Research article

New oscillation results for noncanonical quasilinear differential equations of neutral type

  • Published: 23 June 2025
  • MSC : 34C10, 34K11

  • This article explored oscillation conditions for quasi-linear neutral differential equations of noncanonical form. By establishing new iterative monotonic properties of solutions, we derived novel oscillation criteria that extend and refine existing results in the literature. To illustrate the significance of our findings, we provided three concrete examples demonstrating the applicability of the proposed conditions.

    Citation: Hail S. Alrashdi, Fahd Masood, Ahmad M. Alshamrani, Sameh S. Askar, Monica Botros. New oscillation results for noncanonical quasilinear differential equations of neutral type[J]. AIMS Mathematics, 2025, 10(6): 14372-14391. doi: 10.3934/math.2025647

    Related Papers:

  • This article explored oscillation conditions for quasi-linear neutral differential equations of noncanonical form. By establishing new iterative monotonic properties of solutions, we derived novel oscillation criteria that extend and refine existing results in the literature. To illustrate the significance of our findings, we provided three concrete examples demonstrating the applicability of the proposed conditions.



    加载中


    [1] J. K. Hale, Theory of Functional Differential Equations, 2004, New York: Springer, 1977. https://doi.org/10.1007/978-1-4612-9892-2
    [2] M. Braun, Qualitative Theory of Differential Equations: Differential Equations and Their Applications, New York: Springer, 1993.
    [3] A. Zafer, Oscillatory and nonoscillatory properties of solutions of functional differential equations and difference equations, Iowa State University, PhD Thesis, 1992. https://doi.org/10.31274/rtd-180813-12264
    [4] Y. S. Yılmaz, A. Zafer, Bounded oscillation of nonlinear neutral differential equations of arbitrary order, Czechoslovak Math. J., 51 (2001), 185–195. https://doi.org/10.1023/A:1013763409361 doi: 10.1023/A:1013763409361
    [5] J. R. Graef, M. K. Grammatikopoulos, P.W. Spikes, On the asymptotic behavior of solutions of a second order nonlinear neutral delay differential equation, J. Math. Anal. Appl., 156 (1991), 23–39. https://doi.org/10.1016/0022-247x(91)90379-e doi: 10.1016/0022-247x(91)90379-e
    [6] B. Qaraad, O. Bazighifan, O. T. A. Nofal, A. H. Ali, Neutral differential equations with distribution deviating arguments: Oscillation conditions, J. Ocean Eng. Sci., 2022, In press. https://doi.org/10.1016/j.joes.2022.06.032
    [7] F. Masood, O. Moaaz, S.S. Santra, U. Fernandez-Gamiz, H.A. El-Metwally, Oscillation theorems for fourth-order quasi-linear delay differential equations, AIMS Mathematics, 8 (2023), 16291–16307. https://doi.org/10.3934/math.2023834 doi: 10.3934/math.2023834
    [8] G.S. Ladde, V. Lakshmikantham, B.G. Zhang, Oscillation Theory of Differential Equations with Deviating Arguments, New York: Marcel Dekker, 1987.
    [9] I. Gyori, G. Ladas, Oscillation Theory of Delay Differential Equations with Applications, Oxford: Clarendon Press, 1991. https://doi.org/10.1093/oso/9780198535829.001.0001
    [10] R. P. Agarwal, M. Bohner, W.-T. Li, Nonoscillation and oscillation: Theory for functional differential equations, Boca Raton: CRC Press, 2004. https://doi.org/10.1201/9780203025741
    [11] S. Saker, Oscillation Theory of Delay Differential and Difference Equations: Second and Third Orders, Saarbrücken: Lambert Academic Publishing, 2010.
    [12] P. Drábek, A. Kufner, K. Kuliev, Oscillation and nonoscillation results for solutions of half-linear equations with deviated argument, J. Math. Anal. Appl., 447 (2016), 371–382. https://doi.org/10.1016/j.jmaa.2016.10.019 doi: 10.1016/j.jmaa.2016.10.019
    [13] J. Džurina, I. Jadlovská, I. P. Stavroulakis, Oscillatory results for second-order noncanonical delay differential equations, Opusc. Math., 39 (2019), 483–495. https://doi.org/10.7494/opmath.2019.39.4.483 doi: 10.7494/opmath.2019.39.4.483
    [14] M. Alatwi, O. Moaaz, W. Albalawi, F. Masood, H. El-Metwally, Asymptotic and Oscillatory Analysis of Fourth-Order Nonlinear Differential Equations with p-Laplacian-like Operators and Neutral Delay Arguments, Mathematics, 12 (2024), 470. https://doi.org/10.3390/math12030470 doi: 10.3390/math12030470
    [15] G. E. Chatzarakis, S. R. Grace, I. Jadlovská, On the sharp oscillation criteria for half-linear second-order differential equations with several delay arguments, Appl. Math. Comput., 397 (2021), 125915. https://doi.org/10.1016/j.amc.2020.125915 doi: 10.1016/j.amc.2020.125915
    [16] B. Almarri, F. Masood, A. Muhib, O. Moaaz, New Comparison Results for Oscillation of Even-Order Delay Differential Equations, Symmetry, 14 (2022), 946. https://doi.org/10.3390/sym14050946 doi: 10.3390/sym14050946
    [17] I. Jadlovská, New Criteria for Sharp Oscillation of Second-Order Neutral Delay Differential Equations, Mathematics, 9 (2021), 2089. https://doi.org/10.3390/math9172089 doi: 10.3390/math9172089
    [18] F. Masood, C. Cesarano, O. Moaaz, S. S. Askar, A. M. Alshamrani, H. El-Metwally, Kneser-Type Oscillation Criteria for Half-Linear Delay Differential Equations of Third Order, Symmetry, 15 (2023), 1994. https://doi.org/10.3390/sym15111994 doi: 10.3390/sym15111994
    [19] B. Qaraad B, O. Bazighifan, A. H. Ali, A. A. Al-Moneef, A. J. Alqarni, K. Nonlaopon, Oscillation Results of Third-Order Differential Equations with Symmetrical Distributed Arguments, Symmetry, 14 (2022), 2038. https://doi.org/10.3390/sym14102038 doi: 10.3390/sym14102038
    [20] O. Moaaz, F. Masood, C. Cesarano, S. A. M. Alsallami, E. M. Khalil, M. L. Bouazizi, Neutral Differential Equations of Second-Order: Iterative Monotonic Properties, Mathematics, 10 (2022), 1356. https://doi.org/10.3390/math10091356 doi: 10.3390/math10091356
    [21] M. K. Grammatikopoulos, G. Ladas, A. Meimaridou, Oscillation of second order neutral delay differential equation, Rad. Mat., 1 (1985), 267–274.
    [22] R. Xu, Y. Xia, A Note on the Oscillation of Second-Order Nonlinear Neutral Functional Differential Equations 1, Int. J. Contemp. Math. Sci., 3 (2008), 1441–1450.
    [23] S. R. Grace, B.S. Lalli, Oscillation of nonlinear second order neutral delay differential equations, Rad. Math., 3 (1987), 77–84.
    [24] S. R. Grace, J. R. Graef, T. Li, E. Tunç, Oscillatory behavior of second-order nonlinear noncanonical neutral differential equations, Acta Univ. Sapientiae Math., 15 (2023), 259–271. https://doi.org/10.2478/ausm-2023-0014 doi: 10.2478/ausm-2023-0014
    [25] M. Bohner, S. Grace, I. Jadlovská, Oscillation criteria for second-order neutral delay differential equations, Electron. J. Qual. Theory Differ. Equ., 2017 (2017), 1–12. https://doi.org/10.14232/ejqtde.2017.1.60 doi: 10.14232/ejqtde.2017.1.60
    [26] I. Jadlovska, G. E. Chatzarakis, E. Tunç, Kneser-type oscillation theorems for second-order functional differential equations with unbounded neutral coefficients, Math. Slovaca, 74 (2024), 637–664. https://doi.org/10.1515/ms-2024-0049 doi: 10.1515/ms-2024-0049
    [27] A. Nabih, A. Al-Jaser, O. Moaaz, Neutral Emden-Fowler Differential equation of second order: Oscillation Criteria of Coles type, Symmetry, 16 (2024), 931. https://doi.org/10.3390/sym16070931 doi: 10.3390/sym16070931
    [28] A. Al-Jaser, O. Moaaz, Second-order general Emden-Fowler differential equations of neutral type: Improved Kamenev-type oscillation criteria, Electron. Res. Arch., 32 (2024), 5231–5248. https://doi.org/10.3934/era.2024241 doi: 10.3934/era.2024241
    [29] O. Moaaz, C. Park, E.M. Elabbasy, W. Muhsin, New oscillation criteria for second-order neutral differential equations with distributed deviating arguments, Bound. Value Probl., 2021 (2021), 35. https://doi.org/10.1186/s13661-021-01512-x doi: 10.1186/s13661-021-01512-x
    [30] A. Al Themairi, B. Qaraad, O. Bazighifan, K. Nonlaopon, New conditions for testing the oscillation of third-order differential equations with distributed arguments, Symmetry, 14 (2022), 2416. https://doi.org/10.3390/sym14112416 doi: 10.3390/sym14112416
    [31] S. Althobati, J. Alzabut, O. Bazighifan, Non-Linear Neutral Differential Equations with Damping: Oscillation of Solutions, Symmetry, 13 (2021), 285. https://doi.org/10.3390/sym13020285 doi: 10.3390/sym13020285
    [32] O. Moaaz, G.E. Chatzarakis, T. Abdeljawad, C. Cesarano, A. Nabih, Amended oscillation criteria for second-order neutral differential equations with damping term, Adv. Differ. Equ., 2020 (2020), 553. https://doi.org/10.1186/s13662-020-03013-0 doi: 10.1186/s13662-020-03013-0
    [33] B. Baculíková, Oscillatory behavior of the second order noncanonical differential equations, Electron. J. Qual. Theory Differ. Equ., 2019 (2019), 1–11. https://doi.org/10.14232/ejqtde.2019.1.89 doi: 10.14232/ejqtde.2019.1.89
    [34] I. T. Kiguradze, T. A. Chanturia, Asymptotic properties of solutions of nonautonomous ordinary differential equations, Dordrecht: Kluwer Academic Publishers Group, 1993. https://doi.org/10.1007/978-94-011-1808-8
    [35] O. Moaaz, C. Cesarano, B. Almarri, An Improved Relationship between the Solution and Its Corresponding Function in Fourth-Order Neutral Differential Equations and Its Applications, Mathematics, 11 (2023), 1708. https://doi.org/10.3390/math11071708 doi: 10.3390/math11071708
    [36] B. Batiha, N. Alshammari, F. Aldosari, F. Masood, O. Bazighifan, Nonlinear neutral delay differential equations: Novel criteria for oscillation and asymptotic behavior, Mathematics, 13 (2025), 147. https://doi.org/10.3390/math13010147 doi: 10.3390/math13010147
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(696) PDF downloads(60) Cited by(0)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog