Research article Topical Sections

Characterizations of normaloid operators in Hilbert spaces via Birkhoff–James orthogonality

  • Published: 01 September 2025
  • MSC : 15A60, 46C50, 47A12, 47A30, 47A63

  • Let $ \mathcal{H} $ be a complex Hilbert space and $ \mathcal{B}(\mathcal{H}) $ the algebra of bounded linear operators on $ \mathcal{H} $. An operator $ T $ is said to be normaloid if its numerical radius $ w(T) $ equals its operator norm $ \|T\| $. In this paper, we establish several characterizations of normaloid operators in Hilbert spaces. In particular, we investigate these operators through the framework of Birkhoff–James orthogonality and norm-parallelism. Mainly, we show that $ T $ is normaloid if, and only if, there exists $ \xi_0 \in \mathbb{C} $ with $ |\xi_0| = \|T\| $ such that

    $ I \perp_{BJ} (T - \xi_0 I), $

    where $ \perp_{BJ} $ denotes Birkhoff–James orthogonality. We also present further equivalent formulations and explore various structural consequences of these characterizations.

    Citation: Feryal Aladsani, Asmahan Alajyan, Cristian Conde, Kais Feki. Characterizations of normaloid operators in Hilbert spaces via Birkhoff–James orthogonality[J]. AIMS Mathematics, 2025, 10(9): 20066-20083. doi: 10.3934/math.2025897

    Related Papers:

  • Let $ \mathcal{H} $ be a complex Hilbert space and $ \mathcal{B}(\mathcal{H}) $ the algebra of bounded linear operators on $ \mathcal{H} $. An operator $ T $ is said to be normaloid if its numerical radius $ w(T) $ equals its operator norm $ \|T\| $. In this paper, we establish several characterizations of normaloid operators in Hilbert spaces. In particular, we investigate these operators through the framework of Birkhoff–James orthogonality and norm-parallelism. Mainly, we show that $ T $ is normaloid if, and only if, there exists $ \xi_0 \in \mathbb{C} $ with $ |\xi_0| = \|T\| $ such that

    $ I \perp_{BJ} (T - \xi_0 I), $

    where $ \perp_{BJ} $ denotes Birkhoff–James orthogonality. We also present further equivalent formulations and explore various structural consequences of these characterizations.



    加载中


    [1] C. R. Putnam, On normal operators in Hilbert space, Am. J. Math., 73 (1951), 357–362. https://doi.org/10.2307/2372180 doi: 10.2307/2372180
    [2] J. G. Stampfli, Hyponormal operators and spectral density, T. Am. Math. Soc., 117 (1965), 469–476. https://doi.org/10.2307/1994219 doi: 10.2307/1994219
    [3] J. T. Chan, K. Chan, An observation about normaloid operators, Oper. Matrices, 11 (2017), 885–890. https://doi.org/10.7153/oam-11-62 doi: 10.7153/oam-11-62
    [4] I. M. Spitkovsky, A note on the maximal numerical range, Oper. Matrices, 13 (2019), 601–605. https://doi.org/10.7153/oam-2019-13-45 doi: 10.7153/oam-2019-13-45
    [5] P. R. Halmos, A Hilbert space problem book, Princeton University Press, 1967.
    [6] P. Bhunia, S. S. Dragomir, M. S. Moslehian, K. Paul, Lectures on numerical radius inequalities, Springer Cham, 2022. https://doi.org/10.1007/978-3-031-13670-2.
    [7] D. Sain, P. Bhunia, A. Bhanja, K. Paul, On a new norm on $\mathcal{B}({\mathcal{H}})$ and its applications to numerical radius inequalities, Ann. Funct. Anal., 12 (2021). https://doi.org/10.1007/s43034-021-00138-5 doi: 10.1007/s43034-021-00138-5
    [8] T. Yamazaki, On upper and lower bounds for the numerical radius and an equality condition, Stud. Math., 178 (2007), 83–89. https://doi.org/10.4064/sm178-1-5 doi: 10.4064/sm178-1-5
    [9] A. Zamani, M. S. Moslehian, Norm-parallelism in the geometry of Hilbert $C^*$-modules, Indagat. Math., 27 (2016), 266–281. https://doi.org/10.1016/j.indag.2015.10.008 doi: 10.1016/j.indag.2015.10.008
    [10] T. Bottazzi, C. Conde, M. S. Moslehian, P. Wójcik, A. Zamani, Orthogonality and parallelism of operators on various Banach spaces, J. Aust. Math. Soc., 106 (2019), 160–183. https://doi.org/10.1017/S1446788718000150 doi: 10.1017/S1446788718000150
    [11] F. F. Bonsall, J. Duncan, Numerical ranges of operators on normed spaces and of elements of normed algebras, London Mathematical Society Lecture Note Series 2, London-New York: Cambridge University Press, 1971. https://doi.org/10.1017/CBO9781107359895
    [12] F. F. Bonsall, J. Duncan, Numerical ranges II, London Mathematical Society Lecture Notes Series 10, New York-London: Cambridge University Press, 1973. https://doi.org/10.1017/CBO9780511662515
    [13] K. E. Gustafson, D. K. M. Rao, Numerical range: The field of values of linear operators and matrices, New York: Springer-Verlag, 1997. https://doi.org/10.1007/978-1-4613-8498-4_1
    [14] L. Z. Gevorgyan, Characterization of spectraloid and normaloid operators, Dokl. Nats. Akad. Nauk Armen., 113 (2013), 231–239.
    [15] A. Wintner, The spectral structure of bounded operators, Am. J. Math., 51 (1929), 385–400.
    [16] J. Stampfli, The norm of a derivation, Pac. J. Math., 33 (1970), 737–747. https://doi.org/10.2140/pjm.1970.33.737 doi: 10.2140/pjm.1970.33.737
    [17] B. Magajna, On the distance to finite-dimensional subspaces in operator algebras, J. Lond. Math. Soc., 47 (1993), 516–532. https://doi.org/10.1112/jlms/s2-47.3.516 doi: 10.1112/jlms/s2-47.3.516
    [18] R. Bhatia, P. Śemrl, Orthogonality of matrices and some distance problems, Linear Algebra Appl., 287 (1999), 77–85. https://doi.org/10.1016/S0024-3795(98)10134-9 doi: 10.1016/S0024-3795(98)10134-9
    [19] A. Zamani, M. S. Moslehian, M. T. Chien, H. Nakazato, Norm-parallelism and the Davis-Wielandt radius of Hilbert space operators, Linear Multilinear A., 67 (2019), 2147–2158. https://doi.org/10.1080/03081087.2018.1484422 doi: 10.1080/03081087.2018.1484422
    [20] M. Barraa, M. Boumazgour, Inner derivations and norm equality, P. Am. Math. Soc., 130 (2002), 471–476. Available from: https://www.jstor.org/stable/2699643.
    [21] Y. A. Abramovich, C. D. Aliprantis, O. Burkinshaw, The Daugavet equation in uniformly convex Banach spaces, J. Funct. Anal., 97 (1991), 215–230. https://doi.org/10.1016/0022-1236(91)90021-V doi: 10.1016/0022-1236(91)90021-V
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(705) PDF downloads(77) Cited by(0)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog