This paper proposed a novel state estimation framework for nonlinear systems described by fractional-order (FO) and Takagi-Sugeno (TS) fuzzy models, targeting critical challenges associated with large modeling uncertainties. The key innovation was in the development of two complementary observer structures that estimated system states when premise variables were either measurable or non-measurable, and in the presence of unknown inputs and uncertain dynamics. The proposed methodology addressed uncertainties affecting system matrices, input matrices, and unknown input transmission matrices. It introduced a fractional-order Thau-Luenberger observer (FO-TLO) for systems with measurable premise variables, and a dedicated observer adapted to the case of non-measurable premise variables. Both configurations utilized Lyapunov-based stability theory and linear matrix inequality (LMI) methods to ensure robust, asymptotic, and theoretically guaranteed convergence of the state estimation error in the presence of time-varying and bounded uncertainties. The framework extended the observer design to a broader class of FO-TS systems, and it offered effective tools for fault diagnosis, system monitoring, and robust control in the presence of uncertain environments.
Citation: Abdelghani Djeddi, Ahmad Taher Azar, Saim Ahmed, Jalel Dib, Nashwa Ahmad Kamal, Zeeshan Haider. Fractional order Thau-Luenberger observer for fractional order Takagi-Sugeno dynamical systems under uncertain nonmeasurable variables and unknown inputs[J]. AIMS Mathematics, 2025, 10(7): 15108-15130. doi: 10.3934/math.2025678
This paper proposed a novel state estimation framework for nonlinear systems described by fractional-order (FO) and Takagi-Sugeno (TS) fuzzy models, targeting critical challenges associated with large modeling uncertainties. The key innovation was in the development of two complementary observer structures that estimated system states when premise variables were either measurable or non-measurable, and in the presence of unknown inputs and uncertain dynamics. The proposed methodology addressed uncertainties affecting system matrices, input matrices, and unknown input transmission matrices. It introduced a fractional-order Thau-Luenberger observer (FO-TLO) for systems with measurable premise variables, and a dedicated observer adapted to the case of non-measurable premise variables. Both configurations utilized Lyapunov-based stability theory and linear matrix inequality (LMI) methods to ensure robust, asymptotic, and theoretically guaranteed convergence of the state estimation error in the presence of time-varying and bounded uncertainties. The framework extended the observer design to a broader class of FO-TS systems, and it offered effective tools for fault diagnosis, system monitoring, and robust control in the presence of uncertain environments.
| [1] | I. Podlubny, Fractional differential equations, Academic Press, 1999. |
| [2] |
V. E. Tarasov, Discrete map with memory from fractional differential equation of arbitrary positive order, J. Math. Phys., 50 (2009), 122703. https://doi.org/10.1063/1.3272791 doi: 10.1063/1.3272791
|
| [3] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier, 2006. |
| [4] | J. Sabatier, O. P. Agrawal, J. A. T. Machado, Advances in fractional calculus: Theoretical developments and applications in physics and engineering, Springer, 2007. https://doi.org/10.1007/978-1-4020-6042-7 |
| [5] | M. Edelman, Fractional maps as maps with power-law memory, In: Nonlinear dynamics and complexity, Springer, 2014. https://doi.org/10.1007/978-3-319-02353-3_3 |
| [6] | Y. Kao, C. Wang, H. Xia, Y. Cao, Projective synchronization for uncertain fractional reaction-diffusion systems via adaptive sliding mode control based on finite-time scheme, In: Analysis and control for fractional-order systems, Springer, 2024. https://doi.org/10.1007/978-981-99-6054-5_8 |
| [7] | B. Meghni, D. Dib, A. T. Azar, S. Ghoudelbourk, A. Saadoun, Robust adaptive supervisory fractional order controller for optimal energy management in wind turbine with battery storage, In: Fractional order control and synchronization of chaotic systems, Springer, 2017. https://doi.org/10.1007/978-3-319-50249-6_6 |
| [8] | T. S. Gorripotu, H. Samalla, C. J. M. Rao, A. T. Azar, D. Pelusi, TLBO algorithm optimized fractional-order PID controller for AGC of interconnected power system, In: Soft computing in data analytics, Singapore: Springer, 2019. https://doi.org/10.1007/978-981-13-0514-6_80 |
| [9] |
Y. Cao, Y. Kao, Z. Wang, X. Yang, J. H. Park, W. Xie, Sliding mode control for uncertain fractional-order reaction-diffusion memristor neural networks with time delays, Neural Networks, 178 (2024), 106402. https://doi.org/10.1016/j.neunet.2024.106402 doi: 10.1016/j.neunet.2024.106402
|
| [10] |
Y. Kao, Y. Cao, X. Chen, Global Mittag-Leffler synchronization of coupled delayed fractional reaction-diffusion Cohen-Grossberg neural networks via sliding mode control, Chaos, 32 (2022), 113123. https://doi.org/10.1063/5.0102787 doi: 10.1063/5.0102787
|
| [11] |
Z. Liu, J. Liu, O. Zhang, Y. Zhao, W. Chen, Y. Gao, Adaptive disturbance observer-based fixed-time tracking control for uncertain robotic systems, IEEE T. Ind. Electron., 71 (2024), 14823–14831. https://doi.org/10.1109/TIE.2024.3366204 doi: 10.1109/TIE.2024.3366204
|
| [12] |
J. Liu, X. Yu, J. Wang, Z. Li, W. Wang, C. Yang, Sliding mode control of grid-connected neutral-point-clamped converters via high-Gain observer, IEEE T. Ind. Electron., 69 (2021), 4010–4021. https://doi.org/10.1109/TIE.2021.3070496 doi: 10.1109/TIE.2021.3070496
|
| [13] |
X. Lin, Z. Zhao, W. Hu, Z. Qiu, H. Liu, H. Yang, Observer-based fixed-time control for permanent-magnet synchronous motors with parameter uncertainties, IEEE T. Power Electr, 38 (2023), 4335–4344. https://doi.org/10.1109/TPEL.2022.3226033 doi: 10.1109/TPEL.2022.3226033
|
| [14] |
E. H. Mamdani, Application of fuzzy algorithms for control of simple dynamic plant, Proc. Inst. Electr. Eng., 121 (1974), 1585–1588. https://doi.org/10.1049/piee.1974.0328 doi: 10.1049/piee.1974.0328
|
| [15] |
T. Takagi, M. Sugeno, Fuzzy identification of systems and its applications to modelling and control, IEEE T. Syst. Man Cyb., SMC-15 (1985), 116–132. https://doi.org/10.1109/TSMC.1985.6313399 doi: 10.1109/TSMC.1985.6313399
|
| [16] |
Q. Liu, B. Hu, W. Liu, J. Li, W. Yu, G. Li, A fractional-order model predictive control strategy with Takagi-Sugeno fuzzy optimization for vehicle active suspension system, Fractal Fract., 8 (2024), 610. https://doi.org/10.3390/fractalfract8100610 doi: 10.3390/fractalfract8100610
|
| [17] |
L. Dami, A. Benzaouia, K. Badie, Stabilization of continuous two-dimensional fractional order positive Takagi–Sugeno fuzzy systems with delays, J. Control Autom. Electr. Syst., 35 (2024), 999–1007. https://doi.org/10.1007/s40313-024-01127-4 doi: 10.1007/s40313-024-01127-4
|
| [18] |
D. Ichalal, B. Marx, J. Ragot, D. Maquin, State estimation of Takagi-Sugeno systems with non-measurable premise variables, IET Control Theory A., 4 (2010), 897–908. https://doi.org/10.1049/iet-cta.2009.0054 doi: 10.1049/iet-cta.2009.0054
|
| [19] |
A. Djeddi, D. Dib, A. T. Azar, S. Abdelmalek, Fractional order unknown inputs fuzzy observer for Takagi-Sugeno systems with non-measurable premise variables, Mathematics, 7 (2019), 984. https://doi.org/10.3390/math7100984 doi: 10.3390/math7100984
|
| [20] |
A. Djeddi, A. T. Azar, A. Fekik, N. A. Kamal, C. B. Njima, Synthesis of non-integer order uncertain Thau-Luenberger observer for non-integer order multiple model with unknown inputs, ICCAD, 2024 (2024), 1–6. https://doi.org/10.1109/ICCAD60883.2024.10553912 doi: 10.1109/ICCAD60883.2024.10553912
|
| [21] |
W. Hamdi, M. Y. Hammoudi, A. Boukhlouf, Observer design for Takagi-Sugeno fuzzy systems with non-measurable premise variables based on differential mean value theorem, Eng. Proc., 58 (2023), 28. https://doi.org/10.3390/ecsa-10-16008 doi: 10.3390/ecsa-10-16008
|
| [22] |
H. Xiao, Z. Li, Y. Zhang, X. Liu, Refinement of a Lyapunov-type inequality for a fractional differential equation, Symmetry, 16 (2024), 941. https://doi.org/10.3390/sym16080941 doi: 10.3390/sym16080941
|
| [23] |
D. Luo, W. Xue, C. Tomás, Z. Quanxin, Ulam-Hyers stability of Caputo-type fractional fuzzy stochastic differential equations with delay, Commun. Nonlinear Sci., 121 (2023), 107229. https://doi.org/10.1016/j.cnsns.2023.107229 doi: 10.1016/j.cnsns.2023.107229
|
| [24] |
D. Luo, M. Tian, Q. Zhu, Some results on finite-time stability of stochastic fractional-order delay differential equations, Chaos Soliton. Fract., 158 (2022), 111996. https://doi.org/10.1016/j.chaos.2022.111996 doi: 10.1016/j.chaos.2022.111996
|
| [25] |
R. Dhayal Q. Zhu, Stability and controllability results of ψ-Hilfer fractional integro-differential systems under the influence of impulses, Chaos Soliton. Fract., 168 (2023), 113105. https://doi.org/10.1016/j.chaos.2023.113105 doi: 10.1016/j.chaos.2023.113105
|
| [26] | L. O. G. Gloria, Observateurs des systèmes singuliers incertains : Application au contrôle et au diagnostic, Université de Lorraine, 2015. |
| [27] |
S. Aberkane, D. Sauter, J. C. Ponsart, Output feedback robust H∞ control of uncertain active fault control systems via convex analysis, Int. J. Control, 81 (2008), 252–263. https://doi.org/10.1080/00207170701535959 doi: 10.1080/00207170701535959
|
| [28] | A. Djeddi, Diagnostic des systèmes non linéaires à base d'observateurs, Doctoral thesis, Université Badji Mokhtar, Annaba, 2017. |