In this work, we develop certain coupled fixed-point results in Banach space by utilizing the Krasnosel'skii's expansive-type fixed-point results. Additionally, we establish existence and uniqueness conditions for coupled fixed points. Applying these results, we investigate the fractional-order HIV/AIDS model, demonstrating the existence of solutions. Our results contribute to the understanding of complex systems and non linear dynamics.
Citation: Kamaleldin Abodayeh, Mian Bahadur Zada, Muhammad Sarwar, Haroon Rashid, Saowaluck Chasreechai, Thanin Sitthiwirattham. Coupled fixed point results for non-expansive mapping and its applications to the fractional order HIV/AIDS model[J]. AIMS Mathematics, 2025, 10(6): 15025-15039. doi: 10.3934/math.2025674
In this work, we develop certain coupled fixed-point results in Banach space by utilizing the Krasnosel'skii's expansive-type fixed-point results. Additionally, we establish existence and uniqueness conditions for coupled fixed points. Applying these results, we investigate the fractional-order HIV/AIDS model, demonstrating the existence of solutions. Our results contribute to the understanding of complex systems and non linear dynamics.
| [1] |
M. Aslam, R. Murtaza, T. Abdeljawad, G. Rahman, A. Khan, H. Khan, et al., A fractional order HIV/AIDS epidemic model with Mittag-Leffler kernel, Adv. Difer. Equ., 2021 (2021), 1–15. https://doi.org/10.1186/s13662-021-03264-5 doi: 10.1186/s13662-021-03264-5
|
| [2] |
A. Atangana, D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: theory and applications to heat transfer model, Thermal Sci., 20 (2016), 763–769. http://dx.doi.org/10.2298/TSCI160111018A doi: 10.2298/TSCI160111018A
|
| [3] | S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math., 3 (1922), 133–181. |
| [4] |
T. Bashiri, S. M. Vaezpour, C. Park, A coupled fixed point theorem and application to fractional hybrid differential problems, Fixed Point Theory Appl., 2016 (2016), 1–11. http://dx.doi.org/10.1186/s13663-016-0511-x doi: 10.1186/s13663-016-0511-x
|
| [5] |
T. A. Burton, A fixed-point theorem of Krasnoselskii, Appl. Math. Lett., 11 (1998), 85–88. https://doi.org/10.1016/S0893-9659(97)00138-9 doi: 10.1016/S0893-9659(97)00138-9
|
| [6] |
M. Gabeleh, P. R. Patle, M. De La Sen, Noncyclic $\varphi$-contractions in hyperbolic uniformly convex metric spaces, J. Nonlinear Var. Anal., 7 (2023), 251–265. https://doi.org/10.23952/jnva.7.2023.2.06 doi: 10.23952/jnva.7.2023.2.06
|
| [7] |
D. C. Douek, M. Roederer, R. A. Koup, Emerging concepts in the immunopathogenesis of AIDS, Annu. Rev. Med., 60 (2009), 471–484. https://doi.org/10.1146/annurev.med.60.041807.123549 doi: 10.1146/annurev.med.60.041807.123549
|
| [8] |
D. J. Guo, V. Lakshmikantham, Coupled fixed points of nonlinear operators with applications, Nonlinear Anal., 11 (1987), 623–632. https://doi.org/10.1016/0362-546X(87)90077-0 doi: 10.1016/0362-546X(87)90077-0
|
| [9] | S. M. Kang, Fixed points for expansion mappings, Math. Japonica, 38 (1993), 713–717. |
| [10] |
M. A. Khan, M. S. Khan, S. Sessa, Some theorems on expansion mappings and their fixed points, Demonstratio Math., 19 (1986), 673–684. http://dx.doi.org/10.1515/dema-1986-0311 doi: 10.1515/dema-1986-0311
|
| [11] |
X. R. Kang, N. N. Fang, Some common coupled fixed point results for the mappings with a new contractive condition in a Menger PbM-metric space, J. Nonlinear Funct. Anal., 2023 (2023), 1–19. https://doi.org/10.23952/jnfa.2023.9 doi: 10.23952/jnfa.2023.9
|
| [12] |
A. Kari, M. Rossafi, E. M. Marhrani, M. Aamri, Fixed-point theorem for nonlinear $F$-contraction via $w$-distance, Adv. Math. Phys., 2020 (2020), 6617517. https://doi.org/10.1155/2020/6617517 doi: 10.1155/2020/6617517
|
| [13] | A. Kari, M. Rossafi, H. Saffaj, E. M. Marhrani, M. Aamri, Fixed point theorems for $F$-contraction in generalized asymmetric metric spaces, Thai J. Math., 20 (2022), 1149–1166. |
| [14] |
A. Kari, M. Rossafi, E. M. Marhrani, M. Aamri, New fixed point theorems for $\theta$-$\phi$-contraction on rectangular $b$-metric spaces, Abstr. Appl. Anal., 2020 (2020), 8833214. http://dx.doi.org/10.1155/2020/8833214 doi: 10.1155/2020/8833214
|
| [15] |
S. M. Kang, M. Kumar, P. Kumar, S. Kumar, Fixed point theorems for $\phi$-weakly expansive mappings in metric spaces, Int. J. Pure Appl. Math., 90 (2014), 143–152. http://dx.doi.org/10.12732/ijpam.v90i2.4 doi: 10.12732/ijpam.v90i2.4
|
| [16] |
S. Kumar, R. Kumar, J. Singh, K. S. Nisar, D. Kumar, An efficient numerical scheme for fractional model of HIV-1 infection of CD4$^+$ T-cells with the effect of antiviral drug therapy, Alex. Eng. J., 59 (2020), 2053–2064. http://dx.doi.org/10.1016/j.aej.2019.12.046 doi: 10.1016/j.aej.2019.12.046
|
| [17] | S. Park, B. E. Rhoades, Some fixed point theorems for expansion mappings, Math. Japonica, 33 (1988), 129–132. |
| [18] |
E. Y. Salah, B. Sontakke, M. S. Abdo, W. Shatanawi, K. Abodayeh, M. D. Albalwi, Conformable fractional-order modeling and analysis of HIV/AIDS transmission dynamics, Int. J. Differ. Equ., 2024 (2024), 1958622. https://doi.org/10.1155/2024/1958622 doi: 10.1155/2024/1958622
|
| [19] |
S. Mashayekhi, S. Sedaghat, Fractional model of stem cell population dynamics, Chaos Solitons Fract., 146 (2021), 110919. http://dx.doi.org/10.1016/j.chaos.2021.110919 doi: 10.1016/j.chaos.2021.110919
|
| [20] |
S. Ahmad, A. Ullah, A. Akgül, M. De la Sen, A study of fractional order Ambartsumian equation involving exponential decay kernel, AIMS Math., 6 (2021), 9981–9997. https://doi.org/10.3934/math.2021580 doi: 10.3934/math.2021580
|
| [21] |
V. Kiryakova, A guide to special functions in fractional calculus, Mathematics, 9 (2021), 1–40. https://doi.org/10.3390/math9010106 doi: 10.3390/math9010106
|
| [22] | V. Kiryakova, A generalized fractional calculus and integral transforms, In: Generalized functions, convergence structures, and their applications, New York: Springer, 1988,205–217. https://doi.org/10.1007/978-1-4613-1055-6_20 |
| [23] |
X. H. Xie, Y. J. Huang, G. S. Han, Z. G. Yu, Y. L. Ma, Microbial characterization based on multifractal analysis of metagenomes, Front. Cell. Infect. Microbiol., 13 (2023), 1117421. https://doi.org/10.3389/fcimb.2023.1117421 doi: 10.3389/fcimb.2023.1117421
|
| [24] |
C. J. Silva, D. F. M. Torres, Stability of a fractional HIV/AIDS model, Math. Comput. Simulation, 164 (2019), 180–190. https://doi.org/10.1016/j.matcom.2019.03.016 doi: 10.1016/j.matcom.2019.03.016
|
| [25] |
S. Ullah, M. Altanji, M. A. Khan, A. Alshaheri, W. Sumelka, The dynamics of HIV/AIDS model with fractal-fractional Caputo derivative, Fractals, 31 (2023), 2340015. http://dx.doi.org/10.1142/S0218348X23400157 doi: 10.1142/S0218348X23400157
|
| [26] | S. Z. Wang, B. Y. Li, Z. M. Gao, K. Iski, Some fixed point theorems on expansion mappings, Math. Japonica, 29 (1984), 631–636. |
| [27] |
R. A. Weiss, How does HIV cause AIDS? Science, 260 (1993), 1273–1279. http://dx.doi.org/10.1126/science.8493571 doi: 10.1126/science.8493571
|
| [28] |
T. Xiang, R. Yuan, A class of expansive-type Krasnosel'skii fixed point theorems, Nonlinear Anal., 71 (2009), 3229–3239. http://dx.doi.org/10.1016/j.na.2009.01.197 doi: 10.1016/j.na.2009.01.197
|
| [29] |
B. Acay, E. Bas, T. Abdeljawad, Fractional economic models based on market equilibrium in the frame of different type kernels, Chaos Solitons Fract., 130 (2020), 109438. https://doi.org/10.1016/j.chaos.2019.109438 doi: 10.1016/j.chaos.2019.109438
|
| [30] |
S. Ahmad, A. Ullah, Q. M. Al-Mdallal, H. Khan, K. Shah, A. Khan, Fractional order mathematical modeling of COVID-19 transmission, Chaos Solitons Fract., 139 (2020), 110256. http://dx.doi.org/10.1016/j.chaos.2020.110256 doi: 10.1016/j.chaos.2020.110256
|
| [31] |
T. Alinei-Poiana, E. H. Dulf, L. Kovacs, Fractional calculus in mathematical oncology, Sci. Rep., 13 (2023), 10083. http://dx.doi.org/10.1038/s41598-023-37196-9 doi: 10.1038/s41598-023-37196-9
|