This study investigated the boundary controllability of nonlinear impulsive integro-differential evolution systems (NIIESs) with time-varying delays within Banach spaces. Two classes of NIIESs were considered, and sufficient conditions for their controllability were established using fixed point theorems and semigroup theory. For the first class, Schaefer's fixed point theorem was employed in combination with compact semigroup theory, whereas for the second class, Schauder's fixed point theorem was utilized. The research defined essential hypotheses and mathematical structures to ensure the robustness and applicability of the results. Illustrative examples were provided to confirm the applicability and effectiveness of the developed theoretical framework. This work significantly contributes to the study of partial functional integro-differential equations in nonlinear systems, particularly systems influenced by impulsive effects and time delays, addressing gaps in the existing literature.
Citation: Kamalendra Kumar, Rohit Patel, Mohammad Sajid, Rakesh Kumar. An analysis on the boundary control for nonlinear integro-differential evolution systems with impulsive effects and time delays via fixed point theorems[J]. AIMS Mathematics, 2025, 10(6): 14347-14371. doi: 10.3934/math.2025646
This study investigated the boundary controllability of nonlinear impulsive integro-differential evolution systems (NIIESs) with time-varying delays within Banach spaces. Two classes of NIIESs were considered, and sufficient conditions for their controllability were established using fixed point theorems and semigroup theory. For the first class, Schaefer's fixed point theorem was employed in combination with compact semigroup theory, whereas for the second class, Schauder's fixed point theorem was utilized. The research defined essential hypotheses and mathematical structures to ensure the robustness and applicability of the results. Illustrative examples were provided to confirm the applicability and effectiveness of the developed theoretical framework. This work significantly contributes to the study of partial functional integro-differential equations in nonlinear systems, particularly systems influenced by impulsive effects and time delays, addressing gaps in the existing literature.
| [1] | A. M. Samoilenko, N. A. Perestyuk, Impulsive differential equations, Singapore: World Scientific, 1995. https://doi.org/10.1142/2892 |
| [2] |
Z. He, Impulsive state feedback control of a predator—prey system with group defense, Nonlinear Dyn., 79 (2015), 2699–2714. https://doi.org/10.1007/s11071-014-1841-z doi: 10.1007/s11071-014-1841-z
|
| [3] |
A. Kumar, M. Malik, M. Sajid, D. Baleanu, Existence of local and global solutions to fractional order fuzzy delay differential equation with non-instantaneous impulses, AIMS Mathematics, 7 (2022), 2348–2369. http://doi.org/10.3934/math.2022133 doi: 10.3934/math.2022133
|
| [4] |
J. Lou, Y. Lou, J. Wu, Threshold virus dynamics with impulsive antiretroviral drug effects, J. Math. Biol., 65 (2012), 623–652. https://doi.org/10.1007/s00285-011-0474-9 doi: 10.1007/s00285-011-0474-9
|
| [5] | E. D. Sontag, Mathematical control theory, Berlin, Heidelberg: Springer-Verlag, 1990. |
| [6] | R. E. Kalman, Mathematical description of linear dynamicnl systems, J. SIAM Control, 1 (1963), 152–192. |
| [7] |
M. A. Diallo, K. Ezzinbi, A. Sene, Controllability for some integro-differential evolution equations in Banach spaces, Discuss. Math. Differ. Inclusions Control Optim, 37 (2017), 69–81. https://doi.org/10.7151/dmdico.1191 doi: 10.7151/dmdico.1191
|
| [8] |
D. N. Chalishajar, R. K. George, A. K. Nandakumaran, F. S. Acharya, Trajectory controllability of nonlinear integro-differential system, J. Franklin I., 347 (2010), 1065–1075. https://doi.org/10.1016/j.jfranklin.2010.03.014 doi: 10.1016/j.jfranklin.2010.03.014
|
| [9] |
Z. You, M. Fečkan, J. Wang, D. O'Regan, Relative controllability of impulsive multi-delay differential systems, Nonlinear Anal-Model., 27 (2022), 70–90. https://doi.org/10.15388/namc.2022.27.24623 doi: 10.15388/namc.2022.27.24623
|
| [10] |
H. Leiva, D. Cabada, R. Gallo, Roughness of the controllability for time varying systems under the influence of impulses, delay and nonlocal conditions, Nonauton. Dyn. Syst., 7 (2020), 126–139. https://doi.org/10.1515/msds-2020-0106 doi: 10.1515/msds-2020-0106
|
| [11] |
M. Ghasemi, K. Nassiri, Controllability of linear fractional systems with delay in control, J. Funct. Spaces, 2022 (2022), 5539770. https://doi.org/10.1155/2022/5539770 doi: 10.1155/2022/5539770
|
| [12] |
K. Jeet, Approximate controllability for finite delay nonlocal neutral integro-differential equations using resolvent operator theory, Proc. Math. Sci., 130 (2020), 62. https://doi.org/10.1007/s12044-020-00576-6 doi: 10.1007/s12044-020-00576-6
|
| [13] |
P. Muthukumar, P. Balasubramaniam, Approximate controllability of nonlinear stochastic evolution system with time varying delays, J. Franklin I., 346 (2009), 65–80. https://doi.org/10.1016/j.jfranklin.2008.06.007 doi: 10.1016/j.jfranklin.2008.06.007
|
| [14] |
H. Huang, X. Fu, Approximate controllability of semi-linear neutral integro-differential equations with nonlocal conditions, J. Dyn. Control Syst., 26 (2020), 127–147. https://doi.org/10.1007/s10883-019-09438-5 doi: 10.1007/s10883-019-09438-5
|
| [15] | T. Lian, Z. Fan, G. Li, Necessary and sufficient conditions for the approximate controllability of fractional linear systems via C–semigroups, Filomat, 36 (2022), 1451–1460. |
| [16] |
T. Gunasekar, P. Raghavendran, S. S. Santra, M. Sajid, Existence and controllability results for neutral fractional Volterra-Fredholm integro-differential equations, J. Math. Comput. Sci., 34 (2024), 361–380. http://doi.org/10.22436/jmcs.034.04.04 doi: 10.22436/jmcs.034.04.04
|
| [17] |
K. D. Do, J. Pan, Boundary control of three-dimensional inextensible marine risers, J. Sound Vib., 327 (2009), 299–321. https://doi.org/10.1016/j.jsv.2009.07.009 doi: 10.1016/j.jsv.2009.07.009
|
| [18] | X. M. Cao, Boundary controllability for a nonlinear beam equation, Electron. J. Differ. Eq., 2015 (2015), 239. |
| [19] |
S. Gu, F. Pasqualetti, M. Cieslak, Q. K. Telesford, A. B. Yu, A. E. Kahn, et al., Controllability of structural brain networks, Nat. Commun., 6 (2015), 8414. https://doi.org/10.1038/ncomms9414 doi: 10.1038/ncomms9414
|
| [20] | I. Lasiecka, R. Triggiani, Abstract parabolic systems, In: Control theory for partial differential equations: Continuous and approximation theories. I, Cambridge: Cambridge University Press, 2000. https://doi.org/10.1017/CBO9781107340848 |
| [21] | I. Lasiecka, R. Triggiani, Abstract hyperbolic-like systems over a finite time horizon, In: Control theory for partial differential equations: Continuous and approximation theories. II, Cambridge: Cambridge University Press, 2000. https://doi.org/10.1017/CBO9780511574801 |
| [22] |
I. Lasiecka, Unified theory for abstract parabolic boundary problems—A semigroup approach, Appl. Math. Optim., 6 (1980), 287–333. https://doi.org/10.1007/BF01442900 doi: 10.1007/BF01442900
|
| [23] |
T. I. Seidman, Regularity of optimal boundary controls for parabolic equations, I. analyticity, SIAM J. Control Optim., 20 (1982), 428–453. https://doi.org/10.1137/0320033 doi: 10.1137/0320033
|
| [24] |
R. Triggiani, Sharp regularity theory of second order hyperbolic equations with Neumann boundary control non-smooth in space, Evol. Equ. Control The., 5 (2016), 489–514. https://doi.org/10.3934/eect.2016016 doi: 10.3934/eect.2016016
|
| [25] |
H. O. Fattorini, Boundary control systems, SIAM J. Control Optim., 6 (1968), 349–385. https://doi.org/10.1137/0306025 doi: 10.1137/0306025
|
| [26] | A. V. Balakrishnan, Boundary control of parabolic equations: L-Q-R theory, In: Proceedings of the fifth international summer school held at Berlin, Berlin, Boston: De Gruyter, 1977. https://doi.org/10.1515/9783112573921-002 |
| [27] |
V. Barbu, Boundary control problems with convex cost criterion, SIAM J. Control Optim., 18 (1980), 227–243. https://doi.org/10.1137/0318016 doi: 10.1137/0318016
|
| [28] |
K. Balachandran, E. R. Anandhi, Boundary controllability of integro-differential systems in Banach spaces, Proc. Math. Sci., 111 (2001), 127–135. https://doi.org/10.1007/BF02829544 doi: 10.1007/BF02829544
|
| [29] |
H. M. Ahmed, Boundary controllability of nonlinear fractional integro-differential systems, Adv. Differ. Equ., 2010 (2010), 279493. https://doi.org/10.1155/2010/279493 doi: 10.1155/2010/279493
|
| [30] | K. Kumar, R. Kumar, Boundary controllability of fractional order nonlocal semi-linear neutral evolution systems with impulsive condition, Discontinuity Nonlinearity Complexity, 8 (2019), 419–428. |
| [31] |
Y. Ma, K. Kumar, R Kumar, R. Patel, A. Shukla. V. Vijayakumar, Discussion on boundary controllability of nonlocal fractional neutral integro-differential evolution systems, AIMS Mathematics, 7 (2022), 7642–7656. https://doi.org/10.3934/math.2022429 doi: 10.3934/math.2022429
|
| [32] | S. Sutrima, M. Mardiyana, Respatiwulan, W. Sulandari, M. Yunianto, Approximate controllability of non-autonomous mixed boundary control systems, In: AIP Conference Proceedings, 2021, 020037. https://doi.org/10.1063/5.0039274 |
| [33] |
N. Carreno, E. Cerpa, A. Mercado, Boundary controllability of a cascade system coupling fourth- and second-order parabolic equations, Syst. Control Lett., 133 (2019), 104542. https://doi.org/10.1016/j.sysconle.2019.104542 doi: 10.1016/j.sysconle.2019.104542
|
| [34] |
J. Wang, L. Tian, Boundary controllability for the time –fractional nonlinear Korteweg-de Vries (KDV) equation, J. Appl. Anal. Comput., 10 (2020), 411–426. http://doi.org/10.11948/20180018 doi: 10.11948/20180018
|
| [35] |
K. Kumar, R. Patel, V. Vijayakumar, A. Shukla, C. Ravichandran, A discussion on boundary controllability of nonlocal impulsive neutral integro-differential evolution equation, Math. Method. Appl. Sci., 45 (2022), 8193–8215. https://doi.org/10.1002/mma.8117 doi: 10.1002/mma.8117
|
| [36] |
B. Radhakrishnan, P. Chandru, Boundary controllability of impulsive integrodifferential evolution systems with time-varying delays, J. Taibah Univ. Sci., 12 (2018), 520–531. https://doi.org/10.1080/16583655.2018.1496395 doi: 10.1080/16583655.2018.1496395
|
| [37] |
R. M. Lizzy, K. Balachandran, Boundary controllability of nonlinear stochastic fractional systems in Hilbert spaces, Int. J. Appl. Math. Comput. Sci., 28 (2018), 123–133. https://doi.org/10.2478/amcs-2018-0009 doi: 10.2478/amcs-2018-0009
|
| [38] |
H. M. Ahmed, M. M. El-Borai, M. E. Ramadan Boundary controllability of nonlocal Hilfer fractional stochastic differential systems with fractional Brownian motion and Poisson jumps, Adv. Differ. Equ., 2019 (2019), 82. https://doi.org/10.1186/s13662-019-2028-1 doi: 10.1186/s13662-019-2028-1
|
| [39] |
Y. Li, Z. Rui, B. Hu, Monotone iterative and quasilinearization method for a nonlinear integral impulsive differential equation, AIMS Mathematics, 10 (2025), 21–37. https://doi.org/10.3934/math.2025002 doi: 10.3934/math.2025002
|
| [40] |
B. Hu, Y. Qiu, W. Zhou, L. Zhu, Existence of solution for an impulsive differential system with improved boundary value conditions, AIMS Mathematics, 8 (2023), 17197–17207. https://doi.org/10.3934/math.2023878 doi: 10.3934/math.2023878
|
| [41] | S. M. Rankin Ⅲ, Semilinear evolution equations in Banach spaces with application to parabolic partial differential equations, Trans. Amer. Math. Soc., 336 (1993), 523–535. |
| [42] |
R. C. Cascaval, C. D'Apice, M. P. D'Arienzo, R. Manzo, Boundary control for an arterial system, J. Fluid Flow Heat Mass Trans., 3 (2016), 25–33. https://doi.org/10.11159/jffhmt.2016.004 doi: 10.11159/jffhmt.2016.004
|
| [43] |
K. D. Do, J. Pan, Boundary control of flexible marine risers, IFAC Proc. Volumes, 41 (2008), 6050–6055. https://doi.org/10.3182/20080706-5-KR-1001.01021 doi: 10.3182/20080706-5-KR-1001.01021
|
| [44] | A. Pazy, Semigroups of linear operators and applications to partial differential equations, New York: Springer New, 1983. |
| [45] | K. Kumar, R. Kumar, Controllability of sobolev type nonlocal impulsive mixed functional integro-differential evolution systems, Electron. J. Math. Anal. Appl., 3 (2015), 122–132. |
| [46] |
H. Schaefer, Uber die methods der a Priori Schranken, Math. Ann., 129 (1955), 415–416. https://doi.org/10.1007/BF01362380 doi: 10.1007/BF01362380
|
| [47] |
D. Washburn, A bound on the boundary input map for parabolic equations with application to time optimal control, SIAM J. Control Optim., 17 (1979), 652–671. https://doi.org/10.1137/0317046 doi: 10.1137/0317046
|