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Abstract: New traveling wave solutions for the nonlinear fractional Schrodinger equation (FSE),
obtained using conformable fractional derivatives, are presented in this paper. Despite extensive
research on classical and fractional Schrodinger models, a systematic development of accurate
traveling wave solutions employing conformable operators in conjunction with effective symbolic
approaches remains lacking. To bridge this gap, we employ a Hamiltonian-based technique, a
variational formulation via the Ritz method, and the modified Sardar subequation method. The
fractional governing model is reduced to a nonlinear ordinary differential equation through a complex
traveling wave transformation, which is analytically solved to yield new families of solutions. Two-
and three-dimensional graphical representations of the solution’s physical properties are presented,
emphasizing the wave dynamics of the proposed fractional model.
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1. Introduction

Fractional partial differential equations (FPDEs) are effective tools for simulating nonlinear systems
in disciplines such as electromagnetics, geophysics, fluid mechanics, and economics [1,2]. As a result,
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they have attracted considerable attention in the mathematical and physical sciences. The theory of
fractional calculus provides a wide variety of fractional operators, which are employed to comprehend
and modeling a wide range of biological and physical phenomena [3—-5]. These operators enable
more precise representations of complex systems, particularly those exhibiting memory and hereditary
characteristics [6,7].

The nonlinear Schrédinger equation (NFSE), regarded as one of the most reliable quantum models,
quantum mechanical phenomena. This model encompasses a wide range of state wave functions in
nonlinear media, including damping, diffusion, heat transport, and plasmas. Feynman and Hibbs
employed path integrals over Brownian trajectories to establish the classical Schrodinger equations
for the first time in 1965. Fractional-order Schrodinger equations were subsequently formulated
by replacing Brownian trajectories with Levy trajectories [8]. Laskin later modified the space-time
fractional Schrodinger equation to incorporate the quantum Riesz fractional framework [9]. Since then,
NFSEs have attracted significant attention within the scientific community [10]. For example, Naber
(2004) employed Caputo fractional derivatives to evaluate the time-dependent NFSE [11], while Guo
et al. (2008) applied energy methods [12] to study the existence and uniqueness of solutions. In [13],
asymptotic analysis of double-hump solitons was conducted for a coupled fourth-order nonlinear
Schrédingier system in a birefringent optical fiber. Eid et al. (2009) addressed the space-dependent
NFSE using the Coulomb potential [14], while Muslih et al. (2010) investigated the time-dependent
FSEs and their solutions [15] via the Caputo technique. Furthermore, a new fractional operator based
on the Mittag-Leffler function, a nonsingular kernel, and the Caputo-Fabrizio fractional derivative
was introduced in (2017) as an alternative model for NFSEs [16]. Bakkyaraj and Sahadevan (2016)
employed the homotopy analysis method [17] to obtain analytical and numerical solutions for coupled
NFSEs. Overall, NFSEs provide a foundation for understanding Heisenberg dynamical model and for
establishing connections between quantum and classical physics within the Lagrangian framework.

According to [8] and [9], the fractional Schrodinger equation was first used to characterize
quantum systems with anomalous dispersion and nonlocal interactions. [18] and [19] have provided
more evidence of its physical significance in nonlinear optics and wave propagation in complicated
media. In parallel, multi-component wave interactions in Bose-Einstein condensates, plasma physics,
and birefringent optical fibers have been extensively modeled using coupled nonlinear Schrédinger
systems [20]. Fractional derivatives naturally extend classical models to incorporate memory and
hereditary effects. The main motivation of the present study is to apply three efficient methods—the
variational approach [21], the Hamiltonian-based method [22], and the Sardar subequation method [23]
to construct precise analytical solutions for triple NFSEs [24].

2 2
D¥u = DA(DP(u)) + l'”—lhb; + v = W,
o DfuP
Div= - —t— + (1 + h)DPy,
Da 2
Dw = 1"”]'1 +(1 = hDPw. (1.1)

This model involves a complex-valued function u(x, ) and real-valued functions v = v(x,f) and w =
w(x, t), whereas h is a constant. Conformable fractional derivatives are defined for 0 < a, 8 < 1 with
and S denoting orders of fractional derivatives D{ and D, respectively.
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By incorporating nonlocal and memory effects, fractional quantum-mechanics models generalize
classical Schrodinger-type equations, as demonstrated in [24]. This enables for deeper soliton
dynamics and provides precise solutions that are used as benchmarks for analytical and numerical
investigations. Obtaining exact and accurate solutions for nonlinear fractional models is complex
and intricate problem. In the recent, considerable efforts have been devoted to developing numerous
numerical and analytical methods for solving nonlinear evolution equations, including the one Step
Non-local Homotopy Perturbation Method [25], the Exp-function approach [26], the residual power
series method [27], the unified method [28], the reproducing kernel method [29], the first integral
method [30], Kudryashov method, the homogenous balance method [31], and the natural transform
decomposition method [32]. The main aim of this research, is to construct new traveling wave solutions
for the proposed fractional nonlinear model using the suggested techniques.

The structure of the present work is as follows: Section 2 introduces the basic definitions and
notation of fractional calculus. Section 3 presents the semi-inverse method, while Section 4 discusses
the Sardar subequation approach. Sections 5 and 6 apply these methods to compute traveling
wave solutions of the triple nonlinear fractional Schrodinger equations. Section 7 provides visual
representations of the obtained solutions are shown in Section 7. Exact observations and conclusions
are presented in Section 8.

2. Conformable derivative

The Caputo definition, the Riemann-Liouville definition, the Atangana-Baleanu-Caputo definition,
the Grunwald-Letnikov definition, and the conformable fractional derivative are some of the definitions
of fractional operators that are frequently employed. The conformable fractional derivative is applied
to the proposed model. The definition of the conformable derivative [33] of order is given as follows:

g(6s' P +5) — g(s)
S

Di(g(s)) = lim . Be0,1].

The conformable derivative possesses the following properties:
Property I: D¢ = ké'k — ),
Property II: - D (kip(A) + (kan(A)) = ki D (o(A)) + ko D (q(A)),
Property ITl: DJu(A()) = i\ (AE)DIA(),
In the present context, k, k;, and k, represent real constants, while u(p) and A(p) are arbitrary
differentiable functions.

3. Description of He’s semi-inverse method

The aim of this section is to provide a summary of Heds semi-inverse method. Let’s look at the
FPDE in the following form:

Ew, 0w, & w,0lw,.)=0, 0<apBy<l, (3.1

> YT

where w = w(t, 71, T2, 73, ..., T,). The following procedures are used to solve Eq (3.1).
First step: First, a variable transformation of the form is applied to Eq (3.1). w(t, 7,72, 73, ..., T,) =
w(A), where A denotes a function of ¢, 7y, 75, 73, ..., T, and can be conveyed in a number of ways. This
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transformation transforms Eq (3.1) into a nonlinear ordinary differential equation (NODE) with the
following structure:

FWW,W , WW’,..)=0. (3.2)

The variable W in Eq (3.2) has derivatives about A. To find the constant(s) of integration, Eq (3.2) can
occasionally be integrated once or more.
Second step: We create the following trial-functional using He’s semi-inverse method:

J(W) = f LdA = f (K — E)dA, (3.3)

where L is a function of W and its derivatives that is unknown. There are different methods for building
the trial functionals.
Third step: Several types of single wave solutions can be obtained using the Ritz approach, including
U(A) = Asech(BA), U(A) = Acsch(BA), U(A) = Atanh(BA), U(A) = A coth(BA) and so on, where
A and B are constants that need to be ascertained.

When the solitary wave solutions mentioned above are substituted into Eq (3.3) and J is made
stationary with regard to A and B, the outcome is

aJ
= = 4
A 0, (3.4)
aJ

75 = 0. (3.5)

We obtain A and B by simultaneously solving Eqs (3.4) and (3.5). The solitary wave solution is hence
well defined.

4. Description of the Sardar sub-equation method

This section provides a detailed discussion of the suggested “SSEM™ approach.
First step: Examine the structure below, which highlights the NLEE for

M(F’Ft’anFXX?FII""):O' (41)
The traveling wave transformation F(x,t) = h(A), where the wave variable A is defined as

klxﬁ kot

= + 4.2)
ra+p Id+ae
is employed to transform Eq (4.1) into the subsequent ODE.
Sth,W,0',n",..)=0. (4.3)
Second step: The following is the form of the solution to Eq (4.3):
N
hA) = ) qiH'(A). (4.4)
i=0
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In this case, the unknown constants to be solved are ¢;, (i = 0,1,2,3, ..., N). Taking into account the
auxiliary equation

H'(A) = Ve + cH(A)? + gH(A), (4.5)

here ¢, o, and g are constants, and Eq (4.4) presents the solution as

Case 1: If o > 0, and ¢ = 0, then

Hi(A) = £ /—% sechy,(VTA), (g <0,
+ /%T cschy,(VTA), (g > 0).

Case2: If 0 <0, g >0, and ¢ = 0, then

H7(A) = + 4 /—beTO- secy,(V=aA),
HE(A) = + /—% cscyp( Voo A).

Case3: Ifc <0,g>0,and c = g,then

. ,—O' -0
Hg(A) = E tanhbp( TA),

. ,—O' -0
Hg(A) = E COthbp( TA),

HEA) = | /;—‘; (tanhy,(V=20°A) + 1 yfbp sechy,(V=20°A)),
HE(A) = ‘/% (cothy,(V=20°A) + ybp eschy,(V-20A)),

HEA) = + | /% (tanhbp( \ /%’A) + cothy( %A)J.

Cased4: If 0 >0,g>0,and c = g,then

H3(A)
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+ % o
Hijy(N) = /g tany, ( EA),
. [o o
HI_I(A) = ﬁ COtbp( EA)’

Hp,(A) = \/%(tanhp( V20 A) = \/Esechp( \/%-A)) ,
Hi(A) = \/%(COtbp( V20 A) + \/Ecscbp( \/%A)) ,

HE(A) = \/g (tanbp( %A)+cotbp( %A)).

sechy,(A), tanhy,(A), tan,,(A), coty,(A), etc, are hyperbolic and generalized trigonometric functions
with parameters b and p. When b = p = 1, they are recognized as hyperbolic and trigonometric

functions.
Third step: The homogeneous balancing approach determines N.

Fourth step: Inserting Eqs (4.4) and (4.5) into Eq (4.3) yields a polynomial in H'. Algebraic equations
are generated by connecting all terms of similar power to zero. By solving the obtained system, we

may determine the values of the unknowns.

5. Using the semi inverse variational method

This section’s objective is to extract the Hamiltonian system and construct the variational principle

using He’s semi-inverse technique. For this, we introduce the transformation as:
u(x, 1) = UN)e™, v(x,1) = V(A), w(x,1) = W(A).

In this context, the wave variable A and phase component 7 are defined as follows:

_ k].xﬁ + kot®
TA+p TId+a)
axP at®

n= + .
T(1+p)  T(+a)

Equation (1.1) is transformed into the following NODEs, by applying this transformation:

203
(kiky = (k)HU” + (a} — a1ax)U — =~ (V-WU =0
—ky U2 ko U2
y= ol gy k%
@ X

where
{cp = (1 + h) ks — (1 + h)ky),

x =1 =~k = (1 = k).

(5.1)

(5.2)

(5.3)
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The second part of Eq (5.3) is combined with the first component to create a single NODE for the

system.
a\(a; —ax))U 203
U’ + + =0 54
kitky —ki) (ko = ky)? = kth? CH

with the constraint from the imaginary part:

kya,

ko (5.5)

2611 - Clg.

Its variational principle (VP) can be established by employing the semi inverse method as

*[-1(dU\" Qai-a)* , Qa-a)?, , e
1= =& - U2 - U*|dA = — pldA. 5.6
fo lz (dA) 2k 22hd fo =l -0

The variational approach employed to construct solitary wave solutions is theoretically based on the
obtained VP in Eq (5.6). Moreover, this approach can also be applied to derive the Hamiltonian:

2
—21 (dU) , Qai- @) U s (a; — ay)? Ut

L=v+p =—|-—+
T dA 2k, 2R
When v and p represent the system’s kinetic and potential energies, respectively:
-1 (dU\’
- — =], 5.7
) (dA) 5.7)
_ Qar - a) 5 Qay-a)

+ 5.8
2k, 2k§h2a§ (5:8)

The system’s energy conservation is demonstrated through then shown via the Hamiltonian. Building
on this foundation, we will extract the periodic wave solutions will be extracted in the subsequent
analysis using the Hamiltonian-based approach.

5.1. The variational method

Family one:
U = A sech(A). 5.9

Putting it into Eq (5.6) yields

*[-1(dU\" Qai-a)?,, Qay-a)* ,
Jay = | |=[5] - =50 - =2 utaa
&) fo [2 (dA) 2%, 2K

*[-1 (2a,—ay)? Qa,—a,)?
- fo [5 (—A sech(A) tanh(A))z—sz[A sech(A)]z—W[A sech(A)]*|dA  (5.10)
2 2
:1 A*(12iPajasky — 12Raasky + 3h*ask, — Wradk; + 8A%a; — 8A%ajay + 2A%a3)
6 (h*a2k3) '
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We use the Ritz method to determine its stationary condition, which is

dJ(A)

=0.
TdA

Resolving it results in

| 123k + 12015k, — 33k + K cah

A=-
2 Zal—az

As a result, the solitary wave solution is obtained as

| 123k + 1201k — 3a3ks + K ash

uy(x, 1) = 2 r— sech(A)e”,
2
“t | 126 + 12a1ask — 33k, + K aoh
t h(A) |,
VI(X ) q) 2 2(11 —dap see ( )
2
k(1 126k + 2aak - 3adk + 1B ah
wi(x, )= —|3 sech(A)
x |2 2a, — as
Family two: Here we can set
A
" 1+ cosh(A)

U*ldA

When it is inserted into Eq (5.6), the result is
“L(dUY Qi -a) ,  (Qa-a)
dA\ 2k, 2k3h2a3

J(A) =
()j; >

~ f‘” [ -Asinh(A) ' Qa—w)?, A, Qa—a)?, A

~Jo [ 2\[T+cosh(A)? 2k, 1+cosh(A)’  2k2h2a2 " 1+cosh(A)
1 A2(140R2 a2 a2k, — 140M2a a3k, +35h2d ky = Th2a2Kk3 +24A%a2 — 24Aa, a, + 6A2d2
"20 )

HldAa

We use the Ritz method to determine its stationary condition, which is

dJ(A) _

0.
dA

The solution leads to

1 \/ 140 2k + MOCllkzaz - —Cl k2 + 7k2 azh

A=—
2 2a; —ap

As a result, the solitary wave solution is obtained as

(5.11)

(5.12)

(5.13)

(5.14)

(5.15)

(5.16)

(5.17)
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1 \/—mazkz + 140611](2612 a%kz + %k% Clzh
2 2a) - ap
1) = m,
a5, 1) 1 + cosh(A) ¢

2

1 \/—mazkz + —a1k2a2 - —Sagkz + 7k2 Clzh

V()Cl‘)__—kQ 2 2(11—612

25D =" 1 + cosh(A) ’ (5.18)
2
1 \/—m02k2 + 140611/(2612 a%kz + %k% Clzl’l
k2 5 2611 —a
1) =—
w2l 1) 1 + cosh(A)
Family three:

U = A sech’(A). (5.19)

Inserting it into Eq (5.6) yields:

J(A):f [ 1(dU) Qa-a)y , Qa-w? .|
0

dA 2k, 2k2h2a§
_ “1-1 2 (2a, - ) 2 2 2a, _a2)2 2 4
_ fo [5 (24 seel*(A) tanh () == 2[4 seelA)F - Y s I A (520)
1 A2(140h2a%a§k2— 14Oh2a1a2k2+35h2 k2—28h2a§k§+96A2a%—96A2a1a2+24A2a%
105 (hzagkg)

We determine its stationary condition using the Ritz approach as follows:

dJ(A)

= 0. 5.21
A (.21)

Solving it leads

1 \/%aﬁkz + Rajarky — Ladky + BkZ azh
A=~

5.22
4 261] —ap ( )

Thus, the solution for a solitary wave is obtained as
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\/ﬁazk + Rajarky — Ladky + k2 arh

1 .
uz(x,t) = 2 CT— sech(A)%e™,
2
—ky \/ﬂazkz + —a1a2k2 — —Cl k2 + 28](2 a>h 5
V(X0 = = 4 T sech(A)”] (5.23)
2
\/ 140 2 14001612](2 - —azkz + 28](% ah
wi(x, 1) = — - sech(A)*| ,
1= a2

where A and 7 are defined in Eq (5.2).

5.2. The Hamiltonian-based method

U =A cos(BA), B> 0, (5.24)

where A and B are the frequency and amplitude, respectively. Taking into account the system’s
Hamiltonian Eq (5.4):

-1(dU\" Qay-a)?. , Qa-a)>
L =v+ =—|—]| + ———U"+ ——— 5.25
TP TR (dA) 2%k 2CHa -2
Energy conservation theory tells us that the system’s total energy stays constant as
L=v+ AUV, Qa—a)? @ —af (5.26)
=V = —\|— = N .
P=% \an 2k, 222 °
where the Hamiltonian constant is denoted by L.
By establishing
A =0, (5.27)
for Eq (5.24), then inserting the findings into Eq (5.26) produces
Qai—a) ,  Qay-a)’ ,
Ly= ————— —_— 5.28
‘ 2k, 212h2a? ©:28)
When Eq (5.24) is inserted into Eq (5.26), the result is
-1 2a;, — ay)? 2a; — ay)?
L =2 -aB sinBA + U 14 cos(BAE + ZL D 14 cosBAY!
2 2k, 2ksh*a;
2 2 (5.29)
L= (2a, — ay) 2, (2a, —ar)” 4
’ 2k, 212 H2a
Now we can set x
BA = T (5.30)
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Then, there is

_—1A232 Qa; - a)* |, (2&12—0232 _ Qa -a) (2(112— 6122)2 4 (531)
4 4k, 32ksh?a; 2k, 2k;h*a;
Solving it, we have
| \/—4h2a§k2 — 64224 — ay)
S , (5.32)
(kaazh)
\/ A2ak, — 6A22ay — @) |
1) =A = Ale",
us(x,1) = A cos > Gadal) e
2
& | 423k, - 6A%Qa - ay)
,H)=—|A = All, 5.33
va(x, 1) o cos| 3 ol (5.33)
2
\/ AR2a2k, — 6A2Q2a; — a3)
w(x,t)— A cos|— All,
) X (kaash)
where A and 7 are defined in Eq (5.2).
6. Utilization of Sardar sub-equation method
In Eq (5.4), balancing U” with U? yields R = 1. The solution of Eq (5.4) can be written as
UN) = qo + 1 HIA). (6.1)
Applying the proposed technique, following set of solutions has been obtained:
—ajglar — az)* + g2k} _
(]0:0’(]1:\/ 1 S Il 6.2)
ok, ok

Case 1: When o > 0 and ¢ = 0, then

2 2 27,214
b \/—alg(al —ax)* + gorh’k|
W (x, 1) = ,/— P7 - sech (VTA) e, g <0,
8 oK
2
2 2 21274
—k b \/_alg(al - a2) + 80 h kl
vi(x, 1) = 32 - ZO- = sech(\/EA) , £<0,
V 1

2
2 2 25,214
k f b —ag(a; — ay)* + gohk;
wf(x,zf):—2 _2Pg \/ : sech(\/EA) , g<0.
X 8 ok
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2 2 21,274
b —ag(a; — ay)* + goh?k;
W51 = 4| ‘; z ‘/ — esch (VTA) e, g >0,
1

2
—2 _ 2 212 kA
. _k2 bpo- \/ alg(al 612) + 80 1
vi(x,t) = ry ,f p s csch(\/aA) , g&>0,

2
—a’g(a; — ar)? + go2h2k}
ws (x,1) = % bgo- \/ ! — : csch(\/EA) , g>0.
V 1

Case 2: If 0 <0, g > 0, and ¢ = 0, then

2 2 25214
/ b —a,g(a; — ay)* + go-h*k
u;(x, l) = _ j4% \/ 1 1 sec ( \/;A) en](x,l)’
8 ok,
2
+ —ky bpo \/_a%g(al —ay)* + g0'2h2k‘1l
v3(x, 1) = 2 [\ e s sec(\/;A) ,

2
—a’g(a; — ay)? + go2h2k?
wi(x, 1) = k| |_bpe \/ : : sec(\/—o'A)
: % g ok

2 2 25,214
b \/—alg(al — ax)* + gorh’k|
uy(x,1) = 4[— ];0' s CSC(V—O‘A) eEn
V 1

2

) _ 2 2h2k4
. —k2 bpo' \/ alg(al aZ) + 80 1
vi(x, 1) = 5 | /— . o csc(\/—oA) ,

2 2 20,214
k b —ajga; — ay)* + goh?k;
wi(x,1) = 2L -2 \/ csc(\/—crA)
X 8 ok

Case 3: If0'<0,g>0andc:%,then

AIMS Mathematics

2 2 27,214
[— \/_alg(al —ax)* + go*h’k| —
u? (x,1) = 2—2- ok, tanh( /70_ A)etn(X.t)’
2
s(x, 1) —ky -0 \/_a%g(al —a)* + go-zhzk‘ft h( FA)
va(x,t) = — — an g ’
5 )] 2g ok 2

2
k, gy \/ —atg(ar — ar)* + go?h2k} e

fonn = 2| 22 tanh( /=2 A) | .

Wi (x, 1) P o2 e anh( 5 )
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O'k]

2 2 21214
_ —aig(a; — ay)* + gohk] _
ug (x, 1) = /2—2 \/ coth( TO-A)e"’(x’t),

2

—a’g(a) — ax)? + go2h*k?
vn= 2| =7 s - + o coth([ = A
6 () 2g ok 2

2
2 2 25214
k — —ajg(a; — ay)* + go*h’k _
winn = 2| |22 v Leoth(4/ 2| .
X 2g ok, 2

2 2 2h2 14

_ _alg(al —ax)* + go*h kl

05 (x, 1) = ,/2—(2 \/ — (tanh( V=20A) % 1 /bp sech( V=20A)) ",
1

2

2 2 25,214

—k —o \—4i8(a1 — az)* + go*h’k]

Vi(x, 1) = Fz lz—go \/ : . (tanh(\/—ZoA) + 14/bp sech( ‘V—20A)) ,
1

2

— [—-a’g(a; — a»)? + go*h2k?
WE(x, 1) = ])‘72 /2_;’ ‘/ : o : (tanh( V=20A) + ¢ /bp sech( V=20A))

2 2 27274

— _alg(al - aZ) + go h kl —

ug(x, 1) = ~ \/ = (coth( V=20A) + ~/bp csch( \/—201\)) et
2g ok, 2¢g

2

2 2 25,214

—k —o \—418(a1 — az)* + go*h’k

ve(x, 1) = 32 /2—2 \/ : p : (coth( V—=20A) = +/bp csch( ‘V—20A)) ,
1

2

2 2 271,24
k —— +/—a;8(a; — ay)* + go*h*k
WE(x, 1) = ;2 /2_;’ Vi - " (coth(V=20A) = ybp esch(V=20A))

- \/—a%g(al — @) + go*h*k} > 5 -
S(x,t :i,/— tanh( 4/ —A) + coth(/—A) | "™,
Uy (x, 1) 82 ok, (an ( g ) + coth( g ))e

2

2 2 25214
_k2 -0 \/_a]g(al - a2) + 8o h k] —0 —0
LN tanh( 4/ =2 A) + coth(4[-2M) || |
o 84 ok, anh( y/5~A) + coth(y/-=A)

2 2 27,274
k — —ag(a; — ay)* + go*hkj — —
Wi = 2+ == \/ tanh( | —A) + coth( 1/ —A)
X 8¢ ok, 8 8

Case4: If o >0,¢ > 0and c = £, then

Vo (x, 1) =

[\S)
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/— \/ lg(al - 612)2 + go2h?k}
upy(x, 1) = (tan( \/7A) + cot( \/7A)) nxn.
_ aigla; —a )2 + go*h’k}
vig(x, 1) = k2 A / \/ S (tan( \/71\) + cot( A)) ,

—a’g(a, — ar)? + go2h?k?
whnn = 2| [Z v “ean([ZA) + cot( [ Zm))]
X 8g 8 8

O'kl

where A and 7 are taken from Eq (5.2).

7. Graphical representations

This section elaborates on the physical characteristics and presents visual representations of the
triple nonlinear fractional Schrodinger equation. The equation is examined under spatio-temporal
effects. The discussion focuses on two highly effective methods: the Sardar subequation method and
the semi-inverse variational method. These methods advances in obtaining soliton solutions and not
previously been applied to this model before. To assess the fractional impact on the specific solutions
of uj(x,1), ur(x,1), ug(x,1), wui(x, 1), and us(x,1), it involves 3D and 2D graphical representations,
revealing behavior with specific parameter values for real components. The parameters @, £ introduce
adjustable dispersion and nonlinearity effects, where larger @ slows energy dispersion, broadening
solitons, while variations in 8 influence nonlinear interactions, altering soliton stability and dynamics.
This approach effectively models fractional soliton behaviors. The 3D plots usually spatiotemporal
evolution of the wave profile, demonstrating how the solution changes concurrently with space x and
time 7. 2D plots of solutions u;(x, 1), us(x,1), us(x,1), ui(x, 1), and uz(x,?) are displayed r = 1,7 = 2
and ¢ = 3 to illustrate wave propagation with fractional orders « and g fixed.

Fora = 0.75, B =0.75, « = 0.95, B =0.95, and @ = 1, B = 1, the physical behaviors of real parts
of U, are plotted in Figure 1 for @ = 0.75, § = 0.75, « =095, B =095and @ = 1, B = 1, allowing
us to generate the bright-solitary wave. To illustrate wave propagation with fractional orders a and 3
fixed, line plots of solutions u;(x, f)are presented as t = 1, ¢ = 2, and ¢ = 3, as indicated in legend of
Figure 1.

For the parametersas h =1, a; =1, a, = 1, ky = 2, k, = 2, the behaviors of Re[U,] is plotted in
Figure 2, which depicts bright solitons. To illustrate the wave propagation with fractional orders a and
B fixed, line plots of solutions Re[u,(x, t)] are presented at t = 1, = 2, and ¢t = 3,as indicated in the
legend of Figure 2.

If we use A = %, h=1 a =1, ap = 1,k; = 2, k, = 2 for different fractional values at

a =075 =075 a=095 =095 and a =1, g = 1. Figure 3 plots the performances of
Rel[uy(x, t)]. The resulting waveform exhibits a perfectly periodic structure. Line graphs of Re[u4(x, )]
plotted att = 1, ¢ = 2, and t = 3, as indicated in the legend of Figure 3.
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Figure 1. Physical presentation of Re[u;(x, 1)].
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Figure 2. Graphical representation of Re[u,(x,?)].
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Figure 3. Graphical representation of Re[u4(x, 1)].
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The 3D and 2D graphs of the real parts of the solutions u; (x, f) by assigning different parameter
values, suchasb =1, p=1,v=2 kb =1,0=1, h=0.1, ky =3, a, =5, aa =2, g =—1are
presented in Figure 4. Line graphs of uj(x, ) has been plotted for r = 1, = 2, and ¢ = 3, as indicated
by the legend in Figure 4.

3F — .

i “\/\&%7p/

(b) a=0.75, =0.75

— =t
t=2
t=3

t=1

I
S WM =

10 -2 1 [)

©a=095 =095 (d) =095 =095

; -\\W

@a=1,4=1 ®a=1,8=1
Figure 4. Graphical representation of Re[u;(x,1)].

t=1
t=2
t=3

The real sections of the Re[u;—'(x, f)] for 3D and 2D graphs b = 1, p =1, v =2,k = 1,0 = 1,
h=0.1,k =3,a, =5,a, =2, g = —1 are shown in Figure 5 by assigning various parameter values.
The legend in Figure 5 indicates the line graphs of Re[uZ(x,?)] fort = 1,7 = 2, and t = 3. Figure 5
presents profiles of periodic waves.
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8. Conclusions

In this study, we employed the Hamiltonian formulation, the Ritz methodology, the variational
approach based on the variational principle, and the modified Sardar subequation method to obtain
traveling wave solutions of nonlinear fractional Schrodinger equations. A comparison with the results
already reported in literature is also shown in Table 1. The governing equations were transformed into
nonlinear ordinary differential equations through a fractional complex transformation. These methods
proved effective and reliable for constructing precise analytical wave solutions, including bright, dark,
singular, and periodic solitons. The resultant wave structures provide about the dynamical behavior.
The findings reported here are novel and advance our undestanding of fractional wave propagation,
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particularly the role of conformable fractional derivatives. The diversity of solutions obtained suggests
potential applications in communication technology and optical fiber design. This work presents a
broader class of solutions and underscores the usefulness of fractional effects in optical systems, in
contrast to previous research that primarily focused on the mEDAM approach. Furthermore, these
results pave the way for future extensions and numerical investigations in more intricate physical
environments.

Table 1. Advantages of selected analytical and variational methods over other available
methods.

Method

Key advantages Advantage over other methods

Modified Sardar Closed-form solutions; exhibits Gives precise solutions, more

Sub-equation novel solution families. comprehensive than other

analytical techniques.

He’s Semi- Formulates Lagrangians;offers constructs the functional

Inverse Method  semi-analytical  or  analytical methodically and does not require
solutions; reduces  problem a prior functional; gives analytical
complexity solutions unlike numerical

methods.

Ritz Method Efficient; controllable accuracy via More flexible than exact analytical
trial functions; suitable for BVPs methods; more efficient than purely
and complex geometries numerical approaches.

Hamiltonian- Conserves energy/momentum; Preserves  intrinsic  conserved

Based Approach offers qualitative dynamics; useful quantities; valuable for stability
for integrability and soliton and long-term evolution analysis.
solutions
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