In this paper, we weakened the relevant conditions of order components, and only utilized the even-order components and the orders of centralizers to investigate their impact on the group structure. We demonstrated that alternating groups with disconnected prime graphs can be uniquely determined by the even-order component $ m_1(G) $ and the set $ \pi_{p_m}(G) $. Here, $ G $ represented a finite group, $ \pi(G) $ was the set of prime factors of the order of $ G $, $ p_m $ was the largest element in $ \pi(G) $, and $ \pi_{p_m}(G) = \{ \left.|C_G(x)| \right| x\in G $ and $ |x| = p_m \}$ denoted the set of orders of centralizers of $ p_m $-order elements in $ G $.
Citation: Zhangjia Han, Dongyang He. A characterization theorem for alternating groups[J]. AIMS Mathematics, 2025, 10(9): 21760-21773. doi: 10.3934/math.2025967
In this paper, we weakened the relevant conditions of order components, and only utilized the even-order components and the orders of centralizers to investigate their impact on the group structure. We demonstrated that alternating groups with disconnected prime graphs can be uniquely determined by the even-order component $ m_1(G) $ and the set $ \pi_{p_m}(G) $. Here, $ G $ represented a finite group, $ \pi(G) $ was the set of prime factors of the order of $ G $, $ p_m $ was the largest element in $ \pi(G) $, and $ \pi_{p_m}(G) = \{ \left.|C_G(x)| \right| x\in G $ and $ |x| = p_m \}$ denoted the set of orders of centralizers of $ p_m $-order elements in $ G $.
| [1] | G. Navarro, Character theory and the McKay conjecture, Cambridge: Cambridge University Press, 2018. https://doi.org/10.1017/9781108552790 |
| [2] | W. Shi, A new characterization of the sporadic simple groups, In: Group theory: Proceedings of the singapore group theory conference, Singapore: The National University of Singapore, 1987,531–540. https://doi.org/10.1515/9783110848397-040 |
| [3] | A. Abdollahi, A. M. Hassanabadi, Noncyclic graph of a group, Commun. Algebra, 35 (2007), 2057–2081. https://doi.org/10.1080/00927870701302081 |
| [4] |
W. Shi, A characteristic property of PSL2(7), J. Austral. Math. Soc. (Series A), 36 (1984), 354–356. https://doi.org/10.1017/S1446788700025404 doi: 10.1017/S1446788700025404
|
| [5] | R. Shen, C. Shao, Q. Jiang, W. Shi, V. Mazurov, A new characterization of A5, Monatsh. Math., 160 (2010), 337–341. https://doi.org/10.1007/s00605-008-0083-x |
| [6] | B. Huppert, W. Lempken, Simple groups of order divisible by at most four primes, Proc. F. Scorina Gomel State Univ., 16 (16), 64–75. |
| [7] | W. Shi, On the widths of finite groups (I), arXiv: 2103.04572, 2021. https://doi.org/10.48550/arXiv.2103.04572 |
| [8] | A. S. Kondrat'ev, Finite almost simple 5-primary groups and their gruenberg-kegel graphs, Sib. El. Mat. Izv., 11 (2014), 634–674. |
| [9] |
R. Brauer, Group elements of prime power index, Trans. Am. Math. Soc., 75 (1953), 20–47. https://doi.org/10.2307/1990777 doi: 10.2307/1990777
|
| [10] |
Z. Arad, M. Muzychuk, A. Oliver, On groups with conjugacy classes of distinct sizes, J. Algebra, 280 (2004), 537–576. https://doi.org/10.1016/j.jalgebra.2004.03.029 doi: 10.1016/j.jalgebra.2004.03.029
|
| [11] |
D. Bubboloni, S. Dolfi, M. A. Iranmanesh, C. E. Praeger, On bipartite divisor graphs for group conjugacy class sizes, J. Pure Appl. Algebra, 213 (2009), 1722–1734. https://doi.org/10.1016/j.jpaa.2009.01.015 doi: 10.1016/j.jpaa.2009.01.015
|
| [12] |
A. Beltrán, M. J. Felipe, On the diameter of a p-regular conjugacy class graph of finite groups, Commun. Algebra, 30 (2002), 5861–5873. https://doi.org/10.1081/AGB-120016018 doi: 10.1081/AGB-120016018
|
| [13] |
M. Akbari, X. Chen, A. Moghaddamfar, OD-Characterization of some simple unitary groups, Bull. Iran. Math. Soc., 47 (2021), 197–215. https://doi.org/10.1007/s41980-020-00376-8 doi: 10.1007/s41980-020-00376-8
|
| [14] |
A. R. Moghaddamfar, A. R. Zokayi, M. R. Darafsheh, A characterization of finite simple groups by the degrees of vertices of their prime graphs, Algebr. Colloq., 12 (2005), 431–442. https://doi.org/10.1142/S1005386705000398 doi: 10.1142/S1005386705000398
|
| [15] |
A. V. Vasil'ev, M. A. Grechkoseeva, V. D. Mazurov, Characterization of the finite simple groups by spectrum and order, Algebra Logic, 48 (2009), 385–409. https://doi.org/10.1007/s10469-009-9074-9 doi: 10.1007/s10469-009-9074-9
|
| [16] |
J. S. Williams, Prime graph components of finite simple groups, J. Algebra, 69 (1981), 487–513. https://doi.org/10.1016/0021-8693(81)90218-0 doi: 10.1016/0021-8693(81)90218-0
|
| [17] |
A. S. Kondrat'ev, Prime graph components of finite simple groups, Math. USSR Sb., 67 (1990), 235. https://doi.org/10.1070/SM1990v067n01ABEH001363 doi: 10.1070/SM1990v067n01ABEH001363
|
| [18] | G. Chen, A new characterization of sporadic simple groups, Algbra Collq. 3 (1996), 49–58. |
| [19] | G. Chen, A new characterization of Suzuki-Ree groups, Sci. China Ser. A-Math. 40 (1997), 807–812. https://doi.org/10.1007/BF02878919 |
| [20] | G. Chen, A new characterization of $PSL_2(q)$, Southeast Asian Bull. Math., 22 (1998), 257–263. |
| [21] |
G. Chen, Characterization of ${}^3D_4(q)$, SEA Bull. Math., 25 (2002), 389–401. https://doi.org/10.1007/s10012-001-0389-2 doi: 10.1007/s10012-001-0389-2
|
| [22] |
A. Khosravi, B. Khosravi, A new characterization of $PSL(p, q)$, Commun. Algebra, 32 (2004), 2325–2339. https://doi.org/10.1081/AGB-120037223 doi: 10.1081/AGB-120037223
|
| [23] | A. Khosravi, B. Khosravi, Characterizability of $PSU(p+1, q)$ by its order component(s), Rocky Mountain J. Math., 36 (2006), 1555–1577. |
| [24] | B. Khosravi, B. Khosravi, A characterization of $E_6(q)$, Algebr. Groups Geom., 19 (2002), 225–243. |
| [25] | B. Khosravi, B. Khosravi, A characterization of $^2E_6(q)$, Kumamoto J. Math., 16 (2003), 1–11. |
| [26] | H. Shi, Z. Han, G. Chen, $D_p(3)(p\geq5)$ can be characterized by its order components, Colloq. Math., 126 (2012), 257–268. |
| [27] | A. Iranmanesh, S. H. Alavi, A characterization of simple groups $PSL(5, q)$, Bull. Austral. Math. Soc., 65 (2002), 211–222. |
| [28] |
A. Iranmanesh, S. H. Alavi, B. Khosravi, A characterization of $PSL(3, q)$, where $q$ is an odd prime power, J. Pure Appl. Algebra, 170 (2002), 243–254. https://doi.org/10.1016/S0022-4049(01)00113-X doi: 10.1016/S0022-4049(01)00113-X
|
| [29] |
A. Iranmanesh, S. Alavi, B. Khosravi, A characterization of $PSL(3, q)$ for $q = 2^m$, Acta Math. Sinica., 18 (2002), 463–472. https://doi.org/10.1007/s101140200164 doi: 10.1007/s101140200164
|
| [30] | W. Feit, J. G. Thompson, Solvability of groups of odd order, Pac. J. Math., 13 (1963), 775–1029. |
| [31] | R. Brauer, K. Fowler, On groups of even order, Ann. Math., 62 (2002), 565–583. https://doi.org/10.2307/1970080 |
| [32] | Z. Wang, L. He, G. Chen, An OnC-characterization of $A_14$ and $A_15$, Ital. J. Pure Appl. Math., 41 (2019), 536–546. |
| [33] |
Zh. B. Wang, G. Y. Chen, A new characterization of alternating groups with nonconnected prime graphs, Sib. Math. J., 64 (2023), 251–260. https://doi.org/10.1134/S0037446623010214 doi: 10.1134/S0037446623010214
|
| [34] | Z. Wang, H. Lv, Y. Yan, G. Chen, A new characterization of sporadic groups, Ital. J. Pure Appl. Math., 47 (2022), 1070–1084. |
| [35] | D. Gorenstein, Finite simple groups: An introduction to their classification, New York: Springer, 1982. https://doi.org/10.1007/978-1-4684-8497-7 |
| [36] | G. Chen, On structure of Frobenius group and 2-Frobenius group (In chinese), J. Southwest Norm. Univ. (Nat. Sci. Ed.), 10 (1995), 485–487. |
| [37] | B. Huppert, Endliche gruppen I, Heidelberg: Springer Berlin, 1967. https://doi.org/10.1007/978-3-642-64981-3 |
| [38] |
J. Li, G. Chen, A new characterization of the Mathieu group and alternating groups with degrees primes, Commun. Algebra, 43 (2015), 2971–2983. http://dx.doi.org/10.1080/00927872.2014.900683 doi: 10.1080/00927872.2014.900683
|
| [39] |
G. Chen, Further reflections on Thompson's conjecture, J. Algebra, 218 (1999), 276–285. https://doi.org/10.1006/jabr.1998.7839 doi: 10.1006/jabr.1998.7839
|
| [40] |
A. S. Kondrat'ev, V. D. Mazurov, Recognition of alternating groups of prime degree from their element orders, Sib. Math. J., 41 (2000), 294–302. https://doi.org/10.1007/BF02674599 doi: 10.1007/BF02674599
|
| [41] |
D. He, Z. Han, A new characterization of sveral alternating simple groups, Int. J. Algebr., 18 (2024), 31–39. https://doi.org/10.12988/ija.2024.91852 doi: 10.12988/ija.2024.91852
|
| [42] | J. Conway, R. Curtis, S. Norton, R. A. Parker, R. A. Wilson, Atlas of finite groups, Oxford: Oxford University Press, 1985. |
| [43] | J. J. Rotman, An introduction to the theory of groups, New York: Springer, 1995. https://doi.org/10.1007/978-1-4612-4176-8 |