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Abstract: Let H be a complex Hilbert space and B(H) the algebra of bounded linear operators on H.
An operator T is said to be normaloid if its numerical radius w(T") equals its operator norm ||7’||. In this
paper, we establish several characterizations of normaloid operators in Hilbert spaces. In particular,
we investigate these operators through the framework of Birkhoff-James orthogonality and norm-
parallelism. Mainly, we show that 7" is normaloid if, and only if, there exists & € C with |&| = ||T|
such that

I 1p; (T = &),

where L g, denotes Birkhoff—James orthogonality. We also present further equivalent formulations and
explore various structural consequences of these characterizations.
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1. Introduction

The study of specific classes of Hilbert space operators, such as normal, hyponormal, and normaloid
operators, is central to operator theory due to their rich spectral and geometric properties. Fundamental
work on normal operators in Hilbert spaces was established by Putnam [1], while Stampfli [2]
developed the theory of hyponormal operators and their spectral density properties. More recent
contributions include characterizations of normaloid operators by Chan and Chan [3], and studies
of maximal numerical range properties by Spitkovsky [4]. Normal operators are particularly well-
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understood, but many important operators arising in applications do not satisfy normality, as discussed
in Halmos’s comprehensive treatment of Hilbert space problems [5] and recent developments in
numerical radius theory [6]. This has motivated the investigation of broader operator classes that
retain some desirable features of normal operators while allowing for more general behavior. Among
these, normaloid operators are of particular interest. Normaloid operators, defined by the equality of
their numerical radius and operator norm, play a key role in bridging normal and non-normal operators.
This equality, closely related to the spectral radius, provides insights into operator structure and has
several applications [7-9]. Motivated by these connections, we investigate normaloid operators through
the concept of Birkhoff—James orthogonality [10], establishing a novel characterization that links their
defining property to a single orthogonality condition, as highlighted in our main result.

Before stating our investigation, we need to recall some notations and terminology. Let H be a
complex Hilbert space with inner product (-, -), where the corresponding norm is given by [|x|| = V{(x, x)
for all x € H. Denote by B(H) the C*-algebra of all bounded linear operators on H, equipped with
the operator norm || - || defined by

ITIl = sup{lIT'xl| : x € Sqq},

forall T € B(H), where
Sy ={xeH : | =1}

denotes the unit sphere of H. The spectral radius of T € B(H) is given by
r(T) = supilyl : y € o(T)},
where o(T") denotes the spectrum of 7. Furthermore, the numerical range of an operator 7 is defined by
W(T) ={{Tx,x): x €Sy},
and its numerical radius is given by
w(T) = sup{ly| : y € W(T)}.
An operator T € B(H) is called normaloid if
Tl = w(T).

It is known that the inequalities
r(T) < w(T) < |[T||

hold for every bounded linear operator 7.

Thus, an operator 7 is normaloid if, and only if, #(T') = ||T||. In fact, using Gelfand’s formula for
the spectral radius together with the characterization of normaloid operators (see Lemma 1.3 (2)), one
concludes that every normaloid operator 7T satisfies

. Al
r(T) = lim |77 = [T

Hence, equality between the spectral radius and the norm provides an alternative characterization
of normaloid operators. For further information on the numerical radius, the algebraic numerical
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range, and basic properties of normaloid operators, we refer the reader to the foundational treatments
by Bonsall and Duncan on numerical ranges of operators on normed spaces and their continuation
on numerical ranges [6, 11, 12]. Additional comprehensive resources include Gustafson and Rao’s
monograph on numerical range theory and the field of values of linear operators, and Halmos’s classical
problem book covering Hilbert space operator theory [5, 13].

For the sequel, for any 7 € B(H), the adjoint of T is denoted by 7. An operator T is called
positive, denoted by 7' > 0, if (Tx,x) > O for every x € H. This induces the usual partial order
on B(H): one writes T < § precisely when S — T > 0. Further, recall that an operator 7 is said
to be normal if 7*T = TT*, hyponormal if T*T — TT* > 0, and paranormal if |Tx||> < ||T%x]| - ||x]|
for all x € H. Every normal operator is hyponormal, and every hyponormal operator is paranormal;
moreover, every paranormal operator is normaloid (see [2, 14]). The study of normaloid operators
dates back to Wintner [15], who conjectured that #(7") = ||T|| if, and only if, the numerical range W(T')
equals the convex hull of the spectrum of 7. Although this was later shown to be false in general [5],
the concept of normaloid operators remains fundamental in understanding the geometry and spectral
behavior of non-normal operators.

We also need further notions for our investigation. The norm-attainment set of 7 is

My = {x € S : [ITx[| = IT[}},

that is, the collection of unit vectors at which 7 achieves its norm.
Stampfli [16] introduced the maximal numerical range

Wo(T) = {y € C: A{x,} C Sor, IT x|l = TN, T %, X) = ¥},
and its maximal numerical radius

wo(T) = supily| : v € Wo(T)}.

Clearly, Wy(T') C W(T), where W(T) denotes the closure of the numerical range W(T), and hence
The subclass of normaloid operators admits several elegant characterizations involving the maximal
numerical range and spectral radius. A simple criterion, due to Chan and Chan [3], states that 7 €

B(H) is normaloid if, and only if,
wo(T) = w(T). (1.1)

More deeply, Spitkovsky [4] showed that T is normaloid precisely when the maximal numerical range
Wo(T) intersects the boundary of the numerical range 0W(T), i.e.,

Wo(T) N OW(T) + . (1.2)
Notably, (1.1) follows immediately from (1.2): Any y € Wy(T) N 0W(T) attains the supremum |y| =
w(T), forcing wo(T) = w(T') by the inequality wo(T) < w(T).
We shall also use the following notions in B(H): for X, Y € B(H),
X 1g; Y ifandonlyif | X||<|X+vyY|| forallyeC,
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and
X||Y ifandonlyif | X+ Y| =|X||+]|Y| forsomeyeT,

where T denotes the unit circle in the complex plane, i.e., T={ € C:|{| = 1}.
Below, we present two lemmas that will be used throughout the manuscript. These lemmas provide
characterizations of Birkhoff—James orthogonality and norm-parallelism within the context of B(H).

Lemma 1.1. ( [17, Lemma 2.2] or [18, Remark 3.1]) Let X,Y € B(H). Then, X Lp; Y if, and only if,
there exists a sequence {z,} C Sq¢q such that

IXzall = XNl and  (Xz,, Yx,) — 0.

Lemma 1.2. [9, Corollary 2.12] Let X, Y € B(H). Then, X || Y if, and only if, there exists a sequence
{z.} C Sqs such that
lim [(Xz,, Y2,)] = IXI1Y].

We present in the following lemma several well-known characterizations of normaloid operators in
Hilbert spaces.

Lemma 1.3. Let T € B(H). The following statements are equivalent:

1. T is normaloid.
2. IT* = IT||" for any n € N.
3. T satisfies the Daugavet equation at a nonzero complex number vy, that is,

T+ Il = T + [yl
4. T || 1, i.e., there exists y € T such that

IT + Il =71l + 1.
5. There exists a sequence {x,} C Sy such that

lim [|Tx,[| = IT1]  and  lim KT x,, x,)| = o(T).

6. T'T < w(T)*1.

dw(T) = sup VKT x, )P +ITxll* = N (T) + [T,

XES(H
where dw(T) is referred to as the Davis—Wielandt radius of T.
8. For all nonnegative real scalars a, 8 with a8 # 0, the following weighted norm identity holds:

1Tl 3= sup VaKTx, x)P +BITAP = o wX(T) +BIITIP.
x€Sq

Proof. The classical relationship between items (1) and (2) is established in [13, Theorem 6.2-1].
Item (3) was shown to be logically equivalent to (1) in [14, Proposition 5], while the connection
between (1) and (5) was addressed in [3, Theorem 1]. Furthermore, item (4) reflects the notion of
a normaloid operator, as noted in [10, Proposition 4.7], and its relevance to condition (3) was explored
in [7, Theorem 2.3]. Finally, inequalities (6) and (7) were originally established in [19, Corollary 3.2],
where additional connections with Davis—Wielandt radius inequalities are explored in greater detail.

O
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In this paper, we undertake a systematic study of normaloid operators using the geometric notions
of Birkhoff—James orthogonality and norm-parallelism. These tools provide an effective framework for
analyzing the structure of operators in Hilbert and Banach spaces, and have recently been employed to
characterize various operator properties (see [9, 10, 19]).

We begin by reviewing several known characterizations of normaloid operators and then introduce
new criteria based on Birkhoff-James orthogonality. Our approach bridges classical results with
contemporary perspectives, yielding deeper insights into the nature of normaloid operators.

In particular, we prove that an operator 7' is normaloid if and only if there exists & € C with
|€ol = ||IT|| such that

I 1 (T = &ol),
where Lp; denotes Birkhoff-James orthogonality.  Several further equivalent conditions are
established, along with their structural implications.

2. Main results

In this section, we provide new characterizations of the normaloid property for bounded
linear operators on a complex Hilbert space. These characterizations are formulated in terms of
Birkhoff—James orthogonality, the partial order on the set of bounded linear operators, and the norms
of the real and imaginary parts of operators.

For greater clarity, we organize the presentation into two subsections, each focusing on one of
these perspectives.

2.1. Characterizations via Birkhoff-James orthogonality

Prior to our first main result, we establish a lemma describing the numerical range and radius
of bounded linear operators using Birkhoff-James orthogonality. This geometric approach supports
characterizing normaloid operators by their norm-attaining behavior.

Lemma 2.1. Let T € B(H). Then,
W(T)={yeC:11pT -vlI},
and
w(T) = sup{lyl: ¥y € C, I Lp; (T —yD)}.

Proof. It is enough to show that y € W(T) if, and only if, I Lp; S, where S =T —yl.
If vy € W(T), there is a sequence of unit vectors x, with (T x,, x,) — y. Equivalently

<S-xm-xn> = <Txn,xn> -y — O,

and trivially ||x,|| = 1 — ||/||. By Lemma 1.1, these two facts imply I Lg; S.
Conversely, assume I Lg; S. By definition, there exists a sequence of unit vectors x,, such that

x|l = I and  (Ix,, Sx,) — 0.
Since Ix, = x,, the second condition reads (S x,, x,) — 0, but then
(TXn, Xp) = (S X X)) +Y — s
showing y € W(T). This completes the proof. O
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Remark 2.1. Observe that, by the previous proposition, if vy € C is such that I Lg; T — vy, then it
necessarily holds that
Yl <w(T) <||Tll, foranyT € B(H).

This inequality leads to the following criterion, which fully characterizes normaloid operators in terms
of Birkhoff-James orthogonality.

Theorem 2.1. Let T € B(H). Then, the following statements are equivalent:

(1) T is normaloid.
(2) There exists & € C such that &y = ||T|| and

I 1p; (T = &).

Proof. Assume first that 7" is normaloid, so [|T'|| = w(T). By the Birkhoff-James characterization of
the numerical radius,

w(T) = sup{|é| : I Lp; (T — &)}
Hence there exists a sequence {£,} € C such that

I 1p, (T =& and [&] — w(T).

Since the closed disk {£ : |£] < w(T)} is compact, by passing to a subsequence if necessary, we may
assume &, — & with |&| = w(T). We now claim that

I 1Ly (T = &D).

To justify the passage to the limit in the Birkhoff—-James condition, recall that for each n we have
I Lp; (T = &,1), so
M < I +y (T -&DIl Yy eC.

However, the operator-norm is continuous in its argument. Hence, for each fixed v,
I +y(T-&DI = r}l_{g W +y (T -&DI = Il

Since this holds for every v, it follows that I Lp; (T — &yI). Combined with |&| = w(T') = ||T||, this
completes the argument.
Conversely, if there exists & with I Lp; (T — &y1) and |&| = ||T||, then by definition of w(T)

w(T) = &l = IITIl,
while always w(T) < ||T||. Hence, w(T') = ||T||, so T is normaloid. O

Remark 2.2. It is worth noting that, although Lemma 1.3, item (4), and Theorem 2.4 of
Zamani—Moslehian [9] together yield an alternative proof of Theorem 2.1, we have chosen instead
to present a more direct demonstration based on Lemma 2.1, since this approach makes explicit how
extremal numerical values arise from Birkhoff-James orthogonality, and thus streamlines the logical
flow. Since

TINI & AyeT: 1Ly |ITH+75T
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T
=4 HVETIJ_B‘]?(T—MI)
-y

T
=4 HYGTilJ_BJ(T—uI).
-y
Then it suffices to choose &y = — ”_?" with |§0| =||T||.
In what follows, we present a simplified characterization of normaloid operators, refining
condition (5) of Lemma 1.3. As we shall demonstrate, this concise formulation directly entails the
original condition.

Corollary 2.1. Let T € B(H). Then, T is normaloid if, and only if, there exists a sequence of unit
vectors {x,} € H such that lim (T x,, x,)| = ||T].

Proof. Assume first that 7" is normaloid. By Theorem 2.1, there exists &, € C with
I Ly (T =&D) and |5l =|ITl.

By the definition of Birkhoff—James orthogonality in the complex setting, I Lg; (T — &y)I) guarantees
the existence of a sequence of unit vectors x, satisfying

<(T_§01)xnaxn> — 0.

Hence
<Txn7 xn> = <(T - é:OI)xn’ xn) + 'fO — é:O’

and taking moduli gives
KT X, )

— &l = [IT]].

Conversely, suppose there is a sequence of unit vectors x, with
KT X, X2l = NITI.
By passing to a subsequence if necessary, we may suppose
r}ijgo(Txn, Xp) =Y.
Then, setting & =y € C, we obtain
(T = &oDxn, x) = (Txy, x,) =y — 0,

so by Lemma 1.1, it follows that I Lg; (T — &yl), since || = |y| = ||T||. Then, by Theorem 2.1, we
conclude that T is normaloid.
O

It is almost immediate to observe that, if there exists a sequence of unit vectors {x,} C H such that

lim (Tx,, x.)| = |ITI,
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then this sequence satisfies the conditions of item (5) in Lemma 1.3. Indeed,

ITI| = im (T x,, x,)

< w(T) = sup[(Tx, x)| < [ITI,
IIxl|=1

and, therefore, lim|(Txn, x,)| = w(T). Moreover, by the Cauchy—Schwarz inequality, we deduce

ITIl = lim|(Tx,, x,)

< Iim |ITx, |l < |IT1l,
n—oo

and, hence, lim ||Tx,|| = [IT].
n—o00

Observe that if T € B(H) and y € W(T), then by the triangle inequality,
WT +yIll < T+ Iyl < 20T1I.

Hence,
sup [T + Il < 2||T||.
yeW(T)

We now present a new characterization of normaloid operators as precisely to those operators for which
the foregoing inequality becomes an equality. More precisely:

Theorem 2.2. Let T € B(H). Then, T is normaloid if, and only if,
sup{IIT + y1Il : y € W(T)} = 2IIT|

Proof. Suppose the equality
sup{l|T + y1|| : y € W(T)} = 2|IT|

holds. Then, for each n € N, there exists v, € W(T) such that

1]
n

0 < 27 - < T + yall|.

Hence,

Tl
Il === < IT +yudll = Tl

=T +vuD) =TIl = lyal < IITIl,
where the last inequality follows from W(T)C{zeC: |z <|TI. Letting n — oo, we conclude that
lim [y, = II71].
Since vy, € WT) for all n € N, we obtain
ITI = Tim |y, | < o(T) <IIT1,

and it follows immediately that w(T") = ||T||.

AIMS Mathematics Volume 10, Issue 9, 20066-20083.
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Conversely, suppose 7' is normaloid. By the argument in the proof of Corollary 2.1, there exist
& € C with |£&| = ||T|| and a sequence of unit vectors {x,} € H such that

(T, 3,) — &= €®|T|| for some 6, € [0, 27),

and, hence, & € W(T). Therefore, by Lemma 1.2,

r if
— + "]
7|

T .
gl
17|

or, equivalently,
|7+ T = 20171

Thus,
sup{l|T +yIll : y € W(T)} = 2|IT,

as claimed. O

2.2. Characterizations via real and imaginary decomposition

For the sequel, let us recall that every bounded linear operator 7 on a complex Hilbert space admits
the Cartesian decomposition:

T =R(T)+i3(T),

where
T+T* T-T*

R(T) = and I(T) = >

From this decomposition, and from the well-known fact that R(7") and J(T') are self-adjoint operators,
we obtain the basic estimates:

IR(D] < (T), 13Dl < (D),

where w(T') denotes the numerical radius of the operator 7.
To prove our next main result, we recall the following useful lemma due to Yamazaki [8]:

Lemma 2.2. Let T € B(H). Then, we have

o(T) = max [|R(yD)ll = max ||S(uD)|. 2.1)
yeT ueT

Using this result, we can now derive a new characterization of normaloid operators.
Theorem 2.3. Let T € B(H). Then, the following conditions are equivalent:

1. T is normaloid.
2. There exists yy € T such that || R(yoT)|| = ||IT]].
3. There exists uy € T such that ||3(ueT)|| = ||T].
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Proof. First, suppose that (1) holds, i.e., ||T]| = w(T). Then, by Yamazaki’s formula (2.1), there exists
vo € T such that
o(T) = Ry DII.
Hence,
ITIl = (T) = IRy D,
so (2) is satisfied.
Conversely, assume (2), namely, that for some yq € T with ||T|| = || R(yoT)||. Then, again by (2.1),

w(T) = n;gFXII%(VT)II > [RoDIl = IITI.

Since always w(T") < ||T|, it follows that w(T) = ||T||, 1.e., T is normaloid.
Assume now that condition (1) holds, i.e., [|T|| = w(T). By Yamazaki’s formula (2.1), there exists
Mo € T such that

w(T) = [[Im(uoT)|-
Thus,
Tl = (T) = [[Im(uoT)Il,

so condition (3) holds.
Conversely, assume condition (3), i.e., there exists gy € T such that |[Im(uoT)|| = ||T||. By
Yamazaki’s formula (2.1),

w(T) = IBE%TXIIIIH(MT)II > |Im(uo DIl = [Tl

Since w(T') < ||T|| always holds, it follows that w(T") = ||T||, so T is normaloid. O

To prove another characterization of normaloid operators, we provide alternative formulas for the
numerical radius that relates directly to norm-parallelism between operators.

Lemma 2.3. Let T € B(H). Then,
T +yT* T — uT*

2i

(2.2)

= max
ueT

w(T) = max
yeT

Proof. Lety = ¢” € T. Then

yr+yT* €T + e T o T +e 20T

% T = = =
T) 3 > e >
Since multiplication by the unimodular scalar e does not change the operator norm, we obtain
T + e 20T
L

Maximizing over all y = ¢ and invoking Yamazaki’s formula (2.1) yields
T+uTl”

w(T) = max ||R(yT)|| = max
yeT UET

This completes the proof of the first equality. The second equality in the statement follows by an
entirely analogous argument applied to the imaginary part.
]
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We are now ready to state the following characterizations concerning normaloid operators.
Theorem 2.4. Let T € B(H). Then, the following conditions are equivalent:

1. T is normaloid, i.e., ||T|| = w(T).
2. There exists yy € T such that

T + ’)/()T>k
— | =TI
|2 = i
3. There exists uy € T such that
T — puoT*
=2 = .
i
4. T\ T
Proof. We will use the well-known identities
T +yT* T —uT*
w(T) = max L4 = max M . (2.3)
yeT HEeT 2i

Assume first that condition (1) holds. Then, ||T|| = w(T), and by the second formula in (2.3) there
exists ¢y € T such that

T — uoT*
T)=|——|.
o) = | £
Hence, ||T|| = ||%|| which shows that condition (3) is satisfied.

Now suppose that (3) holds. Then, for some y, € T, we have

T—/J()T*
Tl =||————||.
m-|2
Since - - - -
—ﬂ.o < max K = w(T),
2i HET

and always w(T') < ||T||, we conclude that w(T) = ||T||, so T is normaloid. This proves that (1) and (3)
are equivalent.
Assume again that (1) holds. Using the first formula in (2.3), there exists yy € T such that

T + ’}/0T*
2

b

Tl = H

so (2) is satisfied.
Next, suppose that (2) holds. Multiplying the equation

H T +yoT*

2

=Tl

by 2, we get
IT +yoT"Il = 2IIT|I.

By the triangle inequality and the facts that ||[7*|| = ||7|| and |yo| = 1, we have

1T+ yoT" Il < ITl + Iyol 1Tl = 2IIT1l,
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so the equality holds. Therefore, 7" is norm—parallel to 7", which means that (4) holds.
Finally, assume that (4) is satisfied. Then, there exists A € T such that

IT + AT\ = 2|ITl.
Dividing by 2 yields
T + AT*
— =7
” > Tl

which is precisely (2) with yy = A. From (2) we also obtain

*

T+)/()T

=|IT1l,
> 17|

(T) > H

and since w(T) < ||T|| always holds, we conclude that «w(T) = ||T]|, i.e., (1) is valid. This completes
the proof. O

Based on the characterization of normaloid operators recently obtained via the notion of norm
parallelism, and drawing from the manuscript by Barra and Bouzmagour—where the authors
investigate when the norm of the sum of two bounded operators on a Hilbert space equals the sum
of their norms—we obtain the following statement.

Corollary 2.2. Let T € B(H). Then, the following statements are equivalent:

1. T is normaloid.
2. w(T?) = ||IT?|| = |T)P*
3. r/(TH =T =TI~

Proof. The equivalence between the three conditions is a direct consequence of the characterization of
normaloid operators via norm parallelism, namely, 7 || T*, as established in Theorem 2.4, item (4),
together with [20, Corollary 2.2]. O

Let us observe that item (2) in Corollary 2.2 can be reformulated using sequences and the definition
of the numerical radius as follows: T is normaloid if, and only if, there exists a sequence {x,} C S¢
such that

lim (Tx,, T*x,)| = lim KT%x,, x,)| = T,

Moreover, from the proof of [20, Theorem 2.1], we obtain the following necessary condition satisfied
by every normaloid operator. We omit the proof.

Corollary 2.3. Let T € B(H). If T is normaloid, then there exists a sequence {x,} C S¢ such that
lim [T, ]| = }LIEIOIIT*xnII =Tl

In what follows, we demonstrate that the condition above is not sufficient to guarantee that an
operator is normaloid.
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20078

Example 2.1. Consider the nilpotent matrix

010
T=(0 0 1},
0 0O
then r(T) = 0. Now, we compute
000 00O
T"=|1 0 0| and T'T=(0 1 0Of.
010 0 01
Then, eigenvalues of T*T are {0, 1, 1}, hence ||T|| = 1.
Let
X1
x=|x| with |x||=1.
X3
Then,
o]
Tx=|x|, TP = lxal* +lxsl
0]
and -
0
T*x = x|, ITxIP = x P+ xf
| X2 |
The vector
0
x=|e?l, #eR,
0

is a unit vector such that
x|l = IT"x|| = 1 =||T]|.

Thus, there exists a unit vector where T and its adjoint T simultaneously attain their norm, even
though T is nilpotent and therefore not normaloid.

In the next corollary, we use Corollary 2.3 to characterize compact normaloid operators.
Theorem 2.5. Let T € B(H) be a compact operator. Then, T is normaloid if and only if

M7z N Mz« £ 0.

Proof. First note that if T is compact then so is its adjoint 7.
Assume that T € B(H) is a compact normaloid operator. Then, as consequence of Corollary 2.3,
that there exists a sequence of unit vectors {x,} € H such that

1T xall = NITMI, 17" xll — NIT.

AIMS Mathematics Volume 10, Issue 9, 20066-20083.
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Since {x,} is a bounded sequence in the unit sphere of H, by the Banach—Alaoglu theorem, it has a
subsequence {x,,} that converges weakly to some x € H. Because T and 7" are compact operators,
they map weakly convergent sequences to strongly convergent sequences. That is,

Tx, - Tx and T"x, — T°x innorm.
Hence, by continuity of the norm, we obtain
1Tl = lim 172, [ = [IT°ll 177l = lim 17", [ = NIT1.
To deduce that ||x|| = 1, note that for any bounded operator 7', we have ||Tx|| < ||T|| - ||x||. Therefore,
TN = 11Tl < 171111,

which implies |[x|| > 1. On the other hand, since x,, — x weakly and ||x,,|| = 1, by weak lower
semicontinuity of the norm, we have

< limi =
Il < liminf |lx, || = 1.

Combining both inequalities gives ||x|| = 1. Therefore, the vector x lies in the unit sphere of H and
satisfies ||Tx|| = ||T*x[| = ||T|, i.e., Mz N My # 0.

Conversely, if there exists x € S¢;, with ||Tx|| = ||T|| and ||T*x|| = ||T||, then by Corollary 2.3, we
conclude that 7" is normaloid. O

To conclude the paper, we highlight a connection between normaloid operators and the Daugavet-
type equation involving the numerical radius. The following remark clarifies how this equation can
be reformulated and analyzed in terms of known results in the literature. We then explore a natural
question arising from our earlier characterizations: whether satisfying an w-Daugavet-type equation
implies that an operator is normaloid. As the subsequent example shows, the answer is negative,
thus demonstrating the limitations of this property as a full characterization. These final observations
offer a broader perspective on the structure of normaloid operators and point to potential directions for
future study.

Remark 2.3. We observe that T satisfies the Daugavet equation for some nonzero scalar y € C if, and
only if, the operator iT satisfies the classical Daugavet equation, i.e.,

1 1
|+ =[]+

Y Y
This reduction allows one to apply general results from the classical work of Abramovich et al. on
the Daugavet equation (see [21]). We refer the reader to that article for further characterizations of
normaloid operators in terms of the approximate point spectrum.

Although items (3) and (4) can be easily deduced from one another, we have included both
in the previous result. This is because (4) was obtained independently of Gevorgyan’s proof of (3),
and in fact, it follows from a more general theorem valid in the setting of Banach spaces (see [10,
Theorem 4.6]).

Additionally, [14] presents related results in this direction. Finally, the equivalence between
items (1) and (5) in the previous theorem is also reproven in [7].
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A natural question, motivated by Lemma 1.3, is whether the requirement that a bounded linear
operator T satisfies a version of the Daugavet equation involving the numerical radius w, for some
v € T, also characterizes normaloid operators. More precisely, we shall prove that the w-Daugavet
equation holds for every 7' € B(H) without imposing any further hypotheses. Indeed, given 7' € B(H),
consider a sequence {x,} € Sg such that 11_>r£1o KT x,, x,)| = (T).

For each n € N, let ’

0, := arg(T x,, x,,),

and

<Txn’ xn>

Zn 2 2(O,, X)) = €

Note that z, depends on both x, and 6,, where 6, itself is determined by x,,.
As this sequence is bounded, the complex Bolzano—Weierstrass theorem guarantees the existence
of a convergent subsequence {z,, }ran With limit zg = €™®|z9| € C. It follows that

lim z,, = lim (T, 3] = e™e(T),

for some 6, € R.
Consequently,

(T + ™7

sup{l{Tx, x) + €| : x € Sy}

i

%

lim (T'x,,, x,,) + eieol = (im(T x,,, x,,) + €
k—o0 k— 00

= e®w(T) + €| = w(T) + 1.

limz, +e
k—o0

On the other hand, it is always true that w(T + e®I) < w(T) + 1. Therefore, we conclude that
(T + €% = o(T) + 1.

Example 2.2. In this example, we construct an operator that satisfies the Daugavet-type equation for
w, but does not satisfy w(T) = ||T||, thus providing a counterexample to the converse of this property.

(01 _[cosf : R _
LetT—(O O)EMz(C). Forx—(sing),aumtvector in C°, we have:
Ty = 0 1)\(cos®\ ([sinf
*=lo oflsine/ =\ 0 )

1
(Tx,x) =sinfcosf = > sin(26).

Thus:

The maximum value of (T x, x)| occurs when 6 = 7 or 6 = 37” and is:

1
() = 5.
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Now consider the operator T + yl fory € T. Then,

[y 1\[cos6\ [ycos@+sin6
(T+y1)x—(0 y)(sin@)_( ¥ sin 6 '

Thus:
(T +yD)x, xy = ycos> 0 + sin @ cos 6 + ysin® 6 = y(cos> 6 + sin® 6) + sin 6 cos 6.

Since cos? 0 + sin” @ = 1, this simplifies to:
I .
(T +yDhx,x)y =y + 5 sin(26).
Thus, the maximum value of |{(T + yI)x, x)| is
1 3
T+yDh)=l+<==.
(T +yDh=pW+7 =7

Therefore, T satisfies the w-Daugavet-type equation
(T +yl) = w(T) + 1.

Finally, we show that T is not normaloid since w(T) = % #||T| = L

3. Conclusions

In this work, we have established several new characterizations of normaloid operators in complex
Hilbert spaces, framed within the geometric concepts of Birkhoff-James orthogonality and norm-—
parallelism. Our approach unifies and extends existing results, providing concise and elegant
equivalences that connect the numerical radius, the operator norm, and structural properties of the
real and imaginary parts of operators.

In particular, we proved that the normaloid property is equivalent to the existence of a complex
scalar &, with || = ||T|| such that I Lgy (T — &yl), offering a direct link between extremal numerical
range elements and Birkhoff-James orthogonality. We also derived alternative formulations based on
norm—parallelism, the Davis—Wielandt radius, and the norms of the Cartesian components of 7. These
results shed new light on how normaloid operators can be identified through norm-attaining sequences
and geometric parallelism relations.

Furthermore, our analysis clarified the limitations of certain Daugavet-type identities involving
the numerical radius as a complete characterization of normaloid operators, providing explicit
counterexamples. For compact operators, we obtained a neat criterion in terms of the intersection
of norm-attainment sets of 7" and 7.

Overall, the results presented here contribute to a deeper understanding of the interplay between
numerical range geometry, operator norms, and orthogonality notions, and open potential directions
for further investigation in the setting of Banach space operators and Hilbert C*-modules.
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