://doi.org/10.11948/20250147 doi: 10.11948/20250147
    [5] W. Sun, Y. Jin, G. Lu, Y. Liu, Stabilizer testing and central limit theorem, Phys. Rev. A, 111 (2025), 32421. https://doi.org/10.1103/PhysRevA.111.032421 doi: 10.1103/PhysRevA.111.032421
    [6] A. Kumar, H. Chauhan, C. Ravichandran, K. Nisar, D. Baleanu, Existence of solutions of non-autonomous fractional differential equations with integral impulse condition, Adv. Differ. Equ., 2020 (2020), 434. https://doi.org/10.1186/s13662-020-02888-3 doi: 10.1186/s13662-020-02888-3
    [7] A. Freihet, S. Hasan, M. Al-Smadi, M. Gaith, S. Momani, Construction of fractional power series solutions to fractional stiff system using residual functions algorithm, Adv. Differ. Equ., 2019 (2019), 95. https://doi.org/10.1186/s13662-019-2042-3 doi: 10.1186/s13662-019-2042-3
    [8] N. Laskin, Fractional Schrödinger equation, Phys. Rev. E, 66 (2002), 056108. https://doi.org/10.1103/PhysRevE.66.056108 doi: 10.1103/PhysRevE.66.056108
    [9] N. Laskin, Fractional quantum mechanics and Lévy path integrals, Phys. Lett. A, 268 (2000), 298–305. https://doi.org/10.1016/S0375-9601(00)00201-2 doi: 10.1016/S0375-9601(00)00201-2
    [10] N. Raza, M. Rafiq, A. Bekir, H. Rezazadeh, Optical solitons related to (2+1)-dimensional Kundu-Mukherjee-Naskar model using an innovative integration architecture, J. Nonlinear Opt. Phys., 31 (2022), 2250014. https://doi.org/10.1142/S021886352250014X doi: 10.1142/S021886352250014X
    [11] M. Naber, Time fractional Schrödinger equation, J. Math. Phys., 45 (2004), 3339–3352. https://doi.org/10.1063/1.1769611 doi: 10.1063/1.1769611
    [12] B. Guo, Y. Han, J. Xin, Existence of the global smooth solution to the period boundary value problem of fractional nonlinear Schrödinger equation, Appl. Math. Comput., 204 (2008), 468–477. https://doi.org/10.1016/j.amc.2008.07.003 doi: 10.1016/j.amc.2008.07.003
    [13] D. Yang, Z. Du, Asymptotic analysis of double-hump solitons for a coupled fourth-order nonlinear Schrödingier system in a birefringent optical fiber, Chaos Soliton. Fract., 199 (2025), 116831. https://doi.org/10.1016/j.chaos.2025.116831 doi: 10.1016/j.chaos.2025.116831
    [14] R. Eid, S. Muslih, D. Baleanu, E. Rabei, On fractional Schrödinger equation in $\alpha$-dimensional fractional space, Nonlinear Anal.-Real, 10 (2009), 1299–1304. https://doi.org/10.1016/j.nonrwa.2008.01.007 doi: 10.1016/j.nonrwa.2008.01.007
    [15] S. Muslih, O. Agrawal, D. Baleanu, A fractional Schrödinger equation and its solution, Int. J. Theor. Phys., 49 (2010), 1746–1752. https://doi.org/10.1007/s10773-010-0354-x doi: 10.1007/s10773-010-0354-x
    [16] J. Gomez-Aguilar, D. Baleanu, Schrödinger equation involving fractional operators with non-singular kernel, J. Electromagnet. Wave., 31 (2017), 752–761. https://doi.org/10.1080/09205071.2017.1312556 doi: 10.1080/09205071.2017.1312556
    [17] T. Bakkyaraj, R. Sahadevan, Approximate analytical solution of two coupled time fractional nonlinear Schrödinger equations, Int. J. Appl. Comput. Math., 2 (2016), 113–135. https://doi.org/10.1007/s40819-015-0049-3 doi: 10.1007/s40819-015-0049-3
    [18] S. Longhi, Fractional Schrödinger equation in optics, Opt. Lett., 40 (2015), 1117–1120. https://doi.org/10.1364/OL.40.001117 doi: 10.1364/OL.40.001117
    [19] G. P. Agrawal, Nonlinear fiber optics: its history and recent progress, J. Opt. Soc. Am. B, 22 (2011), A1–A10. https://doi.org/10.1364/JOSAB.28.0000A1 doi: 10.1364/JOSAB.28.0000A1
    [20] B. Malomed, Multidimensional solitons: well-established results and novel findings, Eur. Phys. J. Spec. Top., 225 (2016), 2507–2532. https://doi.org/10.1140/epjst/e2016-60025-y doi: 10.1140/epjst/e2016-60025-y
    [21] C. Xu, M. Ur Rahman, H. Emadifar, Bifurcations, chaotic behavior, sensitivity analysis and soliton solutions of the extended Kadometsevâ-Petviashvili equation, Opt. Quant. Electron., 56 (2024), 405. https://doi.org/10.1007/s11082-023-05958-4 doi: 10.1007/s11082-023-05958-4
    [22] J. He, Variational principles for some nonlinear partial differential equations with variable coefficients, Chaos Soliton. Fract., 19 (2004), 847–851. https://doi.org/10.1016/S0960-0779(03)00265-0 doi: 10.1016/S0960-0779(03)00265-0
    [23] M. Murad, H. Ismael, T. Sulaiman, Various exact solutions to the time-fractional nonlinear Schrödinger equation via the new modified Sardar sub-equation method, Phys. Scr., 99 (2024), 085252. https://doi.org/10.1088/1402-4896/ad62a6 doi: 10.1088/1402-4896/ad62a6
    [24] M. Alabedalhadi, Exact travelling wave solutions for nonlinear system of spatiotemporal fractional quantum mechanics equations, Alex. Eng. J., 61 (2022), 1033–1044. https://doi.org/10.1016/j.aej.2021.07.019 doi: 10.1016/j.aej.2021.07.019
    [25] Q. Wang, Homotopy perturbation method for fractional KdV-Burgers equation, Chaos Soliton. Fract., 35 (2008), 843–850. https://doi.org/10.1016/j.chaos.2006.05.074 doi: 10.1016/j.chaos.2006.05.074
    [26] Y. Tian, J. Liu, A modified exp-function method for fractional partial differential equations, Therm. Sci., 25 (2021), 1237–1241. https://doi.org/10.2298/TSCI200428017T doi: 10.2298/TSCI200428017T
    [27] M. Bayrak, A. Demir, A new approach for space-time fractional partial differential equations by residual power series method, Appl. Math. Comput., 336 (2018), 215–230. https://doi.org/10.1016/j.amc.2018.04.032 doi: 10.1016/j.amc.2018.04.032
    [28] A. Esen, F. Bulut, Ö. Oruç, A unified approach for the numerical solution of time fractional Burgersâ type equations, Eur. Phys. J. Plus, 131 (2016), 116. https://doi.org/10.1140/epjp/i2016-16116-5 doi: 10.1140/epjp/i2016-16116-5
    [29] O. Abu Arqub, Numerical simulation of time-fractional partial differential equations arising in fluid flows via reproducing Kernel method, Int. J. Numer. Method. H., 30 (2020), 4711–4733. https://doi.org/10.1108/HFF-10-2017-0394 doi: 10.1108/HFF-10-2017-0394
    [30] M. Eslami, B. Fathi Vajargah, M. Mirzazadeh, A. Biswas, Application of first integral method to fractional partial differential equations, Indian J. Phys., 88 (2014), 177–184. https://doi.org/10.1007/s12648-013-0401-6 doi: 10.1007/s12648-013-0401-6
    [31] A. Gaber, H. Ahmad, Solitary wave solutions for space-time fractional coupled integrable dispersionless system via generalized kudryashov method, FU-Math. Inform., 35 (2020), 1439–1449. https://doi.org/10.22190/FUMI2005439G doi: 10.22190/FUMI2005439G
    [32] R. Shah, H. Khan, P. Kumam, M. Arif, D. Baleanu, Natural transform decomposition method for solving fractional-order partial differential equations with proportional delay, Mathematics, 7 (2019), 532. https://doi.org/10.3390/math7060532 doi: 10.3390/math7060532
    [33] M. Sarıkaya, H. Budak, H. Usta, On generalized the conformable fractional calculus, TWMS J. Appl. Eng. Math., 9 (2019), 792–799.
  • Reader Comments
  • © 2026 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(278) PDF downloads(34) Cited by(0)

Article outline

Figures and Tables

Figures(5)  /  Tables(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog