Research article

Abstract Volterra integro-differential inclusions with multiple variables

  • Published: 30 June 2025
  • MSC : 44A10, 44A30, 47D99

  • In this paper, we investigated abstract Volterra integro-differential inclusions with multiple variables and abstract partial fractional differential inclusions with multiple variables. We also introduced and analyzed several new classes of multidimensional $ (F, G, C) $-resolvent operator families in sequentially complete locally convex spaces and provided certain applications.

    Citation: Marko Kostić. Abstract Volterra integro-differential inclusions with multiple variables[J]. AIMS Mathematics, 2025, 10(6): 15040-15068. doi: 10.3934/math.2025675

    Related Papers:

  • In this paper, we investigated abstract Volterra integro-differential inclusions with multiple variables and abstract partial fractional differential inclusions with multiple variables. We also introduced and analyzed several new classes of multidimensional $ (F, G, C) $-resolvent operator families in sequentially complete locally convex spaces and provided certain applications.



    加载中


    [1] P. L. Butzer, H. Berens, Semi-groups of operators and approximation, New York: Springer-Verlag, 1967.
    [2] E. Hille, R. S. Phillips, Functional analysis and semi-groups, New York: American Mathematical Society, 1948.
    [3] M. Khanehgir, M. Janfada, A. Niknam, Inhomogeneous two-parameter abstract Cauchy problems, B. Iran. Math. Soc., 31 (2005), 71–81.
    [4] Y. Feng, X. Zhang, Y. Chen, L. Wei, A compact finite difference scheme for solving fractional Black-Scholes option pricing model, J. Inequal. Appl., 36 (2025). https://doi.org/10.1186/s13660-025-03261-2
    [5] X. Zhang, L. Wei, J. Liu, Application of the LDG method using generalized alternating numerical flux to the fourth-order time-fractional sub-diffusion model, Appl. Math. Lett., 168 (2025), 109580. https://doi.org/10.1016/j.aml.2025.109580 doi: 10.1016/j.aml.2025.109580
    [6] M. Kostić, Abstract degenerate Volterra integro-differential equations, Belgrade: Mathematical Institute SANU, 2020.
    [7] V. E. Fedorov, M. Kostić, $(F, G, C)$-resolvent operator families and applications, Mathematics, 11 (2023), 3505. https://doi.org/10.3390/math11163505 doi: 10.3390/math11163505
    [8] M. Kostić, Multidimensional vector-valued Laplace transform and applications, arXiv Preprint, 2025, 2506.18909.
    [9] R. Meise, D. Vogt, Introduction to functional analysis, Translated from the German by M. S. Ramanujan and revised by the authors, New York: Clarendon Press, 1997.
    [10] D. L. Bernstein, The double Laplace integral, PhD. thesis, Brown University, 1939.
    [11] J. C. Jaeger, The solution of boundary value problems by a double Laplace transformation, B. Am. Math. Soc., 46 (1940), 687–693.
    [12] L. Amerio, Sulla trasformata doppia di Laplace, Atti della Reale Accademia d'ltalia, Memorie délia Classe di Scienze Fisiche, Matematiche e Naturali, 7 (1941), 707–780.
    [13] K. Kruse, Vector-valued holomorphic functions in several variables, Funct. Approx. Comment., 63 (2020), 247–275. https://doi.org/10.7169/facm/1861 doi: 10.7169/facm/1861
    [14] Y. N. Drozhzhinov, Multidimensional Tauberian theorems for generalized functions, Russian Math. Surv.+, 71 (2016), 1081–1134. https://doi.org/10.1070/RM9743 doi: 10.1070/RM9743
    [15] Y. N. Drozhzhinov, B. I. Zavialov, Multidimensional Tauberian theorems for Banach-space valued generalized functions, Sb. Math.+, 194 (2003), 1599–1646. https://doi.org/10.1070/SM2003v194n11ABEH000779 doi: 10.1070/SM2003v194n11ABEH000779
    [16] L. Neyt, J. Vindas, A multidimensional Tauberian theorem for Laplace transforms of ultradistributions, Integr. Transf. Spec. F., 31 (2019), 395–411. https://doi.org/10.1080/10652469.2019.1699556 doi: 10.1080/10652469.2019.1699556
    [17] S. Pilipović, J. Vindas, Multidimensional Tauberian theorems for wavelet and non-wavelet transforms, arXiv Preprint, 2011, 1012.5090. https://doi.org/10.48550/arXiv.1012.5090
    [18] S. Pilipović, J. Vindas, Multidimensional Tauberian theorems for vector-valued distributions, Publ. I. Math.-Beograd, 95 (2014), 1–28. https://doi.org/10.2298/PIM1409001P doi: 10.2298/PIM1409001P
    [19] B. Prangoski, Laplace transform in spaces of ultradistributions, Filomat, 27 (2013), 747–760. https://www.jstor.org/stable/24896405
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(525) PDF downloads(28) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog