In this paper, we investigated abstract Volterra integro-differential inclusions with multiple variables and abstract partial fractional differential inclusions with multiple variables. We also introduced and analyzed several new classes of multidimensional $ (F, G, C) $-resolvent operator families in sequentially complete locally convex spaces and provided certain applications.
Citation: Marko Kostić. Abstract Volterra integro-differential inclusions with multiple variables[J]. AIMS Mathematics, 2025, 10(6): 15040-15068. doi: 10.3934/math.2025675
In this paper, we investigated abstract Volterra integro-differential inclusions with multiple variables and abstract partial fractional differential inclusions with multiple variables. We also introduced and analyzed several new classes of multidimensional $ (F, G, C) $-resolvent operator families in sequentially complete locally convex spaces and provided certain applications.
| [1] | P. L. Butzer, H. Berens, Semi-groups of operators and approximation, New York: Springer-Verlag, 1967. |
| [2] | E. Hille, R. S. Phillips, Functional analysis and semi-groups, New York: American Mathematical Society, 1948. |
| [3] | M. Khanehgir, M. Janfada, A. Niknam, Inhomogeneous two-parameter abstract Cauchy problems, B. Iran. Math. Soc., 31 (2005), 71–81. |
| [4] | Y. Feng, X. Zhang, Y. Chen, L. Wei, A compact finite difference scheme for solving fractional Black-Scholes option pricing model, J. Inequal. Appl., 36 (2025). https://doi.org/10.1186/s13660-025-03261-2 |
| [5] |
X. Zhang, L. Wei, J. Liu, Application of the LDG method using generalized alternating numerical flux to the fourth-order time-fractional sub-diffusion model, Appl. Math. Lett., 168 (2025), 109580. https://doi.org/10.1016/j.aml.2025.109580 doi: 10.1016/j.aml.2025.109580
|
| [6] | M. Kostić, Abstract degenerate Volterra integro-differential equations, Belgrade: Mathematical Institute SANU, 2020. |
| [7] |
V. E. Fedorov, M. Kostić, $(F, G, C)$-resolvent operator families and applications, Mathematics, 11 (2023), 3505. https://doi.org/10.3390/math11163505 doi: 10.3390/math11163505
|
| [8] | M. Kostić, Multidimensional vector-valued Laplace transform and applications, arXiv Preprint, 2025, 2506.18909. |
| [9] | R. Meise, D. Vogt, Introduction to functional analysis, Translated from the German by M. S. Ramanujan and revised by the authors, New York: Clarendon Press, 1997. |
| [10] | D. L. Bernstein, The double Laplace integral, PhD. thesis, Brown University, 1939. |
| [11] | J. C. Jaeger, The solution of boundary value problems by a double Laplace transformation, B. Am. Math. Soc., 46 (1940), 687–693. |
| [12] | L. Amerio, Sulla trasformata doppia di Laplace, Atti della Reale Accademia d'ltalia, Memorie délia Classe di Scienze Fisiche, Matematiche e Naturali, 7 (1941), 707–780. |
| [13] |
K. Kruse, Vector-valued holomorphic functions in several variables, Funct. Approx. Comment., 63 (2020), 247–275. https://doi.org/10.7169/facm/1861 doi: 10.7169/facm/1861
|
| [14] |
Y. N. Drozhzhinov, Multidimensional Tauberian theorems for generalized functions, Russian Math. Surv.+, 71 (2016), 1081–1134. https://doi.org/10.1070/RM9743 doi: 10.1070/RM9743
|
| [15] |
Y. N. Drozhzhinov, B. I. Zavialov, Multidimensional Tauberian theorems for Banach-space valued generalized functions, Sb. Math.+, 194 (2003), 1599–1646. https://doi.org/10.1070/SM2003v194n11ABEH000779 doi: 10.1070/SM2003v194n11ABEH000779
|
| [16] |
L. Neyt, J. Vindas, A multidimensional Tauberian theorem for Laplace transforms of ultradistributions, Integr. Transf. Spec. F., 31 (2019), 395–411. https://doi.org/10.1080/10652469.2019.1699556 doi: 10.1080/10652469.2019.1699556
|
| [17] | S. Pilipović, J. Vindas, Multidimensional Tauberian theorems for wavelet and non-wavelet transforms, arXiv Preprint, 2011, 1012.5090. https://doi.org/10.48550/arXiv.1012.5090 |
| [18] |
S. Pilipović, J. Vindas, Multidimensional Tauberian theorems for vector-valued distributions, Publ. I. Math.-Beograd, 95 (2014), 1–28. https://doi.org/10.2298/PIM1409001P doi: 10.2298/PIM1409001P
|
| [19] | B. Prangoski, Laplace transform in spaces of ultradistributions, Filomat, 27 (2013), 747–760. https://www.jstor.org/stable/24896405 |