Research article

Embankment surfaces with the Darboux frame in Euclidean 3-space

  • Published: 12 September 2025
  • MSC : 53A05, 53A17, 53A55

  • This article was dedicated to the study of embankment, embankment-like, and tubembankment-like surfaces generated by a regular space curve according to the Darboux frame in Euclidean $ 3 $-space. Initially, we presented the parametric equations defining these surfaces. Subsequently, their quaternionic and matrix representations were derived to provide alternative and efficient formulations. In addition, the geometric properties of tubembankment-like surfaces were thoroughly examined, leading to several significant theorems and corollaries. To demonstrate the applicability and validity of the theoretical results, illustrative examples were generated by using the Mathematica program.

    Citation: Erdem Kocakuşaklı. Embankment surfaces with the Darboux frame in Euclidean 3-space[J]. AIMS Mathematics, 2025, 10(9): 20979-21003. doi: 10.3934/math.2025937

    Related Papers:

  • This article was dedicated to the study of embankment, embankment-like, and tubembankment-like surfaces generated by a regular space curve according to the Darboux frame in Euclidean $ 3 $-space. Initially, we presented the parametric equations defining these surfaces. Subsequently, their quaternionic and matrix representations were derived to provide alternative and efficient formulations. In addition, the geometric properties of tubembankment-like surfaces were thoroughly examined, leading to several significant theorems and corollaries. To demonstrate the applicability and validity of the theoretical results, illustrative examples were generated by using the Mathematica program.



    加载中


    [1] G. Monge, Géométrie descriptive, 1 Eds., Paris: Gauthier-Villars Collection, 1795.
    [2] E. Catalan, Sur les surface réglées dont l'aire est un minimum, J. Math. Pure. Appl., 7 (1842), 203–211.
    [3] E. Study, Geometrie der dynamen, Leibzig: Teubner, 1903.
    [4] S. Izumiya, N. Takeuchi, New special curves and developable surfaces, Turk. J. Math., 28 (2004), 6.
    [5] D. W. Yoon, On the second Gaussian curvature of ruled surfaces in Euclidean 3-space, Tamkang J. Math., 37 (2006), 221–226. https://doi.org/10.5556/j.tkjm.37.2006.167 doi: 10.5556/j.tkjm.37.2006.167
    [6] G. Monge, Application de l'analyse a la geometrie, Paris: Bachelier, 1807.
    [7] A. Gray, Modern differential geometry of curves and surfaces with mathematica, 2 Eds., Boca Raton: CRC Press, 1998.
    [8] A. Gross, Analyzing generalized tubes, Proceedings of SPIE, 2354 (1994), 422–433. https://doi.org/10.1117/12.189111
    [9] A. Uçum, K. İlarslan, New types of canal surfaces in Minkowski 3-space, Adv. Appl. Clifford Algebras, 26 (2016), 449–468. http://doi.org/10.1007/s00006-015-0556-7 doi: 10.1007/s00006-015-0556-7
    [10] Z. Q. Xu, R. Z. Feng, J.-G. Sun, Analytic and algebraic properties of canal surfaces, Appl. Math. Comput., 195 (2006), 220–228. https://doi.org/10.1016/j.cam.2005.08.002 doi: 10.1016/j.cam.2005.08.002
    [11] M. K. Karacan, Y. Yaylı, On the geodesics of tubular surfaces in Minkowski $3$-space, Bull. Malays. Math. Sci. Soc., 31 (2008), 1–10.
    [12] M. K. Karacan, Y. Tunçer, Tubular surfaces of Weingarten types in Galilean and pseudo-Galilean, Bull. Math. Anal. Appl., 5 (2013), 87–100.
    [13] T. Maekawa, M. N. Patrikalakis, T. Sakkalis, G. X. Yu, Analysis and applications of pipe surfaces, Comput. Aided Geom. D., 15 (1998), 437–458. https://doi.org/10.1016/S0167-8396(97)00042-3 doi: 10.1016/S0167-8396(97)00042-3
    [14] P. A. Blaga, On tubular surfaces in computer graphics, Studia Universitatis Babeș-Bolyai Informatica, 50 (2005), 81–90.
    [15] F. Doğan, Y. Yaylı, Tubes with Darboux frame, Int. J. Contemp. Math. Sciences, 7 (2012), 751–758.
    [16] M. Kazaz, H. H. Uğurlu, M. Önder, S. Oral, Bertrand partner D-curves inthe Euclidean 3-space $E^{3}$, AKU J. Sci. Eng., 16 (2016), 76–83. https://doi.org/10.5578/fmbd.25270 doi: 10.5578/fmbd.25270
    [17] A. Yavuz, F. Ateş, Y. Yaylı, Ruled surfaces with constant slope ruling according to Darboux frame, Mathematical Sciences and Applications E-Notes, 8 (2020), 135–144. https://doi.org/10.36753/mathenot.640345 doi: 10.36753/mathenot.640345
    [18] A. Yildirim, F. Kaya, Mannheim partner curves according to Darboux frame in the Euclidean 3-space $\mathbb{E}^{3}$, Mathematical Sciences and Applications E-Notes, 8 (2020), 54–59. https://doi.org/10.36753/mathenot.599866 doi: 10.36753/mathenot.599866
    [19] W. R. Hamilton, On quaternions; or on a new system of imagniaries in algebra, Philos. Mag., 25 (1844), 10–13. https://doi.org/10.1080/14786444408644923 doi: 10.1080/14786444408644923
    [20] H. H. Hacısalihoğlu, Hareket geometrisi ve kuaterniyonlar teorisi, Gazi: Gazi Univ. Press, 1983.
    [21] M. Özdemir, Kuaterniyonlar ve geometri, İzmir: Altın Nokta Yayınevi, 2020.
    [22] M. Babaarslan, Y. Yaylı, A new approach to constant slope surfaces with quaternion, International Scholarly Research Notices, 2012 (2012), 126358. https://doi.org/10.5402/2012/126358 doi: 10.5402/2012/126358
    [23] S. Aslan, Y. Yaylı, Canal surfaces with quaternions, Adv. Appl. Clifford Algebras, 26 (2016), 31–38. http://doi.org/10.1007/s00006-015-0602-5 doi: 10.1007/s00006-015-0602-5
    [24] İ. Gök, Quaternionic approach of canal surfaces constructed by some new ideas, Adv. Appl. Clifford Algebras, 27 (2017), 1175–1190. http://doi.org/10.1007/s00006-016-0703-9 doi: 10.1007/s00006-016-0703-9
    [25] F. Doğan, Generalized canal surfaces, PhD Thesis, Ankara University, 2012.
    [26] F. Ateş, E. Kocakuşaklı, İ. Gök, Y. Yaylı, A study of the tubular surfaces constructed by the spherical indicatrices in Euclidean 3-space, Turk. J. Math., 42 (2018), 1711–1725. http://doi.org/10.3906/mat-1610-101 doi: 10.3906/mat-1610-101
    [27] E. Hartman, Geometry and algorithms for computer aided design, Darmstadt University of Technology, 2003.
    [28] Geotechnical engineering manual: guidelines for embankment construction, Department of Transportation Geotechnical Engineering Bureau, State of New York, 2015.
    [29] A. Kazan, H. B. Karadağ, Embankment surfaces in Euclidean 3-space and their visualizations, Commun. Math. Appl., 10 (2019), 617–636. https://doi.org/10.26713/cma.v10i3.916 doi: 10.26713/cma.v10i3.916
    [30] W. M. Mahmoud, S. M. Abd ElHafez, Weingarten isotropic embankment surfaces according to adapted frame, Information Sciences Letters, 11 (2022), 61–68. https://doi.org/10.18576/isl/110108 doi: 10.18576/isl/110108
    [31] M. P. do Carmo, Differential geometry of curves and surfaces, New York: Prentice Hall, 1976.
    [32] J. S. Ro, D. W. Yoon, Tubes of Weingarten types in a Euclidean 3-space, Journal of the Chungcheong Mathematical Society, 22 (2009), 360–366. https://doi.org/10.14403/jcms.2014.27.3.403 doi: 10.14403/jcms.2014.27.3.403
    [33] B. O'Neill, Elemantery differential geometry, New York: Academic Press, 1966.
    [34] D. J. Struik, Lectures on classical differential geometry, 2 Eds., New York: Dover Publications, 1988.
    [35] F. Şemin, Differential geometry I, İstanbul: İstanbul University Press, 1983.
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(394) PDF downloads(25) Cited by(0)

Article outline

Figures and Tables

Figures(5)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog