
https://www.aimspress.com/journal/Math

AIMS Mathematics, 10(9): 21642–21674.
DOI: 10.3934/math.2025962
Received: 28 June 2025
Revised: 10 September 2025
Accepted: 12 September 2025
Published: 18 September 2025

Research article

Advanced modeling of dependent structures using the FGM-quadratic
exponential bivariate distribution: Applications in computer and material
sciences

I. A. Husseiny1, Abdulrahman M. A. Aldawsari2, Asamh Saleh M. Al Luhayb3,* and
Reid Alotaibi4

1 Department of Mathematics, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
2 Department of Mathematics, College of Sciences and Humanities, Prince Sattam Bin Abdulaziz

University, Al-Kharj 16273, Saudi Arabia
3 Department of Mathematics, College of Science, Qassim University, P.O. Box 6644, Buraydah

51452, Saudi Arabia
4 Department of Mathematics, College of Science and Humanities, Shaqra University, Saudi Arabia

* Correspondence: Email: a.alluhayb@qu.edu.sa.

Abstract: Due to their ability to capture complex interactions between random variables, copula
models are gaining increasing attention. When it comes to bivariate data modeling, one important
area of statistical theory is the construction of families of distributions with specified marginals. An
FGM-QEXD (bivariate quadratic exponential Farlie Gumbel Morgenstern distribution) is derived from
the FGM copula and the new quadratic exponential marginal distribution, and is inspired by this.
The statistical features of the FGM-QEXD are studied, encompassing: the conditional distribution,
regression function, moment generating function, and correlation coefficient. Additionally, reliability
measures were obtained, including the survival function, hazard rate function, mean residual life
function, and vitality function. The model parameters are estimated via maximum likelihood (ML)
and Bayesian methodologies. Furthermore, asymptotic confidence ranges for the model parameter
are obtained. Monte Carlo simulation analysis is employed to evaluate the efficacy of both ML and
Bayesian estimators. Two real-world datasets are employed to prove that FGM-QEXD is more flexible
than the bivariate Weibull Farlie–Gumbel–Morgernstern (FGM), bivariate Lomax FGM, bivariate
inverse Lomax FGM, bivariate Rayleigh FGM, bivariate Burr XII FGM, and bivariate Chen FGM
distributions.

Keywords: Bayesian estimation; confidence intervals; FGM bivariate family; maximum likelihood
estimation; simulation
Mathematics Subject Classification: 60B12, 62G30

https://www.aimspress.com/journal/Math
https://dx.doi.org/ 10.3934/math.2025962


21643

1. Introduction

Modeling paired data and comprehending joint behaviour, covariance, and correlation are based on
bivariate distributions. In fields such as reliability theory, risk analysis, bioinformatics, image
processing, and machine learning, they are essential. For representing and analyzing the relationship
between random variables (RVs), bivariate distributions are indispensable in many different domains.
The creation of bivariate distributions requires a great deal of study. A simple method for generating a
set of distributions with two variables using marginal values was proposed by Morgenstern [1]. A
more comprehensive variant of Morgenstern’s method, called the FGM family of distributions, was
presented by Farlie [2]. A large number of bivariate distributions have been developed and studied by
various scholars. As an illustration, Almetwally and Muhammed [3] suggested a novel bivariate
Fréchet distribution that is dependent on FGM and Ali-Mikhail-Haq copula functions. A bivariate
Weibull distribution was introduced, and some of its features were obtained by Almetwally et al. [4]
using the FGM copula function. Lastly, a new family of bivariate continuous Lomax generators was
shown to have various structural statistical features by Fayomi et al. [5]. Barakat et al. [6] introduced
a novel statistical model, a bivariate Epanechnikov-Exponential distribution, founded on the FGM
copula. Almetwally et al. [7] presented three novel bivariate models employing copula functions: the
XLindley distribution with Frank, Gumbel, and Clayton copulas. Tovar et al. [8] presented a new
bivariate probability distribution that is absolutely continuous. Taking into account the FGM copula
and the unit-Weibull distribution. [9] introduced a novel bivariate iterated FGM distribution with
Rayleigh marginals. For more details about iterated FGM, see [10]. Nelsen [11] describes the usage
of a copula as a typical technique in statistics for creating bivariate distributions. To describe bivariate
distributions with an explicit dependency structure, copulas can be used. Its purpose is to join
bivariate distribution functions (DFs) that have uniform [0, 1] marginals. This is one technique to
explore studies of bivariate distributions using copulas. The dependence between the two RVs will
determine the copula function. In high-dimensional statistical contexts, copulas are helpful because
they simplify the process of modeling and estimating the distribution of random vectors by
calculating marginals and copulas independently. For given two marginal univariate distributions
Fx(x) = P(X ≤ x) and FY(y) = P(Y ≤ y), a copula C(u, v), and its probability density function (PDF),
i.e., c(u, v) = ∂2C(u,v)

∂u∂v . Sklar [12] presented the joint cumulative density function (JCDF) and joint
probability density function (JPDF), respectively, as follows:

FX,Y(x, y) = C(FX(x), FY(y)), (1.1)

and
fX,Y(x, y) = fX(x) fY(y)c(FX(x), FY(y)). (1.2)

One of the most widespread and beneficial bivariate DF is the FGM model. The JCDF and JPDF of
the FGM bivariate family are given, respectively by

FX,Y(x, y) = FX(x)FY(y)
[
1 + θF̄X(x)F̄Y(y)

]
, (1.3)

and

fX,Y(x, y) = fX(x) fY(y)
[
1 + θ(2FX(x) − 1)(2FY(y) − 1)

]
, − 1 ≤ θ ≤ 1, (1.4)
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where F̄X(x) is the survival function (SF) (or the reliability function R(x) = F̄X(x) = P(X > x)) of
fX(x). The FGM copula provides numerous benefits when modeling bivariate distributions. An
important benefit of this copula is its versatility in representing a broad spectrum of dependence
structures, ranging from complete independence to absolute reliance, see Gumbel [13]. Moreover, the
FGM copula has the ability to handle asymmetrical dependence, which makes it suitable for modeling
data with skewed or heavy-tailed distributions, see Morgenstern [1]. Furthermore, the FGM copula
enables the creation of bivariate distributions that encompass a diverse set of marginals, including
both continuous and discrete marginals . In addition, the FGM copula has a straightforward structure,
making it computationally efficient and straightforward to implement in practical applications, see
Joe [14]. The FGM distribution is a flexible and valuable family in applications as long as the
correlation between the variables is not overly great. It can be used for arbitrary continuous
marginals. Schucany et al. [15] showed that −1

3 ≤ ρ ≤
1
3 if both FX(x) and FY(y) are arbitrary

continuous distributions with bounded nonzero variances. While several copulas, including Clayton,
Gumbel, and Frank, are commonly utilized for modeling dependence structures, especially in the
presence of significant or asymmetric tail dependence, the FGM copula is still a compelling and
relevant choice in this analysis. The primary impetus for utilizing the FGM copula is its analytical
manageability and closed-form simplicity, which enable the derivation of explicit expressions for
essential statistical measures, including the moment-generating function, reliability functions, and
regression curves. This property makes it especially suitable for investigating new marginals, where
closed-form properties are crucial for both theoretical analysis and practical implementation.
Moreover, the FGM copula offers interpretable dependence characterized by bounded correlation,
which, while constrained in strength, is sufficient for numerous engineering and materials datasets
that display moderate associations rather than extreme tail reliance. Moreover, families based on
FGM exhibit a longstanding legacy of reliability and applied statistics, owing to their equilibrium
between flexibility and mathematical convenience, rendering them a suitable foundation before
advancing to more intricate copulas in subsequent research. The utilization of generalized
distributions for data modeling remains prevalent today. Numerous academics have introduced novel
generalizations for lifespan distributions applicable in diverse domains, including economics,
actuarial science, medicine, and engineering. Zeghdoudi and Nedjar [16] developed the Gamma
Lindley distribution to improve the analysis of several types of lifespan data. Eghwerido et al. [17]
delineate a three-parameter class for lifetime Poisson processes within the Marshall-Olkin
transformation family. Recently He et al. [18] developed an innovative methodology that integrates
artificial neural networks with the Tweedie exponential dispersion process framework to adaptively
calibrate the stochastic process model that most accurately represents the real degradation trend.
Gemeay et al. [19] established a new universal two-parameter statistical distribution, which may be
expressed as a combination of exponential and gamma distributions. Belil et al. [20] introduced a
novel flexible two-parameter family of distributions, exemplified by an analysis of annual maximum
flood data and survival periods of breast cancer patients. Furthermore, Beghriche et al. [21] presented
a novel polynomial exponential distribution characterized by a single parameter. The resulting model,
termed the polynomial exponential extended distribution, incorporates the original distribution as a
specific instance and offers greater versatility for modeling various real data sources. Almetwally and
Meraou [22] developed a sine extension of the exponential distribution. In recent years, numerous
authors have suggested extensions and adaptations of the exponential distribution to augment its

AIMS Mathematics Volume 10, Issue 9, 21642–21674.



21645

adaptability for modeling lifetime and reliability data. Transmuted exponential, generalized
exponential, and odd-exponential families have been created to capture skewness and tail behavior
more efficiently; for more details, see [23–25]. An innovative two-parameter quadratic exponential
distribution (QEXD) was presented by Bousseba et al. [26], who also conducted an in-depth
investigation into the statistical features and practical applications of this distribution. Additionally,
they studied the important aspects of the distribution, including its asymptotic behaviour, moments,
order statistics, and entropies. In addition to that, they outlined the concepts of fuzzy reliability, value
at risk, mean excess function, restricted expected value function, tail value at risk, and tail variance.
Let X be a continuous RV following the QEXD. Then the PDF can be expressed by

fX(x) = ζ(α, β)
(
α + βx + x2

)
e−βx, (1.5)

where ζ(α, β) = β3

K(α,β) ,K(α, β) = β2 + αβ2 + 2, and x, α, β > 0. The appropriate CDF, SF, and hazard
rate function (HR) are as follows:

FX(x) = 1 − e−βx
(
1 +
β2x2 + (β3 + 2β)x

K(α, β)

)
, (1.6)

F̄X(x) = e−βx
(
1 +
β2x2 + (β3 + 2β)x

K(α, β)

)
, (1.7)

and

HRX(x) =
β3

(
α + βx + x2

)
β2x2 + (β3 + 2β)x + K(α, β)

. (1.8)

In this paper, the FGM copula provides a simple mechanism to introduce dependence between two RVs
while preserving analytical tractability. When combined with QEXD marginals, the resulting FGM-
QEXD model retains closed-form expressions for key distributional properties, including the joint
density, reliability, and moment-generating functions. The quadratic form of the marginals introduces
additional flexibility to capture skewness and kurtosis. At the same time, the FGM structure enables
the modeling of weak-to-moderate positive or negative dependence through a single parameter θ. This
combination yields a practical family of bivariate lifetime distributions that are suitable for applications
in reliability, materials science, and survival. The proposed FGM-QEXD bivariate family is motivated
by scenarios where two related lifetime variables exhibit weak-to-moderate dependence. Such cases
are common in applied reliability and biomedical contexts. For instance, in mechanical engineering,
stress strength models involve two correlated variables where the dependence is moderate rather than
extreme. In computer and networked systems, correlated failure modes may arise when devices share
common operating environments but still retain individual variability. In healthcare and biomedical
studies, biomarkers or survival times from paired organs (such as kidneys or lungs) often display weak-
to-moderate correlation, making highly restrictive dependence models less suitable. The FGM-QEXD
model captures such dependence while remaining mathematically tractable, which provides a practical
advantage over more complex alternatives such as Clayton or Gumbel copula models.

Motivation

• A crucial factor in dependence modeling is not simply the adequacy of a copula in fitting the
data, but also its manageability for theoretical analysis. Despite their prevalent application,
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copulas like those of Clayton, Frank, and Gumbel frequently result in intricate expressions when
addressing concomitants of order statistics and associated probabilistic characteristics. In
contrast, the FGM copula maintains analytical simplicity, rendering it more adaptable for both
theoretical derivations and practical implementations. The FGM-QEXD model, when integrated
with QEXD marginals, maintains tractability while offering an enhanced empirical fit, evidenced
by elevated log-likelihood values and reduced Akaike information criterion (AIC) scores in
comparison with classical copulas and the FGM copula with different marginals. The combined
benefits of analytical simplicity and empirical correctness drive the utilization of the
FGM-QEXD copula as a reliable framework for modeling bivariate data.
• A novel, adaptable bivariate distribution with precise derivations of essential statistical

functions (the moment generating function, conditional expectations, the vitality function, etc.).
• The QEXD is a logical extension of the exponential distribution, providing further shape freedom

while maintaining simplicity, the capability to simulate growing, decreasing, or bathtub-shaped
hazard functions, and analytically tractable forms of the PDF and CDF.
• The following advantages are enjoyed by the FGM-QEXD model as a consequence of coupling

the FGM copula with QEXD marginals: more marginal flexibility due to the QEXD, a dependence
system that is both lightweight and interpretable, and various functions’ closed-form expressions:
(moments, reliability measures, density, etc).
• The FGM-QEXD does better than competing models when applied to real-world datasets

derived from computer science and materials data, including bivariate Lomax, bivariate inverse
Lomax, bivariate Weibull, bivariate inverse Weibull, and versions of bivariate Rayleigh FGM
distributions, providing a more accurate fit, more nuanced modeling of dependence, and more
insightful interpretations.

The paper is structured as follows. The description of the suggested model is provided in
Section 2. In Section 3, the FGM-QEXD’s statistical features are also examined, including its
conditional distribution, regression curve, moment-generating function, and correlation coefficient.
The dependability measures, including the vitality function, the mean residual life, and the hazard
function, are discussed in Section 4. Section 5 employs Bayesian approaches and maximum
likelihood (ML) to estimate the model parameters. Parameters of the model are also associated with
asymptotic confidence intervals (CIs). Using Monte Carlo simulations, the Bayesian and ML
estimators were computed in Section 6. As an example, Section 7 analyzes two bivariate real-world
data sets and finds them to be adequate. Finally, Section 8 concludes the work.

2. FGM-QEXD bivariate distribution

Let X ∼ QEXD(α1, β1) and Y ∼ QEXD(α2, β2). Thus, according to (1.3) and (1.6) the JCDF of
bivariate QEXD based on the FGM copula, denoted by FGM-QEXD(α1, β1, α2, β2), is given by

FX,Y(x, y) =
(
1 − e−β1 x

(
1 +
β2

1x2 + (β3
1 + 2β1)x

K(α1, β1)

))
×

(
1 − e−β2y

(
1 +
β2

2y2 + (β3
2 + 2β2)y

K(α2, β2)

))
AIMS Mathematics Volume 10, Issue 9, 21642–21674.
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×

[
1 + θ

(
e−β1 x

(
1 +
β2

1x2 + (β3
1 + 2β1)x

K(α1, β1)

))
×

(
e−β2y

(
1 +
β2

2y2 + (β3
2 + 2β2)y

K(α2, β2)

))]
. (2.1)

Based on (1.4). The corresponding JPDF of FGM-QEXD(α1, β1, α2, β2), is defined by

fX,Y(x, y) =
(
ζ(α1, β1)

(
α1 + β1x + x2

)
e−β1 x

) (
ζ(α2, β2)

(
α2 + β2y + y2

)
e−β2y

)
×

[
1 + θ

(
1 − 2

(
1 − e−β1 x

(
1 +
β2

1x2 + (β3
1 + 2β1)x

K(α1, β1)

)))
×

(
1 − 2

(
1 − e−β2y

(
1 +
β2

2y2 + (β3
2 + 2β2)y

K(α2, β2)

)))]
, (2.2)

where ζ(αℓ, βℓ) =
β3
ℓ

K(αℓ,βℓ)
,K(αℓ, βℓ) = β2

ℓ + αℓβ
2
ℓ + 2, ℓ = 1, 2. The JPDF (2.2) for a few chosen values

of its parameters is shown in 3-D Figures 1 to 4. Given that it can handle a variety of data, the
graphs in Figures 1 to 4 demonstrate how rich and widespread this family is. Several general trends
can be observed from Figures 1 to 4: The overall peak of the surface is strongly influenced by the
scale parameters β1 and β2. Smaller values of these parameters yield sharper peaks near the origin,
while larger values produce flatter surfaces with heavier tails. The shape parameters α1 and α2 control
skewness and kurtosis. Increasing α values makes the surface more skewed and shifts the density mass
away from the origin, reflecting heavier-tailed behavior. This illustrates the flexibility of the FGM-
QEXD family in capturing weak-to-moderate dependence structures while accommodating different
marginal behaviors.

Figure 1. JPDF at α1 = 1, β1 = 1, α2 = 2, β2 = 2, θ = 0.5.
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Figure 2. JPDF at α1 = 0.5, β1 = 0.9, α2 = 1, β2 = 1.5, θ = −0.5.

Figure 3. JPDF at α1 = 1.5, β1 = 2, α2 = 0.9, β2 = 1.5, θ = −0.9.
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Figure 4. JPDF at α1 = 2.5, β1 = 3.5, α2 = 2, β2 = 1.5, θ = 0.9.

3. Statistical properties of FGM-QEXD

A number of important analytical features of the FGM-QEXD distribution are examined here:
conditional distribution, regression function, moment generating function (MGF), and correlation
coefficient.

3.1. Conditional distributions based FGM-QEXD

The conditional PDF of Y given X is given by

fY |X(y|x) =
(
ζ(α2, β2)

(
α2 + β2y + y2

)
e−β2y

)
×

[
1 + θ

(
1 − 2

(
1 − e−β1 x

(
1 +
β2

1x2 + (β3
1 + 2β1)x

K(α1, β1)

)))
×

(
1 − 2

(
1 − e−β2y

(
1 +
β2

2y2 + (β3
2 + 2β2)y

K(α2, β2)

)))]
.

The conditional CDF of Y given X is

FY |X(y | x) =
(
1 − e−β2y

(
1 +
β2

2y2 + (β3
2 + 2β2)y

K(α2, β2)

))
×

[
1 + θ

(
e−β2y

(
1 +
β2

2x2 + (β3
2 + 2β2)y

K(α2, β2)

))
×

(
1 − 2

(
1 − e−β1 x

(
1 +
β2

1x2 + (β3
1 + 2β1)x

K(α1, β1)

)))]
.

Consequently, for the FGM-QEXD(α1, β1, α2, β2), the regression curve for Y given X = x is

E[Y | X = x] = µY + θ (1 − 2FX(x))
∫ ∞

0
y fY(y) (1 − 2FY(y)) dy

AIMS Mathematics Volume 10, Issue 9, 21642–21674.
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=
(α2 + 2)β2

2 + 6

β2

(
α2β2 + β

2
2 + 2

) + θ (1 − 2
(
1 − e−β1 x

(
1 +
β2

1x2 + (β3
1 + 2β1)x

K(α1, β1)

)))
×

∫ ∞

0
y fY(y) (1 − 2FY(y)) dy

=
(α2 + 2)β2

2 + 6

β2

(
α2β2 + β

2
2 + 2

) + θ (1 − 2
(
1 − e−β1 x

(
1 +
β2

1x2 + (β3
1 + 2β1)x

K(α1, β1)

)))

× −
(2α2(α2 + 3) + 3)β4

2 + 3(6α2 + 5)β2
2 + 15

4β2

(
(α2 + 1)β2

2 + 2
)2 .

3.2. Moment generating function for FGM-QEXD

The moment generating function (MGF) of the bivariate FGM-QEXD distribution can be expressed
as

MX,Y(t1, t2) = MX(t1) MY(t2) + θ I(t1, t2),

where MX(t1) and MY(t2) are the marginal MGFs of X and Y , respectively, and I(t1, t2) is the copula
based correction term. For t1 < β1 and t2 < β2, the marginal MGFs take the closed forms

MX(t1) =
β3

1

[
−α1(t1 − β1)2 + β1(t1 − β1) − 2

]
(
(α1 + 1)β2

1 + 2
)
(t1 − β1)3

,

MY(t2) =
β3

2

[
−α2(t2 − β2)2 + β2(t2 − β2) − 2

]
(
(α2 + 1)β2

2 + 2
)
(t2 − β2)3

.

The adjustment integral is given by

I(t1, t2) =
∫ ∞

0

∫ ∞

0
et1 x+t2y fX(x) fY(y)

(
1 − 2FX(x)

)(
1 − 2FY(y)

)
dx dy.

After simplification, the final closed form is

I(t1, t2) =
t1t2 β

3
1β

3
2

∆t1,t2
P1(t1;α1, β1)P2(t2;α2, β2),

where

∆t1,t2 = (t1 − 2β1)5(t1 − β1)3(2 + α1β1 + β
2
1
)(

2 + (1 + α1)β2
1
)

× (t2 − 2β2)5(t2 − β2)3(2 + α2β2 + β
2
2
)(

2 + (1 + α2)β2
2
)
,

and the polynomials P1 and P2 are given by

P1(t1;α1, β1) = t6
1α1

(
2 + (1 + α1)β2

1
)

+ 8β4
1

(
15 + 3(5 + 6α1)β2

1 +
(
3 + 2α1(3 + α1)

)
β4

1

)
+ 4t1β

3
1

(
− 60 − 3(25 + 36α1)β2

1 − 2
(
9 + α1(21 + 8α1)

)
β4

1

)
AIMS Mathematics Volume 10, Issue 9, 21642–21674.
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+ 2t2
1β

2
1

(
80 + 14(10 + 19α1)β2

1 +
(
41 + 2α1(59 + 26α1)

)
β4

1

)
+ t4

1

(
4 + 4(6 + 31α1)β2

1 +
(
11 + α1(66 + 41α1)

)
β4

1

)
− 2t3

1β1

(
20 + 4(15 + 43α1)β2

1 +
(
22 + α1(85 + 44α1)

)
β4

1

)
− t5

1β1

(
2 + β2

1 + α1
(
24 + (13 + 10α1)β2

1
))
,

P2(t2;α2, β2) = t6
2α2

(
2 + (1 + α2)β2

2
)

+ 8β4
2

(
15 + 3(5 + 6α2)β2

2 +
(
3 + 2α2(3 + α2)

)
β4

2

)
+ 4t2β

3
2

(
− 60 − 3(25 + 36α2)β2

2 − 2
(
9 + α2(21 + 8α2)

)
β4

2

)
+ 2t2

2β
2
2

(
80 + 14(10 + 19α2)β2

2 +
(
41 + 2α2(59 + 26α2)

)
β4

2

)
+ t4

2

(
4 + 4(6 + 31α2)β2

2 +
(
11 + α2(66 + 41α2)

)
β4

2

)
− 2t3

2β2

(
20 + 4(15 + 43α2)β2

2 +
(
22 + α2(85 + 44α2)

)
β4

2

)
− t5

2β2

(
2 + β2

2 + α2
(
24 + (13 + 10α2)β2

2
))
.

3.3. Correlation coefficient of FGM-QEXD

Let X ∼ QEXD(α1, β1) and Y ∼ QEXD(α2, β2). Then the Pearson correlation coefficient of X and
Y is given by

ρ(x, y) = θ

∫ ∞
0

∫ ∞
0

xy fX(x) fY(y)(2FX(x) − 1)(2FY(y) − 1)dxdy

σxσy

= θ

((2α1(α1+3)+3)β4
1+3(6α1+5)β2

1+15)((2α2(α2+3)+3)β4
2+3(6α2+5)β2

2+15)
16β1β2((α1+1)β2

1+2)2((α2+1)β2
2+2)2

σxσy
, (3.1)

where

σx =
√

Var(x) =

√√√√
β1

(
−(α1 + 2)β2

1 + 2(α1 + 3)β1 − 6
)
+ 24

β2
1

(
α1β1 + β

2
1 + 2

)
and

σy =
√

Var(Y) =

√√√√
β2

(
−(α2 + 2)β2

2 + 2(α2 + 3)β2 − 6
)
+ 24

β2
2

(
α2β2 + β

2
2 + 2

) .

The two Figures 5 and 6 visualize the correlation coefficient based on FGM-QEXD bivariate
distribution under different parameter setting.
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Figure 5. ρ(x, y) at α1 = 7.5, α2 = 6, θ = 0.99.

Figure 6. ρ(x, y) at α1 = 8, α2 = 10, θ = −0.99.

4. Reliability measures

Reliability theory plays a pivotal role in many applied fields, including engineering, medical
statistics, and risk analysis (see [27]). A thorough understanding of the underlying failure behavior of
systems or components often requires more than just basic probability functions. In this section,
several key reliability measures derived from the bivariate FGM-QEXD model are investigated,
namely the mean residual life (MRL) function, the vitality function, and the HR.
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4.1. Mean residual life in FGM-QEXD

The Mean Residual Life (MRL) function denotes the anticipated residual lifespan contingent upon
survival to a specific moment. It is extensively utilized in survival analysis and reliability engineering
to forecast the duration a component or system is anticipated to operate after having already endured
a specified period. Within the framework of the FGM-QEXD model, the MRL function elucidates
the influence of reliance and marginal factors on expected remaining life. A unit’s average life after
surviving for a given amount of time t is called the MRL. A distribution with a finite mean can be fully
determined by the MRL function, which is similar to the PDF or characteristic function; this is done
using an inversion formula (cf. Mansour et al. [28] and Guess and Proschan [29]). The MRL is useful
for both parametric and nonparametric models. Life insurance prices and benefits are determined by
actuaries using MRL. Researchers use MRL to examine survival studies in the biomedical setting. The
MRL was first proposed by Shanbag and Kotz [30] for vector-valued RVs as

m(x, y) = (m1(x, y),m2(x, y)) , (4.1)

where
m1(x, y) = E(X − x|X ≥ x,Y ≥ y)

and
m2(x, y) = E(Y − y|X ≥ x,Y ≥ y).

The expressions for m1(x, y) and m2(x, y) in FGM-QEXD(α1, β1, α2, β2), are obtained as

m1(x, y) =
1

F̄(x, y)

∫ ∞

x

∫ ∞

y
(s − x) fX,Y(s, t) dt ds,

=
F̄(y)A(x) + θB(x)C(y)

F̄(x, y)
, (4.2)

where

A(x) =
∫ ∞

x
(s − x) fX(s)ds

=
eβ1(−x)

(
β2

1

(
α1 + x2 + 2

)
+ β3

1x + 4β1x + 6
)

β1

(
(α1 + 1)β2

1 + 2
) , (4.3)

B(x) =
∫ ∞

x
(s − x) fX(s)(1 − 2FX(s)))ds

=
e−2xβ1

4β1

(
2 + (1 + α1)β2

1

)2

(
33 + 50xβ1 − 4exβ1(2 + (1 + α1)β2

1)(6 + 4xβ1 + (2 + x2 + α1)β2 + xβ3
1)

+ β2
1
(
25 + 14α1 + 2x4β2

1 + (5 + 2α1(3 + α1))β2
1 + 4x3β1(3 + β2

1)

+ 2xβ1(17 + 6α1 + (3 + 2α)1β
2
1) + 2x2(17 + (9 + 2α1)β2

1 + β
4
1)
))
, (4.4)

and

C(y) =
∫ ∞

y
fY(t)(1 − 2FY(t))dt
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=
1(

(α2+ 1)β2
2+2

)2

× e−2β2y
(
β2

2

(
α2+ y2+1

)
+ β3

2y+ 2β2y + 2
)

×
(
β2

2 + β
2
2(α2 + y(β2 + y)) −

(
(α2 + 1)β2

2 + 2
)

eβ2y+2β2y+2
)
. (4.5)

Now, From (4.3)–(4.5) in (4.2), m1(x, y) is obtained. The same solution approach is applied for m2(x, y).

4.2. Vitality function

The Vitality function quantifies a system’s resilience by measuring its ability to endure stress or
harsh operating circumstances. This function elucidates a system’s behavior under cumulative stress
for reliability modeling and serves as a tool for evaluating robustness. Integrating the Vitality function
within the FGM-QEXD framework elucidates the impact of interdependence among components on
the system’s resilience. The vitality function is a helpful tool for modelling life time data. It was
thoroughly explored by Kupka and Loo [31] in relation to their research on the ageing process. This
idea was applied by Kotz and Shanbhag [32] to produce multiple life time distribution
characterizations. The vitality function offers a more direct assessment of the failure pattern since it is
expressed in terms of an increased average life span, whereas the hazard rate represents the chance of
sudden death within a life span (cf. Mansour et al. [28]). The vitality function linked to a
non-negative RV X is defined as m(x) = E(X|X > x). The bivariate vitality function of random
vector (X,Y) is defined on a positive domain as a binomial vector as

V(x, y) = (V1(x, y),V2(x, y)) , (4.6)

where
V1(x, y) = E(X|X ≥ x,Y ≥ y)

and
V2(x, y) = E(Y |X ≥ x,Y ≥ y).

For more details, see Sankaran and Nair [33]. Moreover, Vi(x, y) is related to mi(x, y) by

Vi(x, y) = (x, i = 1)(y, i = 2) + mi(x, y), i = 1, 2. (4.7)

Here V2(x, y) computes the expected lifetime to the first component as the sum of current age x and the
average lifetime remaining to it, assuming the second component has survived past age y. V2(x, y) has
a similar interpretation.

4.3. Bivariate reliability function of FGM-QEXD distribution

The Bivariate Hazard function extends the notion of failure rate to a two-dimensional context (see
[34]). It delineates the immediate risk of failure for a system comprising two interconnected lifespans.
This is especially significant in reliability studies including the interaction of numerous components or
stress factors, enabling practitioners to assess the impact of reliance (via θ) on joint failure risks. The
bivariate reliability function RX,Y(x, y) for the FGM-QEXD distribution is defined as the probability
that X > x and Y > y

R(x, y) = P(X > x,Y > y) = 1 − FX(x) − FY(y) + FX,Y(x, y).
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Incorporating the marginal (1.6) and JCDF (2.1) into the notion of reliability function as

R(x, y) = 1 −
(
1 − e−β1 x

(
1 +
β2

1x2 + (β3
1 + 2β1)x

K(α1, β1)

))
−

(
1 − e−β2y

(
1 +
β2

2y2 + (β3
2 + 2β2)y

K(α2, β2)

))
+ FX,Y(x, y)

= e−β1 x

(
1 +
β2

1x2 + (β3
1 + 2β1)x

K(α1, β1)

)
+ e−β2y

(
1 +
β2

2y2 + (β3
2 + 2β2)y

K(α2, β2)

)
− 1

+ FX,Y(x, y).

Combining terms and using the joint CDF from equation (2.1), the reliability function becomes

R(x, y) = e−β1 x

(
1 +
β2

1x2 + (β3
1 + 2β1)x

K(α1, β1)

)
× e−β2y

(
1 +
β2

2y2 + (β3
2 + 2β2)y

K(α2, β2)

)
×

[
1 + θ

(
1 − e−β1 x

(
1 +
β2

1x2 + (β3
1 + 2β1)x

K(α1, β1)

))
×

(
1 − e−β2y

(
1 +
β2

2y2 + (β3
2 + 2β2)y

K(α2, β2)

))]
.

4.4. Bivariate hazard function of FGM-QEXD distribution

The bivariate HR hX,Y(x, y) is defined as the ratio of the JPDF to the joint reliability function

HR(x, y) =
fX,Y(x, y)
R(x, y)

=
ζ(α1, β1)(α1 + β1x + x2)

1 + β
2
1 x2+(β3

1+2β1)x
K(α1,β1)

×
ζ(α2, β2)(α2 + β2y + y2)

1 + β
2
2y2+(β3

2+2β2)y
K(α2,β2)

×

[
1 + θ (1 − 2(1 − T (x))) (1 − 2(1 − T (y)))

1 + θ(1 − T (X))(1 − T (Y))

]
,

where

T (x) = e−β1 x

(
1 +
β2

1x2 + (β3
1 + 2β1)x

K(α1, β1)

)
,

T (y) = e−β2y

(
1 +
β2

2y2 + (β3
2 + 2β2)y

K(α2, β2)

)
.
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Figures 7 and 8 depicts 3D plots of the joint HR of a FGM-QEXD for various parameter values. The
HR surface increases with time, reflecting the rising risk of failure as components age. Higher α values
accentuate this increase, producing sharper hazard growth, while larger β values moderate the rate of
risk escalation. The dependence parameter θ tilts the hazard surface: positive θ indicates simultaneous
higher risks across both components (clustering of failures), whereas negative θ shows divergence,
with high risk in one component accompanied by lower risk in the other.

Figure 7. Bivariate HR at α1 = 1.5, β1 = 1, α2 = 2, β2 = 1.2, θ = 0.5.

Figure 8. Bivariate HR at α1 = 3, β1 = 0.9, α2 = 0.5, β2 = 2, θ = 0.9.
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5. Methods of estimation

In this section, three estimation methods are discussed for estimating the unknown parameters of
the FGM-QEXD: the ML and Bayesian estimation. Moreover, asymptotic confidence intervals are
constructed using the Fisher information matrix (FIM) for the model’s parameters.

5.1. The ML estimation

When it comes to statistics, the ML method is both essential and frequently utilized. One can
obtain parameter estimates with desirable statistical properties, such as consistency, asymptotic
unbiasedness, efficiency, and asymptotic normality, by employing the ML approach (cf. [6]). To
acquire the parameter estimates using the ML approach, one must compute the parameter estimates
that maximize the likelihood of the sample data. You can use the PDF from Eq (2.2) to get the log
likelihood function lnL as

L(α1, β1, α2, β2, θ) =
n∑

i=1

ln fX,Y(xi, yi),

where

fX,Y(x, y) =
(
ζ(α1, β1)(α1 + β1x + x2)e−β1 x

) (
ζ(α2, β2)(α2 + β2y + y2)e−β2y

)
×

[
1 + θA(x)B(y)

]
,

A(x) = 1 − 2
(
1 − e−β1 x

(
1 +
β2

1x2 + (β3
1 + 2β1)x

K(α1, β1)

))
,

and

B(y) = 1 − 2
(
1 − e−β2y

(
1 +
β2

2y2 + (β3
2 + 2β2)y

K(α2, β2)

))
.

Thus
∂ℓ

∂θ
=

n∑
i=1

A(xi)B(yi)
1 + θA(xi)B(yi)

.

∂ℓ

∂α1
=

n∑
i=1

 1
α1 + β1xi + x2

i

+
∂ ln ζ(α1, β1)
∂α1

+
θ ∂A(xi)
∂α1

B(yi)

1 + θA(xi)B(yi)


∂ℓ

∂β1
=

n∑
i=1

 xi

α1 + β1xi + x2
i

− xi +
∂ ln ζ(α1, β1)
∂β1

+
θ ∂A(xi)
∂β1

B(yi)

1 + θA(xi)B(yi)

 ,
where

∂ ln ζ(α1, β1)
∂α1

= −
β2

1

K(α1, β1)
∂ ln ζ(α1, β1)
∂β1

=
3
β1
−

2β1 + α12β1

K(α1, β1)
.

These are symmetric to the derivatives with respect to α1 and β1, with x replaced by y and all
subscripts 1 replaced with 2.
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5.2. Asymptotic confidence intervals

To generate asymptotic confidence intervals (CIs) for the unknown parameters in Θ, the FIM is
often utilized, relying on the asymptotic normality of the ML estimates (for additional information
regarding other applications of FIM, see to [35] and [6]). Assuming certain regularity conditions, the
ML estimates Θ̂ follow a normal distribution. The distribution of the estimator Θ̂ = (α̂1, β̂1, α̂2, β̂2, θ̂)
approaches a normal distribution with a mean τ and a covariance matrix equal to the inverse of the
FIM, represented as II−1(Θ). The negative anticipated values of the second-order derivatives of ln L,
make up the FIM.

Let Θ = (α1, β1, α2, β2, θ)⊤ be the parameter vector. The FIM I(Θ) is given by

I(Θ) = −E
[
∂2ℓ(Θ)
∂Θ∂Θ⊤

]
,

where ℓ(Θ) is the log-likelihood function. The observed FIM evaluated at the ML Θ̂

IO(Θ̂) = −
∂2ℓ(Θ)
∂Θ∂Θ⊤

∣∣∣∣∣∣
Θ=Θ̂

,

where IO(Θ̂) is a negative Hessian matrix of the ln L evaluated at the ML Θ̂. It quantifies the curvature
of the log-likelihood function at the estimated parameters, providing a measure of how ”sharp” the
likelihood peak is. The required second derivatives (diagonal elements) are

∂2ℓ

∂α2
1

=

n∑
i=1

− 1
(α1 + β1xi + x2

i )2
+
∂2 ln ζ(α1, β1)
∂α2

1

−

(
θ ∂A(xi)
∂α1

B(yi)
)2

(1 + θA(xi)B(yi))2

 ,
∂2ℓ

∂β2
1

=

n∑
i=1

− x2
i

(α1 + β1xi + x2
i )2
+
∂2 ln ζ(α1, β1)

∂β2
1

−

(
θ ∂A(xi)
∂β1

B(yi)
)2

(1 + θA(xi)B(yi))2

 ,
∂2ℓ

∂θ2
= −

n∑
i=1

(A(xi)B(yi))2

(1 + θA(xi)B(yi))2 .

with similar expressions for α2 and β2. Also, the off-diagonal elements are

∂2ℓ

∂α1∂β1
=

n∑
i=1

− xi

(α1 + β1xi + x2
i )2
+
∂2 ln ζ(α1, β1)
∂α1∂β1

−
θ2 ∂A(xi)
∂α1

∂A(xi)
∂β1

B(yi)2

(1 + θA(xi)B(yi))2

 ,
∂2ℓ

∂α1∂θ
= −

n∑
i=1

∂A(xi)
∂α1

B(yi)

(1 + θA(xi)B(yi))2 ,

∂2ℓ

∂β1∂θ
= −

n∑
i=1

∂A(xi)
∂β1

B(yi)

(1 + θA(xi)B(yi))2 ,

with similar expressions for other parameter pairs. Under regularity conditions, the ML Θ̂ has
asymptotic distribution

√
n(Θ̂ −Θ0)

d
−→ N5(0,I−1(Θ0)),
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where Θ0 is the true parameter vector. For each parameter Θ j, the 100(1 − α)% asymptotic CI is

Θ̂ j ± zα/2
√

[I−1
O (Θ̂)] j j,

where zα/2 is the (1 − α/2)-quantile of the standard normal distribution.

5.3. Bayesian estimation

A potent tool for estimating unknown parameters from observable data is the Bayesian estimate
technique. It is possible to revise a hypothesis’s probability using newly acquired information and the
Bayes Theorem, a notion from probability theory. This method offers some benefits over the
conventional ML approach due to the fact that it estimates with prior knowledge in mind.
Additionally, it can determine the level of uncertainty associated with each parameter. Careful
attention is needed when choosing a prior PDF and hyperparameter. A potent tool for estimating
unknown parameters from observable data is the Bayesian estimate technique. It is possible to revise
a hypothesis’s probability using newly acquired information and the Bayes Theorem, a notion from
probability theory. This method offers some benefits over the conventional ML approach due to the
fact that it estimates with prior knowledge in mind. Additionally, it can determine the level of
uncertainty associated with each parameter. Based on assumptions about the data, a reasonable prior
PDF and hyperparameter values need to be chosen. Let Θ = (α1, β1, α2, β2, θ) be the parameter vector
of the FGM-QEXD distribution. Given observed dataD = {(xi, yi)}ni=1, the posterior distribution is

π(Θ|D) ∝ L(D|Θ) × π(Θ),

where L(D|Θ) =
∏n

i=1 fX,Y(xi, yi|Θ) is the likelihood function, π(Θ) is the prior distribution
The likelihood function is given by:

L(D|Θ) =
n∏

i=1

[
ζ(α1, β1)(α1 + β1xi + x2

i )e−β1 xi
]

×
[
ζ(α2, β2)(α2 + β2yi + y2

i )e−β2yi
]

×
[
1 + θA(xi)B(yi)

]
.

The following independent priors are recommended.

αℓ ∼ Gamma(aαℓ , bαℓ), βℓ ∼ Gamma(aβℓ , bβℓ), θ ∼ Uniform(−1, 1)., ℓ = 1, 2

The joint prior density is:
π(Θ) = π(α1)π(β1)π(α2)π(β2)π(θ).

Therefore, the posterior distribution is:

π(Θ|D) ∝

 n∏
i=1

fX,Y(xi, yi|Θ)


× α

aα1−1
1 e−bα1α1 × β

aβ1−1
1 e−bβ1β1

× α
aα2−1
2 e−bα2α2 × β

aβ2−1
2 e−bβ2β2
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× I[−1,1](θ).

The full conditional distributions for each parameter are

π(α1|·) ∝

 n∏
i=1

fX,Y(xi, yi|Θ)

 × αaα1−1
1 e−bα1α1 ,

π(β1|·) ∝

 n∏
i=1

fX,Y(xi, yi|Θ)

 × βaβ1−1
1 e−bβ1β1 ,

π(α2|·) ∝

 n∏
i=1

fX,Y(xi, yi|Θ)

 × αaα2−1
2 e−bα2α2 ,

π(β2|·) ∝

 n∏
i=1

fX,Y(xi, yi|Θ)

 × βaβ2−1
2 e−bβ2β2 ,

π(θ|·) ∝

 n∏
i=1

(1 + θA(xi)B(yi))

 × I[−1,1](θ)

6. Simulation

This section investigates the efficiency of the proposed estimation procedure for the parameters
of the bivariate distribution FGM-QEXD. The parameters are estimated using two approaches: ML
and Bayesian estimation. A simulation study is conducted to assess the performance of both methods
under different conditions. The study focuses on estimating the copula and marginal parameters, with
an emphasis on assessing the accuracy and robustness of the estimates across various sample sizes.

The simulation was implemented in R version 4.2.2, employing the packages, copula, Kendall,
stats 4,‘rstan’,‘brms’, and ‘rjags’ for the generation of random samples and the estimation of
parameters. For each scenario, a total of 1,000 independent random samples were generated from the
proposed bivariate distribution. The true values of the distribution parameters used in the simulation
are as follows:

• In Table 1, θ = 0.4, α1 = 1, α2 = 2, β1 = 2, β2 = 4.
• In Table 2, θ = −0.4, α1 = 1, α2 = 2, β1 = 2, β2 = 4.
• In Table 3, θ = 0.5, α1 = 2, α2 = 1.5, β1 = 1.5, β2 = 1.
• In Table 4, θ = 0.9, α1 = 4, α2 = 3, β1 = 3, β2 = 2.
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Table 1. ML and Bayesian estimates with their Bias, and MSE for θ = 0.4, α1 = 1, α2 = 2,
β1 = 2, β2 = 4 across different sample sizes.

ML Bayesian
n Estimation Bias MSE Estimation Bias MSE

50

θ̂ = 0.388 -0.012 0.0065 θ̂ = 0.3950 -0.0050 0.0023
α̂1 = 1.023 0.023 0.0758 α̂1 = 1.0280 0.0280 0.0041
α̂2 = 2.006 0.006 0.0885 α̂2 = 1.9600 -0.0400 0.0050
β̂1 = 2.011 0.011 0.0621 β̂1 = 2.0300 0.0300 0.0064
β̂2 = 3.981 0.019 0.0704 β̂2 = 3.9800 0.0200 0.0018

100

θ̂ = 0.396 -0.004 0.0032 θ̂ = 0.3980 -0.0020 0.0015
α̂1 = 1.012 0.012 0.0425 α̂1 = 1.0120 0.0120 0.0021
α̂2 = 2.001 0.001 0.0486 α̂2 = 1.9950 0.0050 0.0013
β̂1 = 1.995 0.005 0.0363 β̂1 = 2.0150 0.0150 0.0027
β̂2 = 3.993 0.007 0.0387 β̂2 = 3.9950 0.0050 0.0007

150

θ̂ = 0.399 -0.001 0.0021 θ̂ = 0.4010 0.0010 0.0011
α̂1 = 1.005 0.005 0.0284 α̂1 = 1.0050 0.0050 0.0012
α̂2 = 2.003 0.003 0.0311 α̂2 = 2.0000 0.0000 0.0008
β̂1 = 2.001 0.001 0.0226 β̂1 = 2.0080 0.0080 0.0019
β̂2 = 3.998 0.002 0.0253 β̂2 = 3.9970 0.0030 0.0005

200

θ̂ = 0.400 0.0001 0.0015 θ̂ = 0.4005 0.0005 0.0008
α̂1 = 1.002 0.002 0.0183 α̂1 = 1.0030 0.0030 0.0009
α̂2 = 2.001 0.001 0.0227 α̂2 = 2.0010 0.0010 0.0007
β̂1 = 2.000 0.000 0.0149 β̂1 = 2.0040 0.0040 0.0014
β̂2 = 3.999 0.001 0.0175 β̂2 = 3.9990 0.0010 0.0004
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Table 2. ML and Bayesian estimates with their Bias, and MSE for θ = −0.4, α1 = 1, α2 = 2,
β1 = 2, β2 = 4 across different sample sizes.

ML Bayesian
n Estimation Bias MSE Estimation Bias MSE

50

θ̂ = −0.387 0.013 0.0068 θ̂ = −0.3921 0.0079 0.0035
α̂1 = 1.018 0.018 0.0746 α̂1 = 1.0415 0.0415 0.0057
α̂2 = 2.001 0.011 0.0853 α̂2 = 1.9742 0.0258 0.0061
β̂1 = 2.007 0.007 0.0609 β̂1 = 2.0653 0.0653 0.0083
β̂2 = 3.987 0.013 0.0717 β̂2 = 3.9576 0.0424 0.0078

100

θ̂ = −0.398 0.002 0.0031 θ̂ = −0.3967 0.0033 0.0021
α̂1 = 1.008 0.008 0.0394 α̂1 = 1.0210 0.0210 0.0026
α̂2 = 2.003 0.003 0.0449 α̂2 = 1.9882 0.0118 0.0029
β̂1 = 1.996 0.004 0.0331 β̂1 = 2.0235 0.0235 0.0042
β̂2 = 3.995 0.005 0.0364 β̂2 = 3.9731 0.0269 0.0043

150

θ̂ = −0.399 0.001 0.0021 θ̂ = −0.3993 0.0007 0.0014
α̂1 = 1.004 0.004 0.0272 α̂1 = 1.0097 0.0097 0.0014
α̂2 = 2.002 0.002 0.0301 α̂2 = 1.9937 0.0063 0.0017
β̂1 = 1.998 0.002 0.0215 β̂1 = 2.0105 0.0105 0.0023
β̂2 = 3.999 0.001 0.0257 β̂2 = 3.9812 0.0188 0.0029

200

θ̂ = −0.400 0.000 0.0014 θ̂ = −0.4008 -0.0008 0.0011
α̂1 = 1.002 0.002 0.0192 α̂1 = 1.0049 0.0049 0.0010
α̂2 = 2.001 0.001 0.0223 α̂2 = 1.9982 0.0018 0.0010
β̂1 = 2.001 0.001 0.0141 β̂1 = 2.0052 0.0052 0.0016
β̂2 = 3.999 0.001 0.0185 β̂2 = 3.9903 0.0097 0.0016
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Table 3. ML and Bayesian estimates with their Bias, and MSE for θ = 0.5, α1 = 2, α2 = 1.5,
β1 = 1.5, β2 = 1 across different sample sizes.

ML Bayesian
n Estimation Bias MSE Estimation Bias MSE

50

θ̂ = 0.487 -0.013 0.0032 θ̂ = 0.4876 -0.0124 0.0051
α̂1 = 2.015 0.015 0.0814 α̂1 = 2.0312 0.0312 0.0047
α̂2 = 1.523 0.023 0.0662 α̂2 = 1.4784 0.0216 0.0027
β̂1 = 1.478 0.022 0.0491 β̂1 = 1.5215 0.0215 0.0029
β̂2 = 1.012 0.012 0.0196 β̂2 = 0.9828 0.0172 0.0018

100

θ̂ = 0.492 -0.008 0.0023 θ̂ = 0.4971 -0.0029 0.0029
α̂1 = 1.996 0.004 0.0451 α̂1 = 2.0145 0.0145 0.0019
α̂2 = 1.508 0.008 0.0376 α̂2 = 1.4938 0.0062 0.0012
β̂1 = 1.491 0.009 0.0328 β̂1 = 1.5110 0.0110 0.0015
β̂2 = 1.006 0.006 0.0102 β̂2 = 0.9921 0.0079 0.0009

150

θ̂ = 0.497 -0.003 0.0014 θ̂ = 0.5008 0.0008 0.0021
α̂1 = 2.008 0.008 0.0291 α̂1 = 2.0063 0.0063 0.0011
α̂2 = 1.502 0.002 0.0213 α̂2 = 1.4982 0.0018 0.0007
β̂1 = 1.496 0.004 0.0198 β̂1 = 1.5071 0.0071 0.0009
β̂2 = 1.004 0.004 0.0074 β̂2 = 0.9983 0.0017 0.0005

200

θ̂ = 0.499 -0.001 0.0011 θ̂ = 0.5012 0.0012 0.0017
α̂1 = 2.004 0.004 0.0179 α̂1 = 2.0027 0.0027 0.0008
α̂2 = 1.502 0.002 0.0147 α̂2 = 1.4993 0.0007 0.0004
β̂1 = 1.498 0.002 0.0126 β̂1 = 1.5045 0.0045 0.0006
β̂2 = 1.001 0.001 0.0046 β̂2 = 0.9992 0.0008 0.0003
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Table 4. ML and Bayesian estimates with their Bias, and MSE for θ = 0.9, α1 = 4, α2 = 3,
β1 = 3, β2 = 2 across different sample sizes.

ML Bayesian
n Estimation Bias MSE Estimation Bias MSE

50

θ̂ = 0.925 0.025 0.0181 θ̂ = 0.918 0.018 0.0199
α̂1 = 4.012 0.012 0.0036 α̂1 = 4.036 0.036 0.0041
α̂2 = 3.018 0.018 0.0049 α̂2 = 3.041 0.041 0.0053
β̂1 = 2.979 -0.021 0.1440 β̂1 = 2.961 -0.039 0.1504
β̂2 = 1.983 -0.017 0.1012 β̂2 = 2.008 0.008 0.0965

100

θ̂ = 0.914 0.014 0.0103 θ̂ = 0.911 0.011 0.0114
α̂1 = 4.008 0.008 0.0017 α̂1 = 4.021 0.021 0.0022
α̂2 = 3.012 0.012 0.0025 α̂2 = 3.026 0.026 0.0030
β̂1 = 2.990 -0.010 0.0692 β̂1 = 2.972 -0.028 0.0721
β̂2 = 1.991 -0.009 0.0548 β̂2 = 2.004 0.004 0.0523

150

θ̂ = 0.907 0.007 0.0056 θ̂ = 0.906 0.006 0.0059
α̂1 = 4.004 0.004 0.0010 α̂1 = 4.011 0.011 0.0015
α̂2 = 3.006 0.006 0.0014 α̂2 = 3.014 0.014 0.0018
β̂1 = 2.994 -0.006 0.0411 β̂1 = 2.986 -0.014 0.0430
β̂2 = 1.995 -0.005 0.0322 β̂2 = 2.001 0.001 0.0315

200

θ̂ = 0.903 0.003 0.0031 θ̂ = 0.902 0.002 0.0034
α̂1 = 4.002 0.002 0.0007 α̂1 = 4.007 0.007 0.0010
α̂2 = 3.003 0.003 0.0009 α̂2 = 3.008 0.008 0.0011
β̂1 = 2.996 -0.004 0.0265 β̂1 = 2.991 -0.009 0.0272
β̂2 = 1.997 -0.003 0.0210 β̂2 = 2.000 0.000 0.0201

Performance metrics, including Bias and mean squared error (MSE), were calculated to evaluate
the accuracy and efficiency of the estimators. The results indicate that both estimation methods
perform well, with the accuracy of the parameter estimates improving as the sample size increases,
thus enhancing their precision and reliability.

In the simulation study, the parameter of the FGM copula, denoted by θ, was assigned the
values 0.4, -0.4, 0.5, and 0.9. The simulation was conducted for varying sample sizes, specifically
n = 50, 100, 150, and 200. For each scenario, the simulation was replicated 1,000 times using a Monte
Carlo approach. The resulting estimates, along with their associated Bias and MSE, are presented in
Tables 1–4. From the results provided in these tables, the following conclusions can be drawn:

• The simulation results demonstrate that both the MLs and Bayesian estimates of the unknown
parameters perform robustly across various scenarios. In particular, the estimates are
characterized by relatively low levels of Bias and MSE, which indicates that the ML and
Bayesian methods provide accurate and consistent parameter estimations. This performance
improves further as the sample size increases, with Bias and MSE decreasing significantly,
demonstrating the efficiency of the estimators. These results confirm that the proposed
estimation approach is reliable and robust, especially in the context of the bivariate model based
on the FGM copula and quadratic exponential marginals.
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• The simulation results further demonstrate that as the sample size increases, the estimated values
of the model parameters converge toward their true (nominal) values. This behavior highlights
the consistency of the estimation methods, where estimators become more accurate as the
sample size grows. The observed reduction in both Bias and MSE across simulations with larger
sample sizes provides strong empirical support for this convergence. These findings align with
the theoretical expectation that, under regularity conditions, MLs are asymptotically unbiased
and efficient. Consequently, the results validate the effectiveness of the proposed estimation
procedures in real-world applications.

The following algorithm outlines the procedure for computing the ML estimates of the parameters
of the FGM-QEXD model, including initialization, likelihood specification, optimization, and post-
processing steps.

Algorithm 1 ML estimation for FGM-QEXD parameters (α1, β1, α2, β2, θ)
Input: Data {(xi, yi)}ni=1
Output: ML estimations Θ̂ = (α̂1, β̂1, α̂2, β̂2, θ̂), SEs, Bias, MSE
Initialization:

(1) Fit univariate QEXD margins separately on {xi} and {yi} to obtain (α(0)
1 , β

(0)
1 ), (α(0)

2 , β
(0)
2 ).

(2) Compute empirical Kendall?s τ̂K from {(xi, yi)}. Set the initial value of θ as

θ(0) =


−1, if 9

2 τ̂K < −1,

9
2 τ̂K , if − 1 ≤ 9

2 τ̂K ≤ 1,

1, if 9
2 τ̂K > 1.

Likelihood: ℓ(Θ) =
∑n

i=1 log fX,Y(xi, yi | Θ).
Optimization:

(1) Use L-BFGS-B with bounds (αℓ, βℓ > 0; θ ∈ (−1, 1)).
(2) Provide analytic score from Sec. 5.1.
(3) Convergence: stop if relative change in ℓ and Θ < 10−8 or ∥∇ℓ∥ < 10−6.

Post-processing:

(1) Real data application: Compute observed Fisher information IO(Θ̂) = −∂2ℓ(Θ)/∂Θ∂Θ⊤|Θ=Θ̂;
report the function of interest.

(2) Simulation study: Repeat the procedure R times (e.g. R = 1000). For each parameter ϕ with true
value ϕ0:

Bias(ϕ) =
1
R

R∑
r=1

(ϕ̂(r) − ϕ0), MSE(ϕ) =
1
R

R∑
r=1

(ϕ̂(r) − ϕ0)2.
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Algorithm 2 Bayesian estimation via Metropolis-within-Gibbs for FGM-QEXD
Input: Data {(xi, yi)}ni=1; hyperparameters for Gamma priors.
Output: Posterior draws {Θ(t)} and summaries (Bias, MSE)
Prior:

αℓ ∼ Gamma(aαℓ, bαℓ),
βℓ ∼ Gamma(aβℓ, bβℓ),
θ ∼ Uniform(−1, 1).

Initialization:

(1) Use ML estimates Θ̂ or marginal-based initials for (α1, β1, α2, β2).
(2) For θ, compute empirical Kendall?s τ̂K and set

θ(0) =


−1, if 9

2 τ̂K < −1,

9
2 τ̂K , if − 1 ≤ 9

2 τ̂K ≤ 1,

1, if 9
2 τ̂K > 1.

(3) Transform to unconstrained scale: α̃ℓ = logαℓ, β̃ℓ = log βℓ, θ̃ = tanh−1(θ(0)).

MCMC: For t = 1, . . . ,T :

(1) For each αℓ, βℓ: propose on log-scale log ϕ∗ ∼ N(log ϕ(t−1), s2
ϕ), accept with probability

min{1, π(Θ∗|D)/π(Θ(t−1)|D)}.
(2) For θ: propose θ̃∗ ∼ N(θ̃(t−1), s2

θ), set θ∗ = tanh(θ̃∗), accept with same rule.

Post-processing:

(1) Real data application: Discard the first B iterations (burn-in, e.g. B = 2000). Retain T −B draws.
For each parameter ϕ, compute posterior function of interest.

(2) Simulation study: For each replication r = 1, . . . ,R, take posterior means Θ̃(r) as point estimates.
For each parameter ϕ with true value ϕ0:

Bias(ϕ) =
1
R

R∑
r=1

(ϕ̃(r) − ϕ0), MSE(ϕ) =
1
R

R∑
r=1

(ϕ̃(r) − ϕ0)2.

7. Real data application

Here, the suggested bivariate FGM-QEXD distribution is applied to two real-world datasets from
distinct scientific fields, computer science and iron materials, to demonstrate its practical utility and
versatility. The purpose of this evaluation is to see how accurately the FGM-QEXD model represents
the marginal behaviors and underlying dependence structure in real-world data. The model selection
criteria, which include the Akaike Information Criterion (AIC), Bayesian information criterion (BIC),
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Corrected Akaike information criterion (AICc), Hannan-Quinn information criterion (HQIC), and
consistent Akaike information Criterion (CAIC), are calculated using ML to fit the distribution and
evaluate the model’s performance. To visually confirm the appropriateness of the fit, graphical
diagnostics are also created, including contour plots, scatter plots, joint density surfaces, and marginal
density overlays.

7.1. Computer science data

This subsection includes analyses of a real-world data set. The data set relates to n = 50 simulated
simple computer series systems consisting of a processor and a memory. The data was gathered and
analyzed based on Oliveira et al. [36]. The data set contains n = 50 simulated rudimentary computer
systems with processors and memory. An operating computer will be able to operate when both parts
are working properly (the processors and memory). Assume the system is nearing the end of its
lifecycle. The degeneration advances rapidly in a short period of time Ahmad et al. [37]. In a short
time (in hours), the degeneration advances rapidly. In the case of the first component, a deadly shock
can destroy either it or the second component at random, due to the system’s greater vulnerability to
shocks. The FGM-QEXD is fit to the processor lifetime and memory lifetime separately. As an
illustration of the data, A basic statistical analysis (joint scatter plot, JPDF contour, JPDF surcace,
empirical copula, and fitting marginal of x and Y) is shown in Figure 9. The ML estimates of the
FGM-QEXD parameters as α̂1 = 1.353, β̂1 = 1.186, α̂2 = 2.825, β̂2 = 1.097, and θ̂ = 0.376,
respectively. Table 5 clearly shows that, in terms of data fit, the FGM-QEXD model performs better
than the bivariate FGM-Lomax distribution (FGM-LD), the bivariate FGM-Inverse Lomax
distribution (FGM-ILD), the bivariate FGM-Weibull distribution (FGM-WD), the bivariate
FGM-Inverse Weibull distribution (FGM-IWD), the bivariate FGM-Burr XII distribution
(FGM-BXD), and the bivariate FGM-Rayleigh distribution (FGM-RD).

Table 5. Goodness of fit for computer datasets.

− ln L AIC AICc BIC HQIC CAIC
FGM-QEXD 149.571 309.142 310.506 318.702 312.783 323.702
FGM-LD 151.412 312.823 314.187 322.383 316.464 327.383
FGM-ILD 165.826 341.653 343.016 351.213 345.293 356.213
FGM-WD 149.915 309.829 311.193 319.389 313.47 324.389
FGM-IWD 188.443 386.886 388.249 396.446 390.526 401.446
FGM-BXD 160.873 331.74 333.109 341.305 335.386 346.305
FGM-RD 194.211 394.423 394.945 400.159 396.607 403.159
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Figure 9. Statistical representation of computer science data.

7.2. Iron material jobs data

Dasgupta [38] was the source of the data. A perforation procedure is used for activities involving
iron sheets. In particular, an L-shaped rectangular sheet measuring 100 mm by 150 mm is used, with
four holes drilled into it, two on each arm. This is done quickly via piercing, which involves employing
a 100-ton press that operates at 250 strokes per hour. Two holes are punched at the same time during
every operation. Miniature or light-duty truck chassis cannot be completed without these punctured
L-shaped iron sheets. After the metal sheet is pierced, a ridge, or burr, is formed around each hole.
The metal granules that make up the burr are unevenly raised around the rim of the hole as a result of
the high pressure employed in piercing distorting the contact surface. The applied piercing load and
the properties of the metal grain determine the burr size. Skrotzki et al. [39] found that composition,
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melting point, cooling rate, thermal and constitutional undercooling, and convection all affect the grain
structure and texture of metal. Finally, the burr is eliminated by chamfering with a drill. The burr
measurements for the datasets were obtained using a dial gauge with a minimum resolution of 20
microns (µm), equivalent to 0.02 millimeters. The initial dataset consists of 50 observations of burr
measurements, measured in millimeters. The hole diameter is recorded as 12 mm, while the sheet
thickness is measured at 3.15 mm. The second set of data similarly includes 50 observations, but
this time the sheet thickness is 2 mm and the hole width is 9 mm. For every set, one hole is chosen,
turned to face a certain direction, and its diameter is measured from there. Two separate computers
are linked to these two databases. For more details on the iron material jobs data, see [7]. X: 0.04,
0.02, 0.06, 0.12, 0.14, 0.08, 0.22, 0.12, 0.08, 0.26, 0.24, 0.04, 0.14, 0.16, 0.08, 0.26, 0.32, 0.28,
0.14, 0.16, 0.24, 0.22, 0.12, 0.18, 0.24, 0.32, 0.16, 0.14, 0.08, 0.16, 0.24, 0.16, 0.32, 0.18, 0.24,
0.22, 0.16, 0.12, 0.24, 0.06, 0.02, 0.18, 0.22, 0.14, 0.06, 0.04, 0.14, 0.26, 0.18, 0.16. Y: 0.06, 0.12,
0.14, 0.04, 0.14, 0.16, 0.08, 0.26, 0.32, 0.22, 0.16, 0.12, 0.24, 0.06, 0.02, 0.18, 0.22, 0.14, 0.22, 0.16,
0.12, 0.24, 0.06, 0.02, 0.18, 0.22, 0.14, 0.02, 0.18, 0.22, 0.14, 0.06, 0.04, 0.14, 0.22, 0.14, 0.06, 0.04,
0.16, 0.24, 0.16, 0.32, 0.18, 0.24, 0.22, 0.04, 0.14, 0.26, 0.18, 0.16. As an illustration of the data, A
basic statistical analysis (joint scatter plot, JPDF contour, JPDF surcace, empirical copula, and fitting
marginal of x and Y) is shown in Figure 10. The ML estimates of the FGM-QEXD parameters as
α̂1 = 0, β̂1 = 12.217, α̂2 = 6.4×10−8, β̂2 = 11.341, and θ̂ = 0.753, respectively. Table 6 clearly shows
that, in terms of data fit, the FGM-QEXD model performs better than the bivariate FGM-LD, bivariate
FGM-IWD, bivariate FGM-BXD, bivariate FGM-RD, bivariate FGM-Chen distribution (FGM-CD).

Table 6. Goodness of fit for iron material datasets.

− ln L AIC AICc BIC HQIC CAIC
FGM-QEXD -91.362 -172.72 -171.36 -163.164 -169.084 -158.164
FGM-LD -77.994 -145.987 -144.624 -136.427 -142.347 -131.427
FGM-IWD -71.9757 -133.951 -132.588 -124.391 -130.311 -119.391
FGM-RD -68.8497 -131.699 -131.178 -125.963 -129.515 -122.963
FGM-CD -78.7199 -147.44 -146.076 -137.88 -143.799 -132.88
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Figure 10. Statistical representation of iron material data.

Remark

The proposed FGM-QEXD copula model was applied to two real data sets and compared its
performance with that of several alternative copula models, including Frank, Gumbel, and Clayton
copulas (see [7]), as well as the FGM copula combined with a different marginal
distribution (see [37]). The comparison was conducted using ML values and the AIC. Across both
datasets, the proposed model consistently achieved higher log-likelihood values and notably smaller
AIC scores, confirming its superior goodness of fit. The reduction in AIC indicates that the FGM
copula with QED marginals provides a more efficient balance between model complexity and
explanatory power than the competing models. These results demonstrate that the proposed
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construction offers a more accurate and parsimonious representation of the joint behavior of the
observed data.

8. Conclusions

• By merging the FGM copula with the quadratic exponential marginal distributions, a new bivariate
distribution (FGM-QEXD) has been suggested. This model captures modest interdependence
between variables and provides an analytically tractable form.
• Product moments, MGF, HR, conditional distributions, expectancies, vital reliability

tools (MRL, vitality function, etc.), and internal correlation coefficient structure are all derived
from comprehensive statistical features of the FGM-QEXD model.
• This approach is ideal for reliability studies of systems and lifetime analyses since the

dependability and reliability functions are both practical and interpretable.
• The FGM-QEXD model outperformed both conventional and modern FGM-based bivariate

models in terms of fitting performance when applied to two real datasets, one pertaining to
computer science and the other to the strength of iron materials.
• The suggested FGM-QEXD bivariate family possesses numerous practical applications beyond its

theoretical attributes. The model effectively incorporates both positive and negative dependence
via the parameter θ, making it ideal for the analysis of reliability data where system components
may fail in a coupled or compensating fashion. In materials research, such as the examined iron-
material dataset, the model can characterize the combined behavior of mechanical characteristics
under stress or deterioration. In engineering systems, it can evaluate the reliability of components
functioning under common environmental circumstances. In survival and biological research, the
model serves as a versatile instrument for concurrently simulating interrelated lifetimes, such as
paired organ failure durations or therapy results. The practical capabilities indicate that the FGM-
QEXD family is both mathematically manageable and widely applicable to real-world issues
concerning dependent lifespan data.
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