This study explores the asymptotic and oscillatory behavior of solutions to third-order functional differential equations. By employing Riccati transformation, we effectively eliminate the possibility of nonoscillatory solutions, allowing for the development of oscillation criteria that are applicable to a broad range of equation models. A key objective of this work is to relax traditional constraints commonly imposed on these criteria, thereby enhancing their general applicability. The results presented not only refine and extend existing theories but also contribute to a deeper understanding of the subject. Practical implications of the theoretical findings are demonstrated through several illustrative examples, highlighting their relevance and potential applications.
Citation: Asma Al-Jaser, Inas Ibrhim, Faizah Alharbi, Belgees Qaraad, Dimplekumar Chalishajar. New oscillation criteria for third-order functional differential equations with general delay argument[J]. AIMS Mathematics, 2025, 10(12): 29319-29341. doi: 10.3934/math.20251288
This study explores the asymptotic and oscillatory behavior of solutions to third-order functional differential equations. By employing Riccati transformation, we effectively eliminate the possibility of nonoscillatory solutions, allowing for the development of oscillation criteria that are applicable to a broad range of equation models. A key objective of this work is to relax traditional constraints commonly imposed on these criteria, thereby enhancing their general applicability. The results presented not only refine and extend existing theories but also contribute to a deeper understanding of the subject. Practical implications of the theoretical findings are demonstrated through several illustrative examples, highlighting their relevance and potential applications.
| [1] | A. Bacciotti, L. Rosier, Liapunov functions and stability in control theory, 2Eds, Berlin, Heidelberg: Springer, 2005. https://doi.org/10.1007/b139028 |
| [2] |
H. Tsukamoto, S. J. Chung, J. J. E. Slotine, Contraction theory for nonlinear stability analysis and learning-based control: A tutorial overview, Annu. Rev. Control, 52 (2021), 135–169. https://doi.org/10.1016/j.arcontrol.2021.10.001 doi: 10.1016/j.arcontrol.2021.10.001
|
| [3] |
I. Jadlovská, G. E. Chatzarakis, J. Džurina, S. R. Grace, On sharp oscillation criteria for general third-order delay differential equations, Mathematics, 9 (2021), 1675. https://doi.org/10.3390/math9141675 doi: 10.3390/math9141675
|
| [4] |
J. R. Graef, I. Jadlovská, E. Tunç, Sharp asymptotic results for third-order linear delay differential equations, J. Appl. Anal. Comput., 11 (2021), 2459–2472. https://doi.org/10.11948/20200417 doi: 10.11948/20200417
|
| [5] |
S. R. Grace, Oscillation criteria for third order nonlinear delay differential equations with damping, Opuscula Math., 35 (2015), 485–497. https://doi.org/10.7494/OpMath.2015.35.4.485 doi: 10.7494/OpMath.2015.35.4.485
|
| [6] |
B. Baculíková, J. Džurina, Oscillation of the third order Euler differential equation with delay, Math. Bohem., 139 (2014), 649–655. https://doi.org/10.21136/MB.2014.144141 doi: 10.21136/MB.2014.144141
|
| [7] | J. K. Hale, Theory of functional differential equations, 2Eds, New York: Springer, 1977. https://doi.org/10.1007/978-1-4612-9892-2 |
| [8] | R. C. Dorf, R. H. Bishop, Modern control systems, 13 Eds, Pearson Education, 2016. |
| [9] | W. Weaver, S. P. Timoshenko, D. H. Young, Vibration problems in engineering, Wiley, 1991. |
| [10] | K. Ogata, Modern control engineering, 5Eds, Prentice Hall, 2010. |
| [11] |
B. Batiha, N. Alshammari, F. Aldosari, F. Masood, O. Bazighifan, Asymptotic and oscillatory properties for even-order nonlinear neutral differential equations with damping term, Symmetry, 17 (2025), 87. https://doi.org/10.3390/sym17010087 doi: 10.3390/sym17010087
|
| [12] |
M. Aldiaiji, B. Qaraad, L. F. Iambor, E. M. Elabbasy, On the asymptotic behavior of class of third-order neutral differential equations with symmetrical and advanced argument, Symmetry, 15 (2023), 1165. https://doi.org/10.3390/sym15061165 doi: 10.3390/sym15061165
|
| [13] | R. P. Agarwal, S. R. Grace, D. O'Regan, Oscillation theory for difference and functional differential equations, Springer Dordrecht, 2000. https://doi.org/10.1007/978-94-015-9401-1 |
| [14] |
A. Al-Jaser, C. Cesarano, B. Qaraad, L. F. Iambor, Second-order damped differential equations with superlinear neutral term: New criteria for oscillation, Axioms, 13 (2024), 234. https://doi.org/10.3390/axioms13040234 doi: 10.3390/axioms13040234
|
| [15] | K. Gopalsamy, Stability and oscillations in delay differential equations of population dynamics, Springer Dordrecht, 1992. https://doi.org/10.1007/978-94-015-7920-9 |
| [16] |
J. Grawitter, R. van Buel, C. Schaaf, H. Stark, Dissipative systems with nonlocal delayed feedback control, New J. Phys., 20 (2018), 113010. https://doi.org/10.1088/1367-2630/aae998 doi: 10.1088/1367-2630/aae998
|
| [17] |
B. Baculíková, J. Džurina, Oscillation of third-order nonlinear differential equations, Appl. Math. Lett., 24 (2011), 466–470. https://doi.org/10.1016/j.aml.2010.10.043 doi: 10.1016/j.aml.2010.10.043
|
| [18] |
S. R. Grace, R. P. Agarwal, R. Pavani, E. Thandapani, On the oscillation of certain third-order nonlinear functional differential equations, Appl. Math. Comput., 202 (2008), 102–112. https://doi.org/10.1016/j.amc.2008.01.025 doi: 10.1016/j.amc.2008.01.025
|
| [19] |
S. H. Saker, J. Džurina, On the oscillation of certain class of third-order nonlinear delay differential equations, Math. Bohem., 135 (2010), 225–237. https://doi.org/10.21136/MB.2010.140700 doi: 10.21136/MB.2010.140700
|
| [20] |
B. Batiha, N. Alshammari, F. Aldosari, F. Masood, O. Bazighifan, Nonlinear neutral delay differential equations: Novel criteria for oscillation and asymptotic behavior, Mathematics, 13 (2025), 147. https://doi.org/10.3390/math13010147 doi: 10.3390/math13010147
|
| [21] |
F. Masood, S. Aljawi, O. Bazighifan, Novel iterative criteria for oscillatory behavior in nonlinear neutral differential equations, AIMS Mathematics, 10 (2025), 6981–7000. https://doi.org/10.3934/math.2025319 doi: 10.3934/math.2025319
|
| [22] |
T. Candan, Oscillation criteria and asymptotic properties of solutions of third-order nonlinear neutral differential equations, Math. Method. Appl. Sci., 38 (2015), 1379–1392. https://doi.org/10.1002/mma.3153 doi: 10.1002/mma.3153
|
| [23] |
T. Candan, Asymptotic properties of solutions of third-order nonlinear neutral dynamic equations, Adv. Differ. Equ., 2014 (2014), 35. https://doi.org/10.1186/1687-1847-2014-35 doi: 10.1186/1687-1847-2014-35
|
| [24] |
O. Özdemir, Ş. Kaya, Comparison theorems on the oscillation of third-order functional differential equations with mixed deviating arguments in neutral term, Differ. Equ. Appl., 14 (2022), 17–30. https://doi.org/10.7153/dea-2022-14-02 doi: 10.7153/dea-2022-14-02
|
| [25] |
A. Al Themairi, B. Qaraad, O. Bazighifan, K. Nonlaopon, New conditions for testing the oscillation of third-order differential equations with distributed arguments, Symmetry, 14 (2022), 2416. https://doi.org/10.3390/sym14112416 doi: 10.3390/sym14112416
|
| [26] |
S. R. Grace, New criteria on oscillatory behavior of third order half-linear functional differential equations, Mediterr. J. Math., 20 (2023), 180. https://doi.org/10.1007/s00009-023-02342-0 doi: 10.1007/s00009-023-02342-0
|
| [27] |
B. Baculíková, J. Džurina, Oscillation of third-order neutral differential equations, Math. Comput. Model., 52 (2010), 215–226. https://doi.org/10.1016/j.mcm.2010.02.011 doi: 10.1016/j.mcm.2010.02.011
|
| [28] |
Y. Wang, F. Meng, J. Gu, Oscillation criteria of third-order neutral differential equations with damping and distributed deviating arguments, Adv. Differ. Equ., 2021 (2021), 515. https://doi.org/10.1186/s13662-021-03661-w doi: 10.1186/s13662-021-03661-w
|
| [29] | Y. Tian, Y. Cai, Y. Fu, T. Li, Oscillation and asymptotic behavior of third-order neutral differential equations with distributed deviating arguments, Adv. Differ. Equ., 2015 (2015), 267. |
| [30] |
B. Karpuz, Ö. Öcalan, S. Öztürk, Comparison theorems on the oscillation and asymptotic behavior of higher-order neutral differential equations, Glasgow Math. J., 52 (2010), 107–114. https://doi.org/10.1017/S0017089509990188 doi: 10.1017/S0017089509990188
|
| [31] |
J. Džurina, S. R. Grace, I. Jadlovská, On nonexistence of Kneser solutions of third-order neutral delay differential equations, Appl. Math. Lett., 88 (2019), 193–200. https://doi.org/10.1016/j.aml.2018.08.016 doi: 10.1016/j.aml.2018.08.016
|
| [32] |
S. Y. Zhang, Q. R. Wang, Oscillation of second-order nonlinear neutral dynamic equations on times cales, Appl. Math. Comput., 216 (2010), 2837–2848. https://doi.org/10.1016/j.amc.2010.03.134 doi: 10.1016/j.amc.2010.03.134
|
| [33] |
C. G. Philos, On the existence of nonoscillatory solutions tending to zero at $\infty $ for differential equations with positive delays, Arch. Math., 36 (1981), 168–178. https://doi.org/10.1007/BF01223686 doi: 10.1007/BF01223686
|
| [34] | Y. Kitamura, T. Kusano, Oscillation of first-order nonlinear differential equations with deviating arguments, Proc. Amer. Math. Soc., 78 (1980), 64–68. |
| [35] | Z. Han, T. Li, C. Zhang, S. Sun, An oscillation criteria for third order neutral delay differential equations, J. Appl. Anal., 16 (2010), 295–303. |