Due to their ability to capture complex interactions between random variables, copula models are gaining increasing attention. When it comes to bivariate data modeling, one important area of statistical theory is the construction of families of distributions with specified marginals. An FGM-QEXD (bivariate quadratic exponential Farlie Gumbel Morgenstern distribution) is derived from the FGM copula and the new quadratic exponential marginal distribution, and is inspired by this. The statistical features of the FGM-QEXD are studied, encompassing: the conditional distribution, regression function, moment generating function, and correlation coefficient. Additionally, reliability measures were obtained, including the survival function, hazard rate function, mean residual life function, and vitality function. The model parameters are estimated via maximum likelihood (ML) and Bayesian methodologies. Furthermore, asymptotic confidence ranges for the model parameter are obtained. Monte Carlo simulation analysis is employed to evaluate the efficacy of both ML and Bayesian estimators. Two real-world datasets are employed to prove that FGM-QEXD is more flexible than the bivariate Weibull Farlie–Gumbel–Morgernstern (FGM), bivariate Lomax FGM, bivariate inverse Lomax FGM, bivariate Rayleigh FGM, bivariate Burr XII FGM, and bivariate Chen FGM distributions.
Citation: I. A. Husseiny, Abdulrahman M. A. Aldawsari, Asamh Saleh M. Al Luhayb, Reid Alotaibi. Advanced modeling of dependent structures using the FGM-quadratic exponential bivariate distribution: Applications in computer and material sciences[J]. AIMS Mathematics, 2025, 10(9): 21642-21674. doi: 10.3934/math.2025962
Due to their ability to capture complex interactions between random variables, copula models are gaining increasing attention. When it comes to bivariate data modeling, one important area of statistical theory is the construction of families of distributions with specified marginals. An FGM-QEXD (bivariate quadratic exponential Farlie Gumbel Morgenstern distribution) is derived from the FGM copula and the new quadratic exponential marginal distribution, and is inspired by this. The statistical features of the FGM-QEXD are studied, encompassing: the conditional distribution, regression function, moment generating function, and correlation coefficient. Additionally, reliability measures were obtained, including the survival function, hazard rate function, mean residual life function, and vitality function. The model parameters are estimated via maximum likelihood (ML) and Bayesian methodologies. Furthermore, asymptotic confidence ranges for the model parameter are obtained. Monte Carlo simulation analysis is employed to evaluate the efficacy of both ML and Bayesian estimators. Two real-world datasets are employed to prove that FGM-QEXD is more flexible than the bivariate Weibull Farlie–Gumbel–Morgernstern (FGM), bivariate Lomax FGM, bivariate inverse Lomax FGM, bivariate Rayleigh FGM, bivariate Burr XII FGM, and bivariate Chen FGM distributions.
| [1] | D. Morgenstern, Einfache beispiele zweidimensionaler verteilungen, Mitt. Math. Statist., 8 (1956), 234–235. |
| [2] |
D. J. Farlie, The performance of some correlation coefficients for a general bivariate distribution, Biometrika, 47 (1960), 307–323. https://doi.org/10.2307/2333302 doi: 10.2307/2333302
|
| [3] |
E. M. Almetwally, H. Z. Muhammed, On a bivariate Fréchet distribution, J. Stat. Appl. Probab., 9 (2020), 1–21. https://doi.org/10.18576/jsap/090108 doi: 10.18576/jsap/090108
|
| [4] |
E. M. Almetwally, H. Z. Muhammed, E. S. A. El-Sherpieny, Bivariate Weibull distribution: Properties and different methods of estimation, Ann. Data Sci., 7 (2020), 163–193. https://doi.org/10.1007/s40745-019-00197-5 doi: 10.1007/s40745-019-00197-5
|
| [5] |
A. Fayomi, E. M. Almetwally, M. E. Qura, A novel bivariate Lomax-G family of distributions: Properties, inference, and applications to environmental, medical, and computer science data, AIMS Math., 8 (2023), 17539–17584. https://doi.org/10.3934/math.2023896 doi: 10.3934/math.2023896
|
| [6] |
H. M. Barakat, M. A. Alawady, I. A. Husseiny, M. Nagy, A. H. Mansi, M. O. Mohamed, Bivariate Epanechnikov-exponential distribution: Statistical properties, reliability measures, and applications to computer science data, AIMS Math., 9 (2024), 32299–32327. https://doi.org/10.3934/math.20241550 doi: 10.3934/math.20241550
|
| [7] |
E. M. Almetwally, A. Fayomi, M. E. Qura, Advanced copula-based models for type Ⅱ censored data: Applications in industrial and medical settings, Mathematics, 12 (2024), 1774. https://doi.org/10.3390/math12121774 doi: 10.3390/math12121774
|
| [8] |
R. Tovar-Falón, G. Martínez-Flórez, L. Páez-Martínez, Bivariate Unit-Weibull Distribution: Properties and inference, Mathematics, 11 (2023), 3760. https://doi.org/10.3390/math11173760 doi: 10.3390/math11173760
|
| [9] |
N. Chandra, A. James, F. Domma, H. Rehman, Bivariate iterated Farlie-Gumbel-Morgenstern stress-strength reliability model for Rayleigh margins: Properties and estimation, Stat. Theory Related Fields, 8 (2024), 315–334. https://doi.org/10.1080/24754269.2024.2398987 doi: 10.1080/24754269.2024.2398987
|
| [10] |
I. A. Husseiny, M. Nagy, A. H. Mansi, M. A. Alawady, Some Tsallis entropy measures in concomitants of generalized order statistics under iterated FGM bivariate distribution, AIMS Math., 9 (2024), 23268–23290. https://doi.org/10.3934/math.20241131 doi: 10.3934/math.20241131
|
| [11] | R. B. Nelsen, An introduction to copulas, New York: Springer, 2006. |
| [12] | A. Sklar, Random variables, joint distribution functions, and copulas, Kybernetika, 9 (1973), 449–460. |
| [13] |
E. J. Gumbel, Bivariate exponential distributions, J. Am. Stat. Assoc., 55 (1960), 698–707. https://doi.org/10.2307/2281591 doi: 10.2307/2281591
|
| [14] | H. Joe, Multivariate models and multivariate dependence concepts, Boca Raton: CRC press, 1997. https://doi.org/10.1201/9780367803896 |
| [15] |
W. R. Schucany, W. C. Parr, J. E. Boyer, Correlation structure in farlie-gumbel-morgenstern distributions, Biometrika, 65 (1978), 650–653. https://doi.org/10.1093/biomet/65.3.650 doi: 10.1093/biomet/65.3.650
|
| [16] |
S. Nedjar, H. Zeghdoudi, On gamma Lindley distribution: Properties and simulations, J. Comput. Appl. Math., 298 (2016), 167–174. https://doi.org/10.1016/j.cam.2015.11.047 doi: 10.1016/j.cam.2015.11.047
|
| [17] |
J. T. Eghwerido, J. O. Ogbo, A. E. Omotoye, The Marshall-Olkin Gompertz distribution: Properties and applications, Statistica, 81 (2021), 183–215. https://doi.org/10.6092/issn.1973-2201/10993 doi: 10.6092/issn.1973-2201/10993
|
| [18] |
Z. He, S. Wang, D. Liu, A degradation modeling method based on artificial neural network supported Tweedie exponential dispersion process, Adv. Eng. Inform., 65 (2025), 103376. https://doi.org/10.1016/j.aei.2025.103376 doi: 10.1016/j.aei.2025.103376
|
| [19] |
A. M. Gemeay, Z. Halim, M. M. Abd El-Raouf, E. Hussam, T. A. Alanazi, N. K. Mashaqbah, et al., General two-parameter distribution: Statistical properties, estimation, and application on COVID-19, Plos one, 18 (2023), e0281474. https://doi.org/10.1371/journal.pone.0281474 doi: 10.1371/journal.pone.0281474
|
| [20] |
M. C. Belili, A. M. Alshangiti, A. M. Gemeay, H. Zeghdoudi, K. Karakaya, M. E. Bakr, et al., Two-parameter family of distributions: Properties, estimation, and applications, AIP Adv., 13 (2023), 105008. https://doi.org/10.1063/5.0173532 doi: 10.1063/5.0173532
|
| [21] |
A. Beghriche, H. Zeghdoudi, V. Raman, S. Chouia, New polynomial exponential distribution: properties and applications, Statistics in Transition new series, 23 (2022), 95–112. https://doi.org/10.2478/stattrans-2022-0032 doi: 10.2478/stattrans-2022-0032
|
| [22] |
E. M. Almetwally, M. A. Meraou, Application of environmental data with new extension of nadarajah-haghighi distribution, Comput. J. Math. Stat. Sci., 1 (2022), 26–41. https://doi.org/10.21608/cjmss.2022.271186 doi: 10.21608/cjmss.2022.271186
|
| [23] |
N. Alsadat, C. Taniş, L. P. Sapkota, A. Kumar, W. Marzouk, A. M. Gemeay, Inverse unit exponential probability distribution: Classical and Bayesian inference with applications, AIP Adv., 14 (2024), 055108. https://doi.org/10.1063/5.0210828 doi: 10.1063/5.0210828
|
| [24] |
F. H. Riad, E. Hussam, A. M. Gemeay, R. A. Aldallal, A. Z. Afify, Classical and Bayesian inference of the weighted-exponential distribution with an application to insurance data, Math. Biosci. Eng., 19 (2022), 6551–6581. https://doi.org/10.3934/mbe.2022309 doi: 10.3934/mbe.2022309
|
| [25] |
S. M. Alghamdi, M. Shrahili, A. S. Hassan, A. M. Gemeay, I. Elbatal, M. Elgarhy, Statistical inference of the half logistic modified kies exponential model with modeling to engineering data, Symmetry, 15 (2023), 586. https://doi.org/10.3390/sym15030586 doi: 10.3390/sym15030586
|
| [26] |
F. Z. Bousseba, H. Zeghdoudi, L. P. Sapkota, Y. A. Tashkandy, M. E. Bakr, A. Kumar, et al., Novel two-parameter quadratic exponential distribution: Properties, simulation, and applications, Heliyon, 10 (2024), e38201. https://doi.org/10.1016/j.heliyon.2024.e38201 doi: 10.1016/j.heliyon.2024.e38201
|
| [27] |
Z. He, S. Wang, D. Liu, A nonparametric degradation modeling method based on generalized stochastic process with B-spline function and Kolmogorov hypothesis test considering distribution uncertainty, Comput. Ind. Eng., 203 (2025), 111036. https://doi.org/10.1016/j.cie.2025.111036 doi: 10.1016/j.cie.2025.111036
|
| [28] |
G. M. Mansour, M. A. Abd Elgawad, A. S. Al-Moisheer, H. M. Barakat, M. A. Alawady, I. A. Husseiny, et al., Bivariate Epanechnikov-Weibull distribution based on Sarmanov copula: Properties, simulation, and uncertainty measures with applications, AIMS Math., 10 (2025), 12689–12725. https://doi.org/10.3934/math.2025572 doi: 10.3934/math.2025572
|
| [29] |
F. Guess, F. Proschan, 12 Mean residual life: Theory and applications, Handbook stat., 7 (1988), 215–224. https://doi.org/10.1016/S0169-7161(88)07014-2 doi: 10.1016/S0169-7161(88)07014-2
|
| [30] |
D. N. Shanbhag, S. Kotz, Some new approaches to multivariate probability distributions, J. Multivariate Anal., 22 (1987), 189–211. https://doi.org/10.1016/0047-259X(87)90085-6 doi: 10.1016/0047-259X(87)90085-6
|
| [31] |
J. Kupka, S. Loo, The hazard and vitality measures of ageing, J. Appl. Probab., 26 (1989), 532–542. https://doi.org/10.2307/3214411 doi: 10.2307/3214411
|
| [32] |
S. Kotz, D. N. Shanbhag, Some new approaches to probability distributions, Adv. Appl. Probab., 12 (1980), 903–921. https://doi.org/10.2307/1426748 doi: 10.2307/1426748
|
| [33] | P. G. Sankaran, N. U. Nair, On bivariate vitality functions, In: Proceeding of national symposium on distribution theory, 11 (1991), 189–211. |
| [34] |
L. Zhuang, A. Xu, Y. Wang, Y. Tang, Remaining useful life prediction for two-phase degradation model based on reparameterized inverse Gaussian process, Eur. J. Oper. Res., 319 (2024), 877–890. https://doi.org/10.1016/j.ejor.2024.06.032 doi: 10.1016/j.ejor.2024.06.032
|
| [35] |
M. A. Abd Elgawad, M. A. Alawady, H. M. Barakat, G. M. Mansour, I. A. Husseiny, S. A. Alyami, et al., Bivariate power Lomax Sarmanov distribution: Statistical properties, Reliability measures, and Parameter estimation, Alex. Eng. J., 113 (2025), 593–610. https://doi.org/10.1016/j.aej.2024.10.074 doi: 10.1016/j.aej.2024.10.074
|
| [36] |
R. P. Oliveira, J. A. Achcar, J. Mazucheli, W. Bertoli, A new class of bivariate Lindley distributions based on stress and shock models and some of their reliability properties, Reliab. Eng. Syst. Safe., 211 (2021), 107528. https://doi.org/10.1016/j.ress.2021.107528 doi: 10.1016/j.ress.2021.107528
|
| [37] |
H. H. Ahmad, E. M. Almetwally, D. A. Ramadan, Investigating the relationship between processor and memory reliability in data science: A bivariate model approach, Mathematics, 11 (2023), 2142. https://doi.org/10.3390/math11092142 doi: 10.3390/math11092142
|
| [38] |
R. Dasgupta, On the distribution of burr with applications, Sankhya B, 73 (2011), 1–19. https://doi.org/10.1007/s13571-011-0015-y doi: 10.1007/s13571-011-0015-y
|
| [39] |
W. Skrotzki, K. Kegler, R. Tamm, C. G. Oertel, Grain structure and texture of cast iron aluminides, Cryst. Res. Technol., 40 (2005), 90–94. https://doi.org/10.1002/crat.200410311 doi: 10.1002/crat.200410311
|