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1. Introduction

All groups considered in this paper are finite groups.
The classification theorem of finite simple groups was one of the most significant mathematical

achievements in the field of algebra. The lengthy proof process, extensive involvement of participants,
multitude of articles, and sheer volume are unprecedented in mathematical history, representing
a monumental milestone. Subsequently, the quantitative characterization of finite simple groups
became a hot research topic. In recent years, the McKay conjecture and Alperin conjecture in group
representation theory have been focused on simple groups and quasi-simple groups (see [1]). Equally
notable is the application of certain characterization theorems in the emerging field of generative
artificial intelligence. Further understanding and identifying properties of simple groups is imperative.

The origin of the quantitative characterization of finite simple groups traces back to a
correspondence between the distinguished group theorist Professor W. J. Shi and Fields Medalist
Professor J. G. Thompson around 40 years ago. They proposed the following two conjectures,
respectively:
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Two-order Conjecture: If G is a finite group, and M is a finite simple group such that |G| = |M|
and πe(G) = πe(M), where πe(G) denotes the set of element orders in G, then G � M (see [2]).

Thompson Conjecture: If G is a finite group with a trivial centralizer, and M is a finite simple
group such that N(G) = N(M), where N(G) = {n ∈ N |G has a conjugacy class of length n}, then
G � M (see [3]).

Over the past 40 years, group theorists have continuously pushed the boundaries of research in this
field, proposing an increasing number of quantitative characterization methods. Examples include: the
spectrum characterization of finite simple groups [4]; the order equations of finite simple groups [5];
the characterization of finite simple groups through the width of orders [6–8]; the characterization
based on conjugacy class sizes [9–12]; and the OD-characterization of finite simple groups [13, 14]. It
is worth mentioning that in 2009, Russian mathematician Fields Prize winner V. D. Mazurov and others
finally proved “Two-order conjecture” based on the work of Professor W. J. Shi and his predecessors.
Subsequently, the conjecture was transformed into a theorem (see [15]).

In a series of papers addressing the aforementioned Thompson Conjecture and Two-order
Conjecture, the concept of the prime graph of a group, denoted as Γ(G), played a crucial role. This
concept was first introduced by K. W. Gruenberg and O. Kegel in [16]: Let G be a finite group, the
vertex set of G is the set of all prime factors of |G|, and two vertices p and q are adjacent if and only if G
contains an element of order pq . The number of connected components in Γ(G) is denoted by t(G), and
the set of connected components in the prime graph of G is denoted by T (G) = {πi|i = 1, 2, . . . , t(G)}.
When G is an even-order group, it is stipulated that 2 ∈ π1. The prime graph components of all finite
simple groups were provided by A. S. Kondrat’ev in [17].

In the 1990s, Professor G. Y. Chen introduced the concept of order components based on prime
graph components (see [18]). Let G be a finite group, π1, π2, . . . , πt(G) are all the connected components
of Γ(G), then |G| = m1m2 · · ·mt(G), where the prime factor set of mi is πi for i = 1, 2, . . . , t(G). The
numbers m1,m2, . . . ,mt(G) are called the order components of G, and OC(G) = {m1,m2, . . . ,mt(G)} is
the set of order components of G (see [18]). For convenience, we denote the even-order component
of G as m1(G). Professor G. Y. Chen gave the order components of all simple groups whose prime
graph is disconnected (see [18] Tables 1–4). Naturally, another question arises: Can order components
characterize all simple groups?

Regarding this question, group theorists have conducted extensive research. For example, G. Y.
Chen proved it holds for Suzuki-Ree groups [19], PS L2(q) [20], and 3D4(q) [21]. A. Khosravi and B.
Khosravi proved it holds for PS L(p, q) [22] and PS U(p+1, q) [23]. B. Khosravi and Bahman Khosravi
demonstrated it holds for E6(q) [24] and 2E6(q) [25]. H. G. Shi proved it holds for Dp(3)(p ≥ 5) [26].
A. Iranmanesh and S. Alavi. demonstrated it holds for PS L(5, q) [27], PS L(3, q) [28, 29].

From this, we can see that the order components are very effective tools in characterizing finite
simple groups. However, it’s important to note that the complexity of order component information
varies among different groups, and in complex cases, they can become difficult to handle. Fortunately,
among the order components, even-order components are somewhat special. According to the Feit-
Thompson theorem [30], all simple groups are of even order. This implies that all simple groups
have an even-order component m1(G). When using order components to characterize finite simple
groups, focusing exclusively on the even-order components and disregarding other components can
significantly simplify the problem, which is a key motivation for this paper.

Another motivation is the centralizer of a group. The centralizer is often used to describe the
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symmetrical structure within the group. It consists of the conjugacy class of the group’s commutative
elements and provides valuable information about the group’s structure. For example, the Brauer-
Fowler theorem [31], proved in 1955, shows that studying finite groups can be done through their
centralizers. Subsequently, Professor Brauer formally proposed using the centralizers of involutions to
characterize finite groups at the International Congress of Mathematicians in 1962. Fifty years later,
in 2012, Professor L. G. He proposed ONC-characterization (see [32]) and utilized centralizers of the
highest order elements to characterize finite simple groups in his doctoral thesis. In 2022, Ms. Z. B.
Wang studied simple groups with disconnected prime graphs (see [33, 34]) in her doctoral research.

Based on these two motivations, this paper aims to introduce a novel method for characterizing
simple groups by integrating centralizers, order components, and disconnected prime graphs. We
weakened the relevant conditions of order components, and only utilized a single order component,
along with the orders of centralizers, to investigate their impact on the group structure. We prove
that alternating groups with disconnected prime graphs can be precisely characterized by even-order
component m1(G) and πpm(G), where pm = max{π(G)} and πpm(G) ={|CG(x)||x ∈ G and |x| = pm }.

Main theorem. Let G be a finite group, and A be an alternating group with disconnected prime
graphs. Then, G � A if and only if:

(a) m1(G) = m1(A);
(b) πpm(G) = πpm(A).

2. Preliminaries

The symbols used in this paper are standard and can be referenced in [35]. The main symbols are
listed in Table 1.

Table 1. Table of main symbols.

Notation Meaning
|G| The order of the group G
Aut(G) The automorphism group of the group G
Out(G) The outer automorphism group of the group G
π(G) The set of prime factors of the order of G
|π(G)| The number of prime factors of |G|
pm The largest element of π(G)
πpm(G) The set of orders of centralizers of pm-order elements in G
Gpi The sylow pi-subgroup of G
t(G) The number of connected components of G
T (G) The set of connected components of G
m1(G) The even-order component of G

Lemma 2.1. [16, Corollary] Let G be a finite group with t(G) ≥ 2. Then, the structure of G is
as follows:

(a) G is a Frobenius group;
(b) G is a 2-Frobenius group;
(c) G has a normal series 1 E H E K E G, where H is a nilpotent π1-group, G/K is a solvable
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π1-group, K/H is a non-Abelian simple group, and |G/K| divides |Out(K/H)|.

Lemma 2.2. [36, Theorem 1] Let G be an even-order Frobenius group with Frobenius kernel H and
Frobenius complement K. Then, t(G) = 2 and T (G) = {π(H), π(K)}Moreover, the structure of G is one
of the following:

1) If 2 ∈ π(H), then the Sylow subgroups of K are cyclic;
2) If 2 ∈ π(K), then H is an Abelian group. When K is soluble, the odd-order Sylow subgroups of K

are cyclic and the Sylow 2-subgroup is either a cyclic group or a generalized quaternion group. When
K is insoluble, there exists K0 ≤ K such that |K : K0| ≤ 2 and K0 ' Z × S L(2, 5), where (|Z|, 30) = 1
and the Sylow subgroups of Z are cyclic.

Lemma 2.3. [37, Lemma 8.3, §IV] Let G = HK be a Frobenius group, where H is the Frobenius
kernel and K is the Frobenius complement. Then, we have |K|||H| − 1.

Lemma 2.4. [36, Theorem 2] Let G be an even-order 2-Frobenius group. Then, t(G) = 2, and G has
a normal series 1EHEKEG, such that π(K/H) = π2, π(H)∪π(G/K) = π1, |G/K| divides |Aut(K/H)|,
and both |G/K| and |K/H| are cyclic groups. In particular, |G/K| ≤ |K/H| and G is soluble.

Lemma 2.5. [38, Lemma 10] Let p be a prime number, p > 13. Then, there exist two prime numbers,
r1 and r2, such that (p−1)

2 < r1 < r2 < p − 1.

Lemma 2.6. [39, Lemma 8] Let G be a finite group with t(G) ≥ 2, and let N be a normal subgroup of
G. If N is the πi-group of some prime graph component, and m1,m2, · · · ,mr are some order components
of G that are not πi-numbers, then m1m2 · · ·mr ||N | − 1.

The following lemmas have been proven in [40, Lemma 6], but there are some differences here. We
will use the θ function to classify Lie-type groups with prime order components.

Lemma 2.7. If L is a simple group of Lie-type and has prime odd order component p ≥ 17 and π(L)
has at most θ(L) prime numbers t, where (p+1)

2 < t < p. Then, θ(L) ≤ 3.

Throughout the proof of [40, Lemma 6], we can divide simple groups of Lie-type L, with prime odd
order component p ≥ 17, into the following cases:

(1) • θ(L) = 0 if L is isomorphic to Ap′−1(q), Ap′(q), where q − 1|p′ + 1;

• A2(2), 2Ap′−1(q), 2Ap′(q), where q + 1|p′ + 1;

• 2A3(2), Bn(q), where n = 2m′ and q is odd;

• Bp′(3),Cn(q), where n = 2m′ or (n, q) = (p′, 3);

• Dp′+1(3),Dp′(q) for q = 3, 5;

• 2Dn(q) for (n, q) = (2m′ , q), (p′, 3), where 5 ≤ p′ , 2m′ + 1 or (2m′ + 1, 3);

• G2(q), where q ≡ ε(mod 3) for ε = ±1;

• 3D4(q), E6(q) or 2E6(q).

(2) • θ(L) = 1 if L is isomorphic to one of the simple groups A1(q), where 2|q;

• A2(4), 2A5(2),Cp′(2),Dn(2), where n = p′ or p′ + 1;

• 2Dn(2), where (n, q) = (2m′ + 1, 2) or (p′ = 2m′ + 1, 3),m′ ≥ 2;
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• E7(3), F4(q), 2F4(q), where q = 22n+1 > 2, or C2(q), where3|q.

(3) • θ(L) = 2 if L is isomorphic to one of the simple groups A1(q), where q ≡ ε(mod 4), for
ε = ±1;
• 2B2(q), where q = 22m′ + 1 > 2;
• 2G2(q), where q = 32m′+1 > 3.

(4) • θ(L) = 3 if L is isomorphic to one of the simple groups E8(q) or 2E6(2).

Lemma 2.8. [40, Lemma 1] If n ≥ 6 is a natural number, then there are at least s(n) prime numbers
pi, such that (n+1)

2 < pi < n. Here,
s(n) = 6 for n ≥ 48;
s(n) = 5 for 42 ≤ n ≤ 47;
s(n) = 4 for 38 ≤ n ≤ 41;
s(n) = 3 for 18 ≤ n ≤ 37;
s(n) = 2 for 14 ≤ n ≤ 17;
s(n) = 1 for 6 ≤ n ≤ 13.

Lemma 2.9. When p is a prime number greater than or equal to 5 and n is a positive integer, it holds
that
∑n

i=1 pn−i , 2n.

Proof. Let S 1 =
∑n

i=1 pn−i = pn−1 + pn−2 + pn−3 + · · ·+ p+1. From the formula for the sum of a geometric
series, we know that S 1 =

pn−1
p−1 . We will prove this conclusion in different cases.

Case 1: When n = 1, S 1 =
pn−1
p−1 = 1 < 2n.

Case 2: When n = 2, p = 5, S 1 =
pn−1
p−1 = 3n.

Case 3: When n , 1 or n = 2, p > 5 , we prove that pn−1
p−1 > 3n. We will use mathematical induction

for n. When n = 2, p2−1
p−1 = p + 1, and since p > 5, it follows that p2−1

p−1 = p + 1 > 6 > 3n. Assume
pn−1
p−1 = pn−1 + pn−2 + pn−3 + · · · + p + 1 > 3n, then pn+1−1

p−1 = pn + pn−1 + · · · + p2 + p + 1 > pn + 3n =

pn + 3(n + 1) − 3 = 3(n + 1) + pn − 3. Since p is a prime greater than 5, it is clear that pn − 3 > 0, thus,
pn+1−1

p−1 > 3(n + 1), which proves the result. �

Lemma 2.10. When p = 3 and n = 2m + 1, it holds that
∑n

i=1 pn−i ±
√

3
∑ n

2
j=1 p

n
2− j is larger than 4n.

Proof. Let S 1 =
∑n

i=1 pn−i, S 2 =
∑ n

2
j=1 p

n
2− j, then the original expression equals S 1 ±

√
3S 2. By the

formula for the sum of a geometric series, we can obtain the following:

S 1 =

n∑
i=1

pn−i =
pn − 1
p − 1

, S 2 =

n
2∑

j=1

p
n
2− j =

p
n
2 − 1

p − 1
.

At this time, let

S (n) = S 1 −
√

3S 2

=
pn − 1
p − 1

−
√

3
p

n
2 − 1

p − 1

=
3n − 1

2
−
√

3
3

n
2 − 1
2

.
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If S (n) > 4n holds for all values of n, then the minimum value of S (n) is greater than 4n, that is,
S (n) − 4n > 0. Let 3

n
2 = x, then n = 2 log3(x). Therefore, S (n) − 4n = x2−

√
3x+
√

3−1
2 − 8 log3(x).

Let g(x) = x2−
√

3x+
√

3−1
2 − 8 log3(x). If g(x) > 0, then S (n) − 4n > 0 holds for all values of n, which

implies that S (n) > 4n holds for all values of n. Taking the derivative of the function g(x), we get
g′(x) = x −

√
3 − 8

x ln 3 = ln 3·x2−
√

3·ln 3·x−8
x ln 3 . Let g′(x) = x −

√
3 − 8

x ln 3 = ln 3·x2−
√

3·ln 3·x−8
x ln 3 = 0, where x > 1.

Here, ln 3·x2−
√

3·ln 3·x−8 is a quadratic function with 4 < 0 and a > 0, so ln 3·x2−
√

3·ln 3·x−8 > 0,
which implies that g′(x) > 0 holds for all values of x. At this point, g(x) is a strictly increasing function.
Since g(x) > g(1) = 0, we can conclude that g(x) > 0⇔ S (n) > 4n. Since S 1 −

√
3S 2 > 4n, it follows

that S 1 +
√

3S 2 > 4n, thus proving that
∑n

i=1 pn−i ±
√

3
∑ n

2
j=1 p

n
2− j > 4n. �

Lemma 2.11. When p is a prime number and n is a positive integer, it holds that
∑8n

i=1 p8n−i+
∑7n

i=1 p7n−i−∑5n
i=1 p5n−i −

∑4n
i=1 p4n−i −

∑3n
i=1 p3n−i +

∑n
i=1 pn−i is larger than 121n.

Proof. Let α =
∑8n

i=1 p8n−i +
∑7n

i=1 p7n−i −
∑5n

i=1 p5n−i −
∑4n

i=1 p4n−i −
∑3n

i=1 p3n−i +
∑n

i=1 pn−i. By using the
formula for the sum of a geometric series, we can obtain α = 1

p−1 (p8n+p7n−p5n−p4n−p3n+pn). To prove
that α > 121n, it suffices to prove that α−121n > 0. Let us define f (n) = 1

p−1 (p8n+ p7n−p5n−p4n−p3n+

pn) − 121n. Taking the derivative of the function f (n), we get f ′(n) =
ln p
p−1 (8p8n + 7p7n − 5p5n − 4p4n −

3p3n + pn)−121 > ln p
p−1 (8p8n−5p7n)−121 =

pn

p−1 · (pn ln p)(8p6n−5p5n)−121 > 8p6n−5p5n−121. Using
mathematical induction, when n = 1, 8p6 − 5p5 − 121 > 0 holds; assume that the conclusion holds for
n = k, i.e., 8p6k−5p5k−121 > 0; when n = k+1,with 8p6(k+1)−5p5(k+1)−121 = 8·p6·p6k−5·p5·p5k−121 >
p6(8p6k − 5p5k) − 121 > 8p6k − 5p5k − 121 > 0, the conclusion holds, i.e., f ′(n) > 0, and the function
f (n) is monotonically increasing. Since p is at least 2, and it is easy to verify that when p ≥ 2, the
function is monotonically increasing with respect to p. When n = 1 and p = 2, f (1) = 210, that is,
f (n) > f (1) > 0. Hence, it is proven that α − 121n > 0. �

Definition 2.12. If G is a finite group with a subgroup H such that H ∩ Hx for all x in G \ H, then G
is called a Frobenius group. Let N = G \ ∪x∈G(H \ 1)x. Then, G = HN, and H ∩ N = 1. H is called a
Frobenius complememt and N the Frobenius kernel.

Definition 2.13. A group G is called a 2-Frobenius group if G has a normal series 1EH EK EG such
that K is a Frobenius group with Frobenius kernel H and G/H is also a Frobenius group with kernel
K/H (see [36]).

3. Proof of main theorem

According to the literature [18], it is known that the cases of disconnected prime graphs in
alternating simple groups can be divided into two types:

(a) Alternating group Ap, where p or p − 2 are prime numbers;
(b) Alternating group An, where n = p, p + 1, p + 2, with p being a prime number, and either n nor

n − 2 are prime numbers.
The even-order component m1(Ap) of the former is given by (p−1)(p−3)!

2 , while the even-order
component m1(An) of the latter is given by n!

2p . The orders of the centralizers of their highest prime
factors are both equal to p, that is, πpm(Ap) = πpm(An) = {p}, so p is isolated in Γ(G).

In this paper, we only discuss the cases of alternating groups An for n ≥ 17. For the case where
n < 17, refer to [41].
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Theorem 3.1. Let G be a finite group and A be an alternating group with disconnected prime graphs.
Then, G � A if and only if:

(a) m1(G) = m1(A);
(b) πpm(G) = πpm(A).

Proof. The necessity of the theorem is obvious, so we only need to prove the sufficiency.
When A is an alternating simple group with disconnected prime graph, according to the condition,

we know that m1(G) = m1(A), so m1(G) =
(p−1)(p−3)!

2 or m1(G) = n!
2p , and πpm(G) = πpm(A) = {p}. Since

m1(G) =
(p−1)(p−3)!

2 or m1(G) = n!
2p , we conclude that G has more than one component, i.e., t(G) ≥ 2.

Therefore, by Lemma 2.1, we can determine the structure of G. Next, we prove that the structure of G
does not satisfy Lemma 2.1 (a) and (b).

If G is a Frobenius group, by Lemma 2.2, we know that G = HK, with the prime graph T (G) =

{π(H), π(K)}, where H is the Frobenius kernel and K is the Frobenius complement. By Lemma 2.3,
we know that |K|||H| − 1, so |K| < |H|; considering the given conditions, we have 2 divides |H|,
i.e., 2 ∈ π(H). We immediately obtain π(H) = π1 and |K| = p. Let r be a prime number such that
(p−1)

2 < r < p − 1. By Lemma 2.5, such an r always exists and r ∈ π(H). Let Gr be the Sylow
r-subgroup of G. Since H is nilpotent, we have Gr E G. According to Lemma 2.6, p|r − 1, implying
p < r, which leads to a contradiction.

If G is a 2-Frobenius group, by Lemma 2.4, we have t(G) = 2, and G has a normal series 1EHEKEG
such that π(K/H) = π2 and π(H) ∪ π(G/K) = π1. Since m1(G) =

(p−1)(p−3)!
2 or m1(G) = n!

2p , it follows
that p ∈ π2. Therefore, |K/H| = p and |G/K|||Aut(K/H)| = p − 1. Let r be a prime number such that
(p−1)

2 < r < p − 1, and let Gr be a Sylow r-subgroup of G. Since r - p − 1, we have r ∈ π(K), implying
that Gr ≤ H and Gr EG. If we consider the action of p-order elements of K on the Sylow r-subgroup
of H, we obtain p|r − 1, which is a contradiction.

Thus, the structure of G can only be determined by Lemma 2.1(c). Since m1(G) =
(p−1)(p−3)!

2 or
m1(G) = n!

2p , it follows that t(G) ≥ 2, hence, p ∈ π(K/H). If H is nontrivial, then from the proof in the
previous paragraph, we know that there exists a prime number r such that (p−1)

2 < r < p − 1. Let Gr be
a Sylow r-subgroup of G such that Gr ≤ H and Gr EG. If we consider the action of p-order elements
of K on the Sylow r-subgroup of H, we obtain p|r − 1, which leads to a contradiction. Therefore, we
have H = 1.

Since H = 1, K is a normal non-Abelian simple subgroup of G, such that π(G/K) ⊆ π1, where
π1 = π( (p−1)(p−3)!

2 ) or π1 = π( n!
2p ), and p ∈ π(K). By utilizing πpm(G) = {p}, we can conclude that

t(K) ≥ 2.
All simple groups with t(G) ≥ 2 can be found in the articles by J. S. Williams [16] and A.

S. Kondrat’ev [17], and their order components can be found in Tables 1–4 of [18]. Their outer
automorphism groups can be referenced in the literature [42]. For a finite group G, if H ≤ G, it is
evident that m1(H)|m1(G), which will be used subsequently without further notice. �

We will prove in two steps that, except for the cases of alternating groups with disconnected prime
graphs, K is not isomorphic to any other simple group.

Step 1. K cannot be isomorphic to any of the 26 sporadic simple groups.
In this case, we only consider the situation where m1(G) =

(p−1)(p−3)!
2 , and the situation for m1(G) =

n!
2p is similar. Their even-order components m1(G) and πpm(G) can be found in Table 2.
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Table 2. The m1(G) and πpm(G) for 26 sporadic simple groups.

G m1(G) πpm(G)
M11 24 · 32 11
M12 26 · 33 · 5 11
M22 27 · 32 11
M23 27 · 32 · 5 · 7 23
M24 210 · 33 · 5 · 7 23
J1 23 · 3 · 5 19
J2 27 · 33 · 52 7
J3 27 · 35 · 5 19
J4 221 · 33 · 5 · 7 · 113 43
HS 29 · 32 · 53 11
Ru 214 · 33 · 53 · 7 · 13 29
S uz 213 · 37 · 52 · 7 13
He 210 · 33 · 52 · 73 17
ON 29 · 34 · 5 · 73 31
McL 27 · 36 · 53 · 7 11
Ly 28 · 37 · 56 · 7 · 11 67
Co1 221 · 39 · 54 · 72 · 11 · 13 23
Co2 218 · 36 · 53 · 7 23
Co3 210 · 37 · 53 · 7 · 11 23
F22 217 · 39 · 52 · 7 · 11 13
F23 218 · 313 · 52 · 7 · 11 · 13 23
F′24 221 · 316 · 52 · 73 · 11 · 13 29
M 246 · 330 · 59 · 76 · 112 · 132 · 17 · 19 · 23 · 29 · 31 · 47 71
B 241 · 331 · 56 · 72 · 11 · 13 · 17 · 19 · 23 47
Th 215 · 310 · 53 · 72 · 11 · 13 31
HN 214 · 36 · 56 · 7 · 11 19

If K � J4, then from p ∈ π(K) and πpm(G) = {p}, we have p = 43. In this case, we have m1(G) =

238 · 320 · 59 · 75 · 113 · 133 · 172 · 192 · 23 · 29 · 31 · 37 and m1(K) = 221 · 33 · 5 · 7 · 113. Therefore,
217 · 317 · 58 · 74 ||G/K|||Out(J4)| = 1, leading to a contradiction. Hence, K � J4.

If K � M23, then from p ∈ π(K) and πpm(G) = {p}, we have p = 23. In this case, we have
m1(G) = 218 · 38 · 54 · 72 · 112 · 13 · 17 · 19 and m1(K) = 27 · 32 · 5 · 7. Therefore, 211 · 36 · 53 · 7
||G/K|||Out(M23)| = 1, leading to a contradiction. Hence, K � M23. Similarly, we can conclude that
K � M24, F23,Co1,Co2,Co3.

If K � J1, then from p ∈ π(K) and πpm(G) = {p}, we have p = 19. In this case, we have m1(G) =

218 · 36 · 53 · 72 · 11 · 13 and m1(K) = 23 · 3 · 5. Therefore, 215 · 35 · 52 ||G/K|||Out(J1)| = 1, leading to a
contradiction. Hence, K � J1. Similarly, we can conclude that K � J3,HN.

If K � Ru, then from p ∈ π(K) and πpm(G) = {p}, we have p = 29. In this case, we have
m1(G) = 225 · 310 · 56 · 74 · 112 · 132 · 17 · 19 · 23 and m1(K) = 214 · 33 · 53 · 7 · 13. Therefore,
211 · 37 · 53 · 73 · 13 ||G/K|||Out(Ru)| = 1, leading to a contradiction. Hence, K � Ru. Similarly, we can
conclude that K � F′24.
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If K � He, then from p ∈ π(K) and πpm(G) = {p}, we have p = 17. In this case, we have
m1(G) = 214 · 35 · 52 · 72 · 11 · 13 and m1(K) = 210 · 33 · 52 · 7. Therefore, 24 · 32 · 7 ||G/K|||Out(He)| = 1,
leading to a contradiction. Hence, K � He.

If K � ON, then from p ∈ π(K) and πpm(G) = {p}, we have p = 31. In this case, we have
m1(G) = 225 · 314 · 56 · 74 · 112 · 132 · 17 · 19 · 23 and m1(K) = 29 · 34 · 5 · 73. Therefore, 216 · 310 · 55 · 7
||G/K|||Out(ON)| = 1, leading to a contradiction. Hence, K � ON.

If K � Ly, then from p ∈ π(K) and πpm(G) = {p}, we have p = 67. In this case, we have
m1(G) = 263 · 332 · 514 · 710 · 116 · 134 · 173 · 193 · 232 · 292 · 312 · 37 · 41 · 43 · 47 · 53 · 59 · 61 and
m1(K) = 29 · 34 · 5 · 73. Therefore, 28 · 37 · 56 · 7 · 11 ||G/K|||Out(Ly)| = 1, leading to a contradiction.
Hence, K � Ly.

If K � M, then from p ∈ π(K) and πpm(G) = {p}, we have p = 71. In this case, we have m1(G) =

266 · 334 · 516 · 710 · 116 · 134 · 174 · 193 · 232 · 292 · 312 · 37 · 41 · 43 · 47 · 53 · 59 · 61 · 67 and
m1(K) = 246 ·330 ·59 ·76 ·112 ·132 ·17·19·23·29·31·47. Therefore, 220 ·34 ·57 ·74 ·114 ·132 ·173 ·192 ·23·29·31
||G/K|||Out(M)| = 1, leading to a contradiction. Hence, K � M.

If K � B, then from p ∈ π(K) and πpm(G) = {p}, we have p = 47. In this case, we have m1(G) =

241 ·320 ·59 ·76 ·114 ·133 ·172 ·192 ·232 ·29 ·31 ·37 ·43 and m1(K) = 241 ·331 ·56 ·72 ·11 ·13 ·17 ·19 ·23.
This leads to a contradiction, Hence, K � B.

Step 2. K is not isomorphic to any Lie-type simple groups.
Since m1(G) =

(p−1)(p−3)!
2 or m1(G) = n!

2p , and πpm(G) = {p} with p ∈ π(K), we obtain πpm(K) = {p},
p ≥ 17. Therefore, K has prime odd order components. According to Lemma 2.8, we know that
θ(K) ≥ 2. Hence, by Lemma 2.7, K is isomorphic to one of the following Lie-type simple groups:

(a) A1(q), where q ≡ ε(mod 4), for ε = ±1;
(b) 2B2(q), where q = 22m′ + 1 > 2;
(c) 2G2(q), where q = 32m′+1 > 3;
(d) E8(q) or 2E6(2).
If K � A1(q), q ≡ ε(mod 4), ε = ±1, then from p ∈ π(K) and πpm(G) = {p}, we have πpm(K) = {p},

thus, p = q. In this case, m1(K) = p ± 1,m1(G) =
(p−1)(p−3)!

2 , or m1(G) = n!
2p , so we can conclude

that m1(G)
m1(K) =

(p−3)!
2 or (p−1)(p−3)!

2(p+1) or n!
2p(p−1) or n!

2p(p+1) . Since n = p, p + 1, p + 2, and p ≥ 17, we have
m1(G)
m1(K) , 2. However, m1(G)

m1(K) ||G/K|||Out(A1(q))| = (2, p − 1) = 2, which is a contradiction. Therefore,
K � A1(q), q ≡ ε(mod 4), ε = ±1.

If K � 2E6(2), then from p ∈ π(K) and πpm(G) = {p}, we have p = 19. Taking m1(G) =
(p−1)(p−3)!

2 ,
in this case, we have m1(G) = 218 · 36 · 53 · 72 · 11 · 13 and m1(K) = 236 · 39 · 52 · 72 · 11. This leads to a
contradiction, and the situation for m1(G) = n!

2p is similar. Hence, K � 2E6(2).
We know that when p′ , 2, the Sylow p′-subgroups of the symmetric group S p and the alternating

group Ap have the same order. Using the formula in [43, Chapter VII, Section §4], we can determine
the order of the Sylow p′-subgroup Gp′ of S p. The order is given by

|Gp′ | = |S p|p′ = |p!|p′ = p′s(p),

where

s(p) =

[
p
p′

]
+

[
p

p′2

]
+ · · · ,

and [a] represents the integer part of a real number a. Let

p = ar(p′)r
+ ar−1(p′)r−1

+ · · · + a1 p′ + a0,
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where 0 ≤ ai ≤ p′ − 1 for i = 0, 1, · · · , r, and ar , 0. It can be easily verified that

s(p) = ar s((p′)r) + ar−1s((p′)r−1) + · · · + a1s(p′) + a0s(1).

In this way, we can determine the order of the Sylow p′-subgroup of Ap, which is also the order of
the Sylow p′-subgroup of the group G, where p′ is a prime number and the subsequent q represents a
power of p′, i.e., q = (p′)n.

If K � 2B2(q), where q = 22m′+1 > 2, then from p ∈ π(K) and πpm(G) = {p}, we have πpm(K) = {p}.
Thus, p = q− 1 or q−

√
2q + 1 or q +

√
2q + 1. When p = q− 1, we have s(p) = s((p′)n)− s(1), where

s((p′)n) =

[
(p′)n

p′

]
+

[
(p′)n

(p′)2

]
+

[
(p′)n

(p′)3

]
+ · · · +

[
(p′)n

(p′)n−1

]
+

[
(p′)n

(p′)n

]
= (p′)n−1

+ (p′)n−2
+ (p′)n−3

+ · · · + p′ + 1,

and

s(1) =

[
1
p′

]
= 0.

Thus, the order of the Sylow p′-subgroup of G is (p′)
∑n

i=1 (p′)(n−i)
. Since m1(K) = q2, the order of the

Sylow p′-subgroup of K is (p′)2n. Since q = 22m′ + 1 > 2, the smallest possible value of p′ is 5, then
we have |Gp′ |

|Kp′ |
= (p′)α||G/K|||Out( 2B2(q))| = n, where α = (p′)n−1 + (p′)n−2 + (p′)n−3 + · · · + p′ + 1 − 2n.

By Lemma 2.9, we know that (p′)n−1 + (p′)n−2 + (p′)n−3 + · · · + p′ + 1 , 2n. In Lemma 2.9 Case 1, we
have (p′)n−1 + (p′)n−2 + (p′)n−3 + · · · + p′ + 1 < 2n, i.e., α < 0, which is obviously contradictory. In
Lemma 2.9 Case 2, we have α = (p′)n−1 +(p′)n−2 +(p′)n−3 + · · ·+ p′+1−2n = n and p′ ≥ 5, so (p′)α - n,
a contradiction. In Lemma 2.9 Case 3, we have α = (p′)n−1 + (p′)n−2 + (p′)n−3 + · · ·+ p′+1−2n > n. So
we can conclude that (p′)α - n, which leads to a contradiction. Hence, K � 2B2(q). Similarly, when
p = q ±

√
2q + 1, we have s(p) = s((p′)n) ±

√
2s((p′)

n
2 ) + s(1), where

s((p′)
n
2 ) =

[
(p′)

n
2

p′

]
+

[
(p′)

n
2

(p′)2

]
+

[
(p′)

n
2

(p′)3

]
+ · · · +

[
(p′)

n
2

(p′)
n
2−1

]
+

[
(p′)

n
2

(p′)
n
2

]
= (p′)

n−2
2 + (p′)

n−4
2 + (p′)

n−6
2 + · · · + p′ + 1.

Thus, the order of the Sylow p′-subgroup of G is (p′)
∑n

i=1 (p′)(n−i)
±
√

2
∑ n

2
j=1 (p′)( n

2 − j)

, which is a
contradiction. Therefore, K � 2B2(q).

If K � 2G2(q), where q = 32m′+1 > 3, then from p ∈ π(K) and πpm(G) = {p}, we have πpm(K) = {p}.
Thus, p = q−

√
3q+1 or q+

√
3q+1. When p = q±

√
3q+1, we have s(p) = s((p′)n)±

√
3s((p′)

n
2 )+s(1),

where

s((p′)
n
2 ) =

[
(p′)

n
2

p′

]
+

[
(p′)

n
2

(p′)2

]
+

[
(p′)

n
2

(p′)3

]
+ · · · +

[
(p′)

n
2

(p′)
n
2−1

]
+

[
(p′)

n
2

(p′)
n
2

]
= (p′)

n−2
2 + (p′)

n−4
2 + (p′)

n−6
2 + · · · + p′ + 1.

Thus, the order of the Sylow p′-subgroup of G is (p′)
∑n

i=1 (p′)(n−i)
±
√

3
∑ n

2
j=1 (p′)( n

2 − j)

, while m1(K) = q3,
so the order of the Sylow p′-subgroup of K is (p′)3n. Since q = 32m′+1 > 3, we have p′ = 3 and
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n = 2m′ + 1. At this time, by Lemma 2.10, we know that
∑n

i=1 (p′)(n−i)
±
√

3
∑ n

2
j=1 (p′)( n

2− j) is larger

than 4n. We have (p′)α||G/K|||Out( 2G2(q))| = n, where α =
∑n

i=1 (p′)(n−i)
±
√

3
∑ n

2
j=1 (p′)( n

2− j)
− 3n > n.

So, we can conclude that (p′)α - n, which is a contradiction. Therefore, K � 2G2(q).
If K � E8(q), then from p ∈ π(K) and πpm(G) = {p}, we have πpm(K) = {p}. Thus, p is equal to one

of the following four numbers:

q8 + q7 − q5 − q4 − q3 + q + 1,
q8 − q7 + q5 − q4 + q3 − q + 1,
q8 − q6 + q4 − q2 + 1,
q8 − q4 + 1.

When p = q8 + q7 − q5 − q4 − q3 + q + 1, we have s(p) = s((p′)8n) + s((p′)7n)− s((p′)5n)− s((p′)4n)−
s((p′)3n) + s((p′)n) + s(1). Thus, the order of the Sylow p′-subgroup of G is

(p′)
∑8n

i=1 (p′)(8n−i)+
∑7n

i=1 (p′)(7n−i)
−
∑5n

i=1 (p′)(5n−i)
−
∑4n

i=1 (p′)(4n−i)
−
∑3n

i=1 (p′)(3n−i)+
∑n

i=1 (p′)(n−i)

.

While m1(K) = q120(q18 − 1)(q14 − 1)(q12 − 1)2(q10 − 1)2(q8 − 1)2(q4 + q2 + 1), then the order of
the Sylow p′-subgroup of K is (p′)120n. Since q ≡ 0, 1, 2, 3, 4(mod 5), by Lemma 2.11, we know that∑8n

i=1 (p′)(8n−i) +
∑7n

i=1 (p′)(7n−i)
−
∑5n

i=1 (p′)(5n−i)
−
∑4n

i=1 (p′)(4n−i)
−
∑3n

i=1 (p′)(3n−i) +
∑n

i=1 (p′)(n−i) is larger
than 121n, which implies that (p′)α-|G/K|||Out(E8(q))| = n, where

α =

8n∑
i=1

(p′)(8n−i)
+

7n∑
i=1

(p′)(7n−i)
−

5n∑
i=1

(p′)(5n−i)
−

4n∑
i=1

(p′)(4n−i)
−

3n∑
i=1

(p′)(3n−i)

+

n∑
i=1

(p′)(n−i)
− 120n > n.

Therefore, K � E8(q). Similarly, we can prove that when p = q8 − q7 + q5 − q4 + q3 − q + 1 or
q8 − q6 + q4 − q2 + 1 or q8 − q4 + 1, K � E8(q).

Therefore, we have K � A, implying 1E AEG. In this case, it is clear that CG(A) = 1 and Out(A) =

Z2. As a result, we have either G � A or G � Aut(A). However, in this latter case m1(G) > m1(A), a
contradiction. Hence, we conclude that G � A.

4. Conclusions

Regarding the characterization problem of finite simple groups, this paper proposes a new
characterization method based on the even-order components and centralizers. It proves the
effectiveness of this method for alternating groups with disconnected prime graphs, but, we only
investigate the case of alternating simple groups with disconnected prime graphs. In reality, a
significant number of alternating simple groups have connected prime graphs. Whether the methods
proposed in this paper are equally effective for this subset of groups is still under verification. We
have already tested a small portion and found that the method is effective. We look forward to proving
one day that this method is universally effective for all simple groups, which would be an exciting
accomplishment.
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