Research article

Frequently hypercyclic and Devaney chaotic $ C_{0} $-semigroups indexed by complex sectors

  • Published: 05 September 2025
  • MSC : 37B05, 37B20, 47A16, 47D03

  • In this paper, the definitions of frequent hypercyclicity and Devaney chaos for a $ C_0 $-semigroup $\left\{T_{t}\right\}_{t\in\Delta}$ indexed by a complex sector $ \Delta $ are revisited. A general sufficient criterion and necessary conditions for a $ C_0 $-semigroup $\left\{T_{t}\right\}_{t\in\Delta}$ to be frequently hypercyclic are established. By adapting the concept of periodic point with a syndetic set of periods, we present clean and effective characterizations of the Devaney chaotic translation semigroup $\left\{T_{t}\right\}_{t\in\Delta}$ on $ L^{p}_{\rho}(\Delta, \mathbb{K}), 1\leq p < \infty $, which generalize those of the classical translation semigroup $\left\{T_{t}\right\}_{t \geq 0}$. Moreover, it is shown that Devaney chaos implies frequent hypercyclicity, topological mixing, and distributional chaos for the translation semigroups $\left\{T_{t}\right\}_{t\in\Delta}$ under our revised definitions, and that topological mixing or distributional chaos does not imply Devaney chaos.

    Citation: Shengnan He, Zongbin Yin. Frequently hypercyclic and Devaney chaotic $ C_{0} $-semigroups indexed by complex sectors[J]. AIMS Mathematics, 2025, 10(9): 20505-20530. doi: 10.3934/math.2025915

    Related Papers:

  • In this paper, the definitions of frequent hypercyclicity and Devaney chaos for a $ C_0 $-semigroup $\left\{T_{t}\right\}_{t\in\Delta}$ indexed by a complex sector $ \Delta $ are revisited. A general sufficient criterion and necessary conditions for a $ C_0 $-semigroup $\left\{T_{t}\right\}_{t\in\Delta}$ to be frequently hypercyclic are established. By adapting the concept of periodic point with a syndetic set of periods, we present clean and effective characterizations of the Devaney chaotic translation semigroup $\left\{T_{t}\right\}_{t\in\Delta}$ on $ L^{p}_{\rho}(\Delta, \mathbb{K}), 1\leq p < \infty $, which generalize those of the classical translation semigroup $\left\{T_{t}\right\}_{t \geq 0}$. Moreover, it is shown that Devaney chaos implies frequent hypercyclicity, topological mixing, and distributional chaos for the translation semigroups $\left\{T_{t}\right\}_{t\in\Delta}$ under our revised definitions, and that topological mixing or distributional chaos does not imply Devaney chaos.



    加载中


    [1] W. Desch, W. Schappacher, G. F. Webb, Hypercyclic and chaotic semigroups of linear operators, Ergod. Theor. Dyn. Syst., 17 (1997), 793–819. https://doi.org/10.1017/S0143385797084976 doi: 10.1017/S0143385797084976
    [2] J. Bès, A. Peris, Hereditarily hypercyclic operators, J. Funct. Anal., 167 (1999), 94–112. https://doi.org/10.1006/jfan.1999.3437 doi: 10.1006/jfan.1999.3437
    [3] F. Bayart, É. Matheron, Hypercyclic operators failing the hypercyclicity criterion on classical Banach spaces, J. Funct. Anal., 250 (2007), 426–441. https://doi.org/10.1016/j.jfa.2007.05.001 doi: 10.1016/j.jfa.2007.05.001
    [4] T. Bermúdez, A. Bonilla, J. A. Conejero, A. Peris, Hypercyclic, topologically mixing and chaotic semigroups on Banach spaces, Studia Math., 170 (2005), 57–75. https://doi.org/10.4064/sm170-1-3 doi: 10.4064/sm170-1-3
    [5] S. Grivaux, Hypercyclic operators, mixing operators, and the bounded steps problem, J. Operator Theory, 54 (2005), 147–168.
    [6] J. Bès, Q. Menet, A. Peris, Y. Puig, Strong transitivity properties for operators, J. Differ. Equ., 266 (2019), 1313–1337. https://doi.org/10.1016/j.jde.2018.07.076 doi: 10.1016/j.jde.2018.07.076
    [7] D. A. Herrero, Hypercyclic operators and chaos, J. Operator Theory, 28 (1992), 93–103.
    [8] J. Bonet, F. Martínez-Giménez, A. Peris, Linear chaos on Fréchet spaces, Int. J. Bifurcat. Chaos, 13 (2003), 1649–1655. https://doi.org/10.1142/S0218127403007497 doi: 10.1142/S0218127403007497
    [9] J. A. Conejero, C. Lizama, M. Murillo-Arcila, Chaotic semigroups from second order partial differential equations, J. Math. Anal. Appl., 456 (2017), 402–411. https://doi.org/10.1016/j.jmaa.2017.07.013 doi: 10.1016/j.jmaa.2017.07.013
    [10] K. G. Grosse-Erdmann, A. Peris, Frequently dense orbits, C. R. Acad. Sci. Paris, Ser. I, 341 (2005), 123–128. https://doi.org/10.1016/j.crma.2005.05.025 doi: 10.1016/j.crma.2005.05.025
    [11] E. Mangino, A. Peris, Frequently hypercyclic semigroups, Studia Math., 202 (2011), 227–242. https://doi.org/10.4064/sm202-3-2 doi: 10.4064/sm202-3-2
    [12] F. Bayart, I. Ruzsa, Difference sets and frequently hypercyclic weighted shifts, Ergod. Theor. Dyn. Syst., 35 (2015), 691–709. https://doi.org/10.1017/etds.2013.77 doi: 10.1017/etds.2013.77
    [13] A. A. Albanese, X. Barrachina, E. M. Mangino, A. Peris, Distributional chaos for strongly continuous semigroups of operators, Commun. Pure Appl. Anal., 12 (2013), 2069–2082. https://doi.org/10.3934/cpaa.2013.12.2069 doi: 10.3934/cpaa.2013.12.2069
    [14] N. C. Bernardes Jr., A. Bonilla, V. Müller, A. Peris, Distributional chaos for linear operators, J. Funct. Anal., 265 (2013), 2143–2163. https://doi.org/10.1016/j.jfa.2013.06.019 doi: 10.1016/j.jfa.2013.06.019
    [15] N. C. Bernardes Jr., A. Bonilla, A. Peris, X. Wu, Distributional chaos for operators on Banach spaces, J. Math. Anal. Appl., 459 (2018), 797–821. https://doi.org/10.1016/j.jmaa.2017.11.005 doi: 10.1016/j.jmaa.2017.11.005
    [16] F. Bayart, É. Matheron, Dynamics of linear operators, Cambridge: Cambridge University Press, 2009. https://doi.org/10.1017/CBO9780511581113
    [17] K. G. Grosse-Erdmann, A. P. Manguillot, Linear chaos, London: Springer, 2011. https://doi.org/10.1007/978-1-4471-2170-1
    [18] J. A. Conejero, A. Peris, Hypercyclic translation $C_{0}$-semigroups on complex sectors, Discrete Contin. Dyn. Syst., 25 (2009), 1195–1208. https://doi.org/10.3934/dcds.2009.25.1195 doi: 10.3934/dcds.2009.25.1195
    [19] S. He, X. Sun, M. Xiao, On transitive and chaotic dynamics of linear semiflows, Topol. Appl., 286 (2020), 107417. https://doi.org/10.1016/j.topol.2020.107417 doi: 10.1016/j.topol.2020.107417
    [20] S. He, X. Sun, M. Xiao, The $\mathcal{F}$-transitivity and recurrence of translation semigroups on complex sectors, Semigroup Forum, 101 (2020), 680–689. https://doi.org/10.1007/s00233-020-10129-y doi: 10.1007/s00233-020-10129-y
    [21] S. He, X. Sun, M. Xiao, Characterizations of the d$\mathcal{F}$-transitive and $\mathcal{F}$-transitive families of composition operators on $L^{p}$-spaces, J. Math. Anal. Appl., 499 (2021), 125069. https://doi.org/10.1016/j.jmaa.2021.125069 doi: 10.1016/j.jmaa.2021.125069
    [22] J. A. Conejero, C. Lizama, F. Rodenas, Dynamics of the solutions of the water hammer equations, Topol. Appl., 203 (2016), 67–83. https://doi.org/10.1016/j.topol.2015.12.076 doi: 10.1016/j.topol.2015.12.076
    [23] J. A. Conejero, C. Lizama, M. Murillo-Arcila, A. Peris, Linear dynamics of semigroups generated by differential operators, Open Math., 15 (2017), 745–767. https://doi.org/10.1515/math-2017-0065 doi: 10.1515/math-2017-0065
    [24] A. Taqbibt, M. Chaib, M. Elomari, S. Melliani, Chaotic semigroups for a higher order partial differential equation in Herzog-type space of analytic functions, Chaos Soliton Fract., 189 (2024), 115657. https://doi.org/10.1016/j.chaos.2024.115657 doi: 10.1016/j.chaos.2024.115657
    [25] T. Kalmes, Hypercyclic, mixing, and chaotic $C_{0}$-semigroups induced by semiflows, Ergod. Theor. Dyn. Syst., 27 (2007), 1599–1631. https://doi.org/10.1017/S0143385707000144 doi: 10.1017/S0143385707000144
    [26] J. A. Conejero, A. Peris, Chaotic translation semigroups, Discrete Contin. Dyn. Syst. Suppl., 2007 (2007), 269–276. https://doi.org/10.3934/proc.2007.2007.269 doi: 10.3934/proc.2007.2007.269
    [27] Y. Liang, Z. Zhou, Supercyclic translation $C_0$-semigroup on complex sectors, Discrete Contin. Dyn. Syst., 36 (2016), 361–370. https://doi.org/10.3934/dcds.2016.36.361 doi: 10.3934/dcds.2016.36.361
    [28] B. Chaouchi, M. Kostić, S. Pilipović, D. Velinov, $\mathcal{F}$-Frequently hypercyclic $C_{0}$-semigroups on complex sectors, Banach J. Math. Anal., 14 (2020), 1080–1110. https://doi.org/10.1007/s43037-020-00053-2 doi: 10.1007/s43037-020-00053-2
    [29] Y. Liang, Z. Xu, Z. Zhou, The recurrent hypercyclicity criterion for translation $C_{0}$-semigroups on complex sectors, Bull. Korean Math. Soc., 60 (2023), 293–305. https://doi.org/10.4134/BKMS.b210802 doi: 10.4134/BKMS.b210802
    [30] Z. Jiang, J. Li, Y. Yang, Distributionally chaotic $C_0$-semigroups on complex sectors, 2025, arXiv: 2503.00891. https://doi.org/10.48550/arXiv.2503.00891
    [31] M. Kostić, Chaos for linear operators and abstract differential operators, New York: Nova Science Publishers, 2020. https://doi.org/10.52305/IDIC2486
    [32] S. He, X. Liu, Z. Yin, X. Sun, Relationships among various chaos for linear semiflows indexed with complex sectors, Mathematics, 12 (2024), 3167. https://doi.org/10.3390/math12203167 doi: 10.3390/math12203167
    [33] R. DeLaubenfels, H. Emamirad, Chaos for functions of discrete and continuous weighted shift operators, Ergod. Theor. Dyn. Syst., 21 (2001), 1411–1427. https://doi.org/10.1017/S0143385701001675 doi: 10.1017/S0143385701001675
    [34] E. M. Mangino, M. Murillo-Arcila, Frequently hypercyclic translation semigroups, Studia Math., 227 (2015), 219–238. https://doi.org/10.4064/sm227-3-2 doi: 10.4064/sm227-3-2
    [35] X. Barrachina, A. Peris, Distributionally chaotic translation semigroups, J. Difference Equ. Appl., 18 (2012), 751–761. https://doi.org/10.1080/10236198.2011.625945 doi: 10.1080/10236198.2011.625945
    [36] F. M. Schneider, S. Kerkhoff, M. Behrisch, S. Siegmund, Chaotic actions of topological semigroups, Semigroup Forum, 87 (2013), 590–598. https://doi.org/10.1007/s00233-013-9517-4 doi: 10.1007/s00233-013-9517-4
    [37] F. Bayart, S. Grivaux, Frequently hypercyclic operators, Trans. Amer. Math. Soc., 358 (2006), 5083–5117. https://doi.org/10.1090/s0002-9947-06-04019-0 doi: 10.1090/s0002-9947-06-04019-0
    [38] A. Bonilla, K. G. Grosse-Erdmann, Frequently hypercyclic operators and vectors, Ergod. Theor. Dyn. Syst., 27 (2007), 383–404. https://doi.org/10.1017/S014338570600085X doi: 10.1017/S014338570600085X
    [39] C. L. Stewart, R. Tijdeman, On infinite-difference sets, Canad. J. Math., 31 (1979), 897–910. https://doi.org/10.4153/CJM-1979-085-6 doi: 10.4153/CJM-1979-085-6
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(519) PDF downloads(62) Cited by(0)

Article outline

Figures and Tables

Figures(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog