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functional differential equations. By employing Riccati transformation, we effectively eliminate the
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1. Introduction

This paper deals with the oscillation of all solutions of the third-order delay differential equation(
ϱ (⊤) Q′′ (⊤)

)′
+ η (⊤) x (b (⊤)) = 0, ⊤ ≥ ⊤0 > 0, (1.1)

where
Q (⊤) = x (⊤) + R (⊤) x (ι (⊤)) , (1.2)
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and the following hypotheses are satisfied:

(I1) ϱ, η,R ∈ C ([⊤0,∞) ,R) , b ∈ C1 ([⊤0,∞) ,R) , ι ∈ C ([⊤0,∞) , (0,∞)) , and η (⊤) > 0;
(I2) ϱ > 0, ∫ ∞

⊤0

ϱ−1 (s) ds = ∞

and
0 ≤ R (⊤) ≤ R0 < ∞; (1.3)

(I3) b (⊤) ≤ ⊤, ι (⊤) ≤ ⊤, ι′ (⊤) ≥ ι0 > 0, lim⊤→∞ ι (⊤) = lim⊤→∞ b (⊤) = ∞, and

ι ◦ b = b ◦ ι. (1.4)

Definition 1.1. A solution of (1.1) is defined as nontrivial solutions of (1.1) x ∈ C ([⊤x,∞), [0,∞))
with ⊤x ≥ ⊤0, which satisfies (1.1) and ϱ (Q′′) ∈ C ([⊤x,∞), [0,∞)) on [⊤x,∞). Those solutions of
(1.1) exist on some half-line [⊤x,∞) and satisfy sup{|x (⊤)| : ⊤a ≤ ⊤ < ∞} > 0 for all ⊤a ≥ ⊤x.
A solution x is called oscillatory if it becomes either positive or negative. Otherwise, it is called a
nonoscillatory solution.

Definition 1.2. We say that (1.1) has property 𭟋 if any solution x of (1.1) is either oscillatory or satisfies

x (⊤)→ 0 as ⊤ → ∞. (1.5)

Control theory provides a rigorous framework for analyzing the dynamic behavior of systems
governed by differential equations, particularly in determining whether solutions remain bounded,
converge to equilibrium, or exhibit oscillatory patterns. Through techniques such as Lyapunov
stability analysis, frequency-domain methods, and feedback control design, it becomes possible to
predict and regulate the stability of solutions under varying initial conditions and system parameters.
Moreover, control-theoretic approaches enable the systematic suppression or amplification of
oscillatory behavior, ensuring that solutions align with desired performance criteria. This deep
connection highlights how control theory not only offers a set of analytical tools for understanding the
qualitative behavior of differential equations but also establishes practical strategies for engineering
stable and robust systems across diverse scientific and technological domains [1, 2].

Third-order delayed differential equations (DDEs) are mathematical models that describe systems
where the rate of change of a variable depends not only on its current state but also on its past
behavior, incorporating a time delay in the system’s response. These equations find broad applications
in diverse fields, including biology, engineering, economics, and physics, where delays play a crucial
role in shaping system dynamics. Unlike lower-order DDEs, third-order delayed equations involve
derivatives up to the third order, leading to more intricate and complex dynamical behaviors. The
presence of time delays introduces a non-local character to the system, as its future behavior is
influenced by past states. Third-order delayed DDEs are particularly valuable in modelling systems
such as control mechanisms with feedback, population dynamics with delayed effects, and electrical
circuits with delayed responses. For instance, the following equation:(

ϱ (⊤)
(
x′′ (⊤)

))′
+ η (⊤) x (b (⊤)) = 0
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can be used to model oscillatory mechanical systems that exhibit time-dependent properties and delays
in their responses. For instance, it is applicable in describing the vibrations of structures subjected to
external forces, where the system’s reaction is influenced by its previous states [3–6].

The oscillation theory of differential equations is a fundamental area of mathematical analysis, with
extensive applications across both science and engineering. Differential equations are foundational
in modelling dynamic systems, and understanding their oscillatory behavior is crucial for analyzing
complex phenomena such as mechanical vibrations, electrical circuits, and biological rhythms. By
studying the oscillatory properties of solutions, researchers can enhance the design of more efficient,
stable, and reliable systems. In electrical engineering, second-order linear differential equations are
used to describe the dynamics of RLC circuits, where oscillations in current and voltage significantly
impact the performance of signal processing devices, communication systems, and power networks.
Similarly, in mechanical engineering, oscillation theory plays a vital role in evaluating the stability of
structures subjected to periodic forces, such as bridges, buildings, and mechanical resonators.

Additionally, the study of oscillatory behavior is essential in control theory, where uncontrolled
oscillations—such as those observed in aircraft autopilots or robotic systems—can lead to instability
and degraded performance. Engineers utilise differential equations to analyze and mitigate these
undesirable oscillations, ensuring the stable and efficient operation of automated systems [7–12].

A powerful method for studying oscillatory properties is the comparison principle, which allows
the derivation of oscillation criteria by comparing a given equation with a well-established auxiliary
equation. This approach simplifies the analysis by utilizing known results from lower-order or related
differential equations. The oscillation of third-order differential equations, in particular, has been
extensively explored using this principle, resulting in significant theoretical advancements. Notably,
Agarwal et al. [13] developed foundational comparison theorems for third-order linear differential
equations, introducing oscillation criteria based on corresponding second-order equations.

The condition (1.3) is critical for ensuring both the stability of the model and its relevance to
real-world systems, such as delayed feedback control mechanisms and population dynamics. This
more flexible constraint serves as a generalization of stricter conditions, such as R (⊤) ∈ [0, 1), which
is often difficult to implement or overly restrictive in practical applications. In the context of
population dynamics, a similar degree of flexibility is essential. Ecological models often involve
feedback mechanisms where interaction strengths can vary depending on factors like environmental
conditions or population densities. The condition (1.3) ensures that these interactions remain within a
plausible range, enabling the model to capture both immediate and delayed effects of population
changes while avoiding unrealistic outcomes, such as unbounded growth or decay [14–16].

In particular, the oscillatory properties of the differential equation(
ϱ (⊤)

(
Q′′ (⊤)

))′
+ f (x (b (⊤))) = 0

were tested by using the comparison principle in [17–21]. Also, the authors in [22] and [23] studied
different oscillation criteria of the equation(

ϱ (⊤)
(
Q̃ (⊤)

)′′)′
+ η (⊤) x (b (⊤)) = 0, (1.6)

where
Q̃ (⊤) = x (⊤) + R (⊤) x (ι (⊤))
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in the case where
0 ≤ R (⊤) ≤ R0 < 1. (1.7)

Building upon these foundational results, Özdemir and Kaya [24] introduced novel comparison
theorems for third-order functional differential equations with mixed neutral terms, thereby broadening
the oscillation criteria to encompass equations with deviating arguments(

ϱ (⊤)
(
Q̃ (⊤)

)′′)′
+ η (⊤) x (b (⊤)) = 0,

where
Q̃ (⊤) = x (⊤) + R1 (⊤) x (ι (⊤)) + R2 (⊤) x (ι (⊤)) .

On the other hand, Al Themairi et al. [25] studied third-order nonlinear delay differential equations
with distributed arguments

(
ϱ (⊤)

(
(x (⊤) + R (⊤) x (ι (⊤)))′′

)α)′
+

∫ n

m
η (⊤, s) x (b (⊤, s)) ds = 0,

where α > 0 is the ratio of odd positive integers. By applying the comparison principle, they derived
sufficient conditions to guarantee the nonexistence of positive decreasing solutions, thus establishing
new oscillation criteria for this class of equations. Moreover, Grace [26] studied the delay differential
equations (

ϱ (⊤)
(
x′′ (⊤)

)α)′
− η1 (⊤) xα (b (⊤)) − η2 (⊤) xα (w (⊤)) = 0,

where α ≥ 1 is the ratio of odd positive integers and w (⊤) ≥ ⊤. The author established new oscillation
criteria through comparison with first-order equations whose oscillatory behavior is known.

For the neutral delay equation(
ϱ
(
Q′′

)µ)′ (⊤) + η (⊤) xµ (b (⊤)) = 0, (1.8)

where µ is a quotient of odd positive integers, and

0 ≤ R (⊤) ≤ R < 1,

the oscillation and asymptotic properties were discussed in [27, Corollary 1].

Theorem 1.1. [27, Corollary 1] Let x (⊤) be a solution of (1.8). Assume that ϱ′ (⊤) ≥ 0, and∫ ∞

⊤0

∫ ∞

υ

(
ϱ−1 (u)

∫ ∞

u
η̃ (s) ds

)1/µ

dudυ = ∞. (1.9)

If

lim inf
⊤→∞

⊤µ

ϱ (⊤)

∫ ∞

⊤

η (s)
b2µ (s)

sµ
ds >

(2µ)µ

(µ + 1)µ+1 (1 − R (s))µ
, (1.10)

then (1.1) has property 𭟋.
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On the other hand, several studies have established oscillation criteria for equation (1.1) and its
special cases using Riccati transformation techniques (see for example [28, 29]).

This paper introduces new insights into the oscillatory behavior of solutions of third-order
differential equations by extending classical results using advanced analytical techniques. We derive
precise oscillation criteria that apply to a broader range of equations, thus contributing to the
advancement of both the theoretical framework of oscillation theory and its practical applications in
various scientific disciplines. Specifically, our work refines the inequalities relating the function Q (⊤)
to its higher derivatives, providing more precise criteria that ensure the absence of non-oscillatory
solutions. Furthermore, we present criteria that guarantee oscillation without relying on the additional
constraints typically required in the existing literature, such as condition (1.7). The examples
mentioned in the final section highlight the novelty and effectiveness of our results.

2. Preliminary results

The following lemmas play a fundamental role in proving the subsequent results.

Lemma 2.1. [30, Lemma 3] Suppose that g1, g2, g3 ∈ C ([⊤0,∞),R) , lim⊤→∞ g1 (⊤) exists, g3 (⊤) ≤ ⊤,

lim
⊤→∞

g3 (⊤) = ∞ for all ⊤ ∈ [⊤0,∞),

and
lim inf
⊤→∞

g2 (⊤) > −1.

Moreover, assume that there is a function y ∈ C ([⊤∗,∞),R+), where ⊤∗ := min⊤∈[⊤0,∞) {g3 (⊤)} ,
such that

y (⊤) − g1 (⊤) − g2 (⊤) y (g3 (⊤)) = 0, for all ⊤ ∈ [⊤0,∞).

If lim sup⊤→∞ y (⊤) > 0, then
lim
⊤→∞

g1 (⊤) > 0.

Lemma 2.2. [31] Assume that x is a nonoscillatory solution of (1.1). Then the corresponding function
Q satisfies

Q (⊤) > 0, Q′′ (⊤) > 0,
(
ϱ (⊤)

(
Q′′ (⊤)

))′
≤ 0.

Moreover, there exist only two possible cases for the first derivative of Q:

Q′ (⊤) < 0 (2.1)

and
Q′ (⊤) > 0. (2.2)

3. Main results

In the section, we will adopt the following notation:

β1 (⊤,⊤1) =
∫ ⊤

⊤1

ϱ−1 (s) ds,

AIMS Mathematics Volume 10, Issue 12, 29319–29341.



29324

β2 (⊤,⊤1) =
∫ ⊤

⊤1

∫ s

⊤1

ϱ−1 (u) duds,

and
η̃ (⊤) = min{η (⊤) , η (ι (⊤))}. (3.1)

Lemma 3.1. Suppose that x (⊤) > 0 is a solution of Eq (1.1), and

lim
⊤→∞

x (⊤) , 0. (3.2)

If ∫ ∞

⊤0

∫ ∞

υ

(
ϱ−1 (ι (u))

∫ ∞

u
η̃ (s) ds

)
dudυ = ∞, (3.3)

then (2.2) holds.

Proof. Let x > 0 be a solution of (1.1). From (1.2), we see that(
ϱ (⊤)

(
Q′′ (⊤)

))′
= −η (⊤) x (b (⊤)) ≤ 0.

Using ι (⊤) ≤ ⊤, we have
ϱ (⊤)

(
Q′′ (⊤)

)
≤ ϱ (ι (⊤))

(
Q′′ (ι (⊤))

)
. (3.4)

Hence, (ϱ (⊤) (Q′′ (⊤)))′ ≤ 0 and has one sign. Also, Q′′ (⊤) has one sign, and so either Q′′ (⊤) > 0 or
Q′′ (⊤) < 0 for ⊤ ≥ ⊤1. Let Q′′ (⊤) < 0. Then there is a constant M > 0 such that

ϱ (⊤)
(
Q′′ (⊤)

)
+ M ≤ 0. (3.5)

Integrating (3.5) from ⊤1 to ⊤, we get

Q′ (⊤) − Q′ (⊤1) ≤ −M
∫ ⊤

⊤1

ϱ−1 (s) ds.

Therefore, lim⊤→∞ Q′ (⊤) = −∞. Using the fact that Q′ (⊤) and Q′′ (⊤) are negative, we note that
lim⊤→∞ Q (⊤) = −∞. This contradiction leads to Q′′ (⊤) > 0.

Now, Let Q′ (⊤) < 0. According to (1.1), we obtain

(
ϱ (⊤)

(
Q′′ (⊤)

))′
+

R0 (ϱ (ι (⊤)) (Q′′ (ι (⊤))))′

ι0
≤ −η (⊤) x (b (⊤)) − R0η (ι (⊤)) x (b (ι (⊤))) .

Set

Q̃ (⊤) =
(
ϱ (⊤)

(
Q′′ (⊤)

))′
+

R0 (ϱ (ι (⊤)) (Q′′ (ι (⊤))))′

ι0
.

That is,

Q̃ (⊤) ≤ − (η (⊤) x (b (⊤)) + R0η (ι (⊤)) x (b (ι (⊤))))

≤ −η̃ (⊤) (x (b (⊤)) + R0x (b (ι (⊤)))) .

In view of (3.1), we have
Q̃ (⊤) + Q (b (⊤)) η̃ (⊤) ≤ 0. (3.6)
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Integrating (3.6) from ⊤ to∞, we get

ϱ (⊤)
(
Q′′ (⊤)

)
+

R0ϱ (ι (⊤)) (Q′′ (ι (⊤)))
ι0

−

∫ ∞

⊤

Q (b (s)) η̃ (s) ds ≤ 0.

Using (3.4), we have

ϱ (ι (⊤))
(
Q′′ (ι (⊤))

)
−
ι0

ι0 + R0

∫ ∞

⊤

Q (b (s)) η̃ (s) ds ≥ 0.

Based on (3.2) and Lemma 2.1, and since Q (b (⊤)) ≥ L and lim⊤→∞ Q (⊤) = L > 0, then we obtain

Q′′ (ι (⊤)) −
Lι0
ι0 + R0

ϱ−1 (ι (u))
∫ ∞

⊤

∫ b

a
η̃ (s) ds ≥ 0.

Integrating from ⊤ to∞, we get

−
Q′ (ι (⊤))
ι0

−
Lι0
ι0 + R0

∫ ∞

⊤

ϱ−1 (ι (u))
∫ ∞

⊤

η̃ (s) dsdu ≥ 0. (3.7)

Integrating again (3.7) from ⊤1 to∞, we find

−
Q (ι (⊤1))
ι0

−
Lι0
ι0 + R0

∫ ∞

⊤1

∫ ∞

v
ϱ−1 (ι (u))

(∫ ∞

u
η̃ (s) ds

)
dudv ≥ 0,

which implies that Q′ (⊤) is positive. This completes the proof. □

Lemma 3.2. Suppose that Q is satisfied (2.2) for ⊤ ≥ ⊤1. Then

ϱ (⊤) β1 (⊤,⊤1) ≤
Q′ (⊤)
Q′′ (⊤)

, (3.8)

and

ϱ (⊤) β2 (⊤,⊤1) ≤
Q (⊤)

Q′′ (⊤)
. (3.9)

Proof. Since ϱ (⊤) (Q′′ (⊤)) is nonincreasing, we have

Q′ (⊤) ≥
∫ ⊤

⊤1

1
ϱ (s)

(
ϱ (s)

(
Q′′ (s)

))
ds ≥ ϱ (s)

(
Q′′ (s)

) ∫ ⊤

⊤1

1
ϱ (s)

ds,

which implies that

Q (⊤) − ϱ (s) Q′′ (s)
∫ ⊤

⊤1

(∫ s

⊤1

1
ϱ (u)

du
)

ds ≥ 0.

This completes the proof. □

In the following results, we will assume that there exists a function ρ ∈ C1 ([⊤0,∞) , (0,∞)) , for all
⊤1 ≥ ⊤0.
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Theorem 3.1. Suppose that (3.3) is satisfied, b (⊤) ≤ ι (⊤) , and b′ (⊤) > 0. If

lim sup
⊤→∞

∫ ⊤

⊤2

[
ρ (s) η̃ (s) −

(ι0 + R0)
4ι0b′ (s) ρ (s) β1 (b (s) ,⊤1)

((
ρ′ (s)

)
+

)2
]

ds = ∞, (3.10)

for ⊤2 > ⊤1, then (1.1) has property 𭟋.

Proof. Assume that x > 0 is a solution of (1.1). As in the proof of Lemma 3.1, from (2.2) in Lemma
2.2 and (3.6), and by using Lemma 3.2, we get (3.8). Set

ω (⊤) =
ϱ (⊤) Q′′ (⊤)

Q (b (⊤))
ρ (⊤) > 0. (3.11)

From Lemma 3.1, we see that

ω′ (⊤) =
ϱ (⊤) Q′′ (⊤)

Q (b (⊤))
ρ′ (⊤) +

(
ϱ (⊤) (Q′′ (⊤))

Q (b (⊤))

)′
ρ (⊤)

ϱ (⊤) Q′′ (⊤)
Q (b (⊤))

ρ′ (⊤) +
(ϱ (⊤) (Q′′ (⊤)))′

Q (b (⊤))
ρ (⊤)

−
ϱ (⊤) (Q′′ (⊤)) Q′ (b (⊤)) ρ (⊤) b′ (⊤)

Q2 (b (⊤))

=
ϱ (⊤) Q′′ (⊤)

Q (b (⊤))
ρ′ (⊤) +

(ϱ (⊤) (Q′′ (⊤)))′

Q (b (⊤))
ρ (⊤)

−
ϱ (⊤) Q′′ (⊤) Q′ (b (⊤))

Q2 (b (⊤))
ρ (⊤) b′ (⊤) . (3.12)

In view of (2.2), (3.8), and b (⊤) ≤ ⊤, we obtain

Q′ (b (⊤)) ≥ ϱ (b (⊤)) Q′′ (b (⊤)) β1 (b (⊤) ,⊤1)

≥
(
ϱ (⊤) Q′′ (⊤)

)
β1 (b (⊤) ,⊤1) .

Using (3.11) and (3.12), we get

ω′ (⊤) ≤ ρ (⊤)
(ϱ (⊤) (Q′′ (⊤)))′

Q (b (⊤))
+

1
ρ (⊤)

ρ′ (⊤)ω (⊤) −
β1 (b (⊤) ,⊤1)
ρ (⊤)

b′ (⊤)ω
2
(⊤) . (3.13)

Define another function as follows:

ν (⊤) =
ϱ (ι (⊤)) Q′′ (ι (⊤))

Q (b (⊤))
ρ (⊤) . (3.14)

That is, according to Lemma 3.1, ν (⊤) > 0, and

ν′ (⊤) = ρ′ (⊤)
ϱ (ι (⊤)) (Q′′ (ι (⊤)))

Q (b (⊤))
+ ρ (⊤)

(
ϱ (ι (⊤)) (Q′′ (ι (⊤)))

Q (b (⊤))

)′
= ρ′ (⊤)

ϱ (ι (⊤)) (Q′′ (ι (⊤)))
Q (b (⊤))

+
(ϱ (ι (⊤)) (Q′′ (ι (⊤))))′

Q (b (⊤))
ρ (⊤)

−
ϱ (ι (⊤)) (Q′′ (ι (⊤))) Q′ (b (⊤)) b′ (⊤) ρ (⊤)

Q2 (b (⊤))
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= ρ′ (⊤) ϱ (ι (⊤))
(Q′′ (ι (⊤)))

Q (b (⊤))
+

(ϱ (ι (⊤)) (Q′′ (ι (⊤))))′

Q (b (⊤))
ρ (⊤)

−ρ (⊤) ϱ (ι (⊤))
(
(Q′′ (ι (⊤))) Q′ (b (⊤))

Q2 (b (⊤))

)
b′ (⊤) . (3.15)

Taking (2.2) and (3.8) with the fact that b (⊤) ≤ ι (⊤) into account, we have

Q′ (b (⊤)) ≥
(
ϱ (b (⊤)) Q′′ (b (⊤))

)
β1 (b (⊤) ,⊤1) ≥

(
ϱ (ι (⊤)) Q′′ (ι (⊤))

)
β1 (b (⊤) ,⊤1) ,

which from (3.14) and (3.15) implies that

ν′ (⊤) ≤
(ϱ (ι (⊤)) (Q′′ (ι (⊤))))′

Q (b (⊤))
ρ (⊤) + ν (⊤)

(ρ′ (⊤))+
ρ (⊤)

− b′ (⊤) ν2 (⊤)
β1 (b (⊤) ,⊤1)
ρ (⊤)

. (3.16)

Using (3.13) and (3.16), we obtain

ω′ (⊤) + υ′ (⊤)
R0 (⊤)
ι0

≤
ρ (⊤)

Q (b (⊤))
(
ϱ (⊤)

(
Q′′ (⊤)

))′
+

R0 (ϱ (ι (⊤)) (Q′′ (ι (⊤))))′

ι0

+ω (⊤)
(ρ′ (⊤))
ρ (⊤)

− ω2 (⊤)
β1 (b (⊤) ,⊤1)
ρ (⊤)

b′ (⊤)

+
R0

ι0

[
υ (⊤)

(ρ′ (⊤))
ρ (⊤)

− υ2 (⊤)
β1 (b (⊤) ,⊤1)
ρ (⊤)

b′ (⊤)
]
. (3.17)

By (3.6) and (3.17), we have

ω′ (⊤) + υ′ (⊤)
R0

ι0
≤ −ρ (⊤) η̃ (s) + ω (⊤)

(ρ′ (⊤))+
ρ (⊤)

− ω2 (⊤)
β1 (b (⊤) ,⊤1) b′ (⊤)

ρ (⊤)

+
R0

ι0

[
υ (⊤)

(ρ′ (⊤))+
ρ (⊤)

− υ2 (⊤)
β1 (b (⊤) ,⊤1) b′ (⊤)

ρ (⊤)

]
. (3.18)

By applying the inequality stated in [32], namely,

B2

4A
≥ Bu − Au2, A > 0. (3.19)

That is

ρ (⊤)
4β1 (b (⊤) ,⊤1) b′ (⊤)

(
(ρ′ (⊤))+
ρ (⊤)

)2

≥ ω (⊤)
(
(ρ′ (⊤))+
ρ (⊤)

)
− ω2 (⊤)

(
β1 (b (⊤) ,⊤1) b′ (⊤)

ρ (⊤)

)
and

ρ (⊤)
4β1 (b (⊤) ,⊤1) b′ (⊤)

(
(ρ′ (⊤))+
ρ (⊤)

)2

≥ υ (⊤)
(
(ρ′ (⊤))+
ρ (⊤)

)
− υ2 (⊤)

(
β1 (b (⊤) ,⊤1) b′ (⊤)

ρ (⊤)

)
,

which implies that

ω′ (⊤) + υ′ (⊤)
R0

ι0
≤ −ρ (⊤) η̃ (s) +

1
4

(
(ρ′ (⊤))+

)2

ρ (⊤) b′ (⊤) β1 (b (⊤) ,⊤1)
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+
R0

4ι0

((ρ′ (⊤))+)2

ρ (⊤) b′ (⊤) β1 (b (⊤) ,⊤1)
. (3.20)

Integrating from ⊤2 to ⊤, we see that∫ ⊤

⊤2

ρ (s) η̃ (s) −
ι0 + R0

4ι0

(
(ρ′ (⊤))+

)2

ρ (⊤) b′ (s) β1 (b (s) ,⊤1)

 ds

≤ ω (⊤2) + v (⊤2)
R0

ι0
,

which is a contradiction with (3.10). The proof is complete. □

Theorem 3.2. Let (3.3) be satisfied and b (⊤) ≥ ι (⊤). If

lim sup
⊤→∞

∫ ⊤

⊤2

ρ (s) η̃ (s) −
(ι0 + ρ0)

(
(ρ′ (s))+

)2

4ι0ι′ (s) ρ (s) β1 (ι (s) ,⊤1)

 ds = ∞, (3.21)

for ⊤2 > ⊤1, then (1.1) has property 𭟋.

Proof. Assume that x > 0 is a solution of (1.1). As in the proof of Lemma 3.1, we get (2.2) in Lemma
2.2 and (3.6). By Lemma 3.2, we obtain (3.8). Define

ω (⊤) =
ϱ (⊤) Q′′ (⊤)

Q (ι (⊤))
ρ (⊤) . (3.22)

That is,

ω′ (⊤) =
ϱ (⊤) Q′′ (⊤)

Q (ι (⊤))
ρ′ (⊤) +

(
ϱ (⊤) (Q′′ (⊤))

Q (ι (⊤))

)′
ρ (⊤)

=
ϱ (⊤) Q′′ (⊤)

Q (ι (⊤))
ρ′ (⊤) +

(ϱ (⊤) (Q′′ (⊤)))′ ρ (⊤)
Q (ι (⊤))

−
ϱ (⊤) (Q′′ (⊤)) Q′ (ι (⊤)) ρ (⊤) ι′ (⊤)

Q2 (ι (⊤))

=
ϱ (⊤) Q′′ (⊤)

Q (ι (⊤))
ρ′ (⊤) +

(ϱ (⊤) (Q′′ (⊤)))′

Q (ι (⊤))
ρ (⊤)

−
ϱ (⊤) Q′′ (⊤) Q′ (ι (⊤))

Q2 (ι (⊤))
ρ (⊤) ι′ (⊤) . (3.23)

It follows from (2.2), (3.8), and ι (⊤) ≤ ⊤ that

Q′ (ι (⊤)) ≥ ϱ (ι (⊤)) Q′′ (ι (⊤)) β1 (ι (⊤) ,⊤1)

≥ ϱ (ι (⊤)) Q′′ (⊤) β1 (ι (⊤) ,⊤1) .

Using (3.22) and (3.23) gives

ω′ (⊤) ≤
(ϱ (⊤) (Q′′ (⊤)))′

Q (ι (⊤))
ρ (⊤) + ω (⊤)

ρ′ (⊤)
ρ (⊤)
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−ω2 (⊤)
ι′ (⊤) β1 (ι (⊤) ,⊤1)

ρ (⊤)
. (3.24)

Now, define the following positive function:

v (⊤) =
ϱ (ι (⊤)) Q′′ (ι (⊤))

Q (ι (⊤))
ρ (⊤) . (3.25)

That is

ν′ (⊤) =
(Q′′ (ι (⊤)))

Q (b (⊤))
ρ′ (⊤) ϱ (ι (⊤)) +

(
ϱ (ι (⊤)) (Q′′ (ι (⊤)))

Q (ι (⊤))

)′
ρ (⊤)

=
ϱ (ι (⊤)) (Q′′ (ι (⊤)))

Q (b (⊤))
ρ′ (⊤) +

(ϱ (ι (⊤)) (Q′′ (ι (⊤))))′ ρ (⊤)
Q (ι (⊤))

−
ϱ (ι (⊤)) (Q′′ (ι (⊤))) Q′ (ι (⊤))

Q2 (ι (⊤))
ρ (⊤) ι′ (⊤)

=
ϱ (ι (⊤)) Q′′ (ι (⊤))

Q (ι (⊤))
ρ′ (⊤) +

(ϱ (ι (⊤)) (Q′′ (ι (⊤))))′

Q (ι (⊤))
ρ (⊤)

−Q′′ (ι (⊤))
Q′ (ι (⊤))
Q2 (ι (⊤))

ρ (⊤) ϱ (ι (⊤)) ι′ (⊤) . (3.26)

From (2.2) and (3.8), we have

Q′ (ι (⊤)) ≥ β1 (ι (s) ,⊤1) ϱ (ι (⊤)) Q′′ (ι (⊤)) ,

which from (3.25) and (3.26) implies

v′ (⊤) ≤
(ϱ (ι (⊤)) (Q′′ι (⊤)))′

Q (ι (⊤))
ρ (⊤) +

ρ′ (⊤)
ρ (⊤)

v (⊤)

−β1 (ι (⊤) ,⊤1)
ι′ (⊤)
ρ (⊤)

v2 (⊤) . (3.27)

Due to (3.24) and (3.27), we have

ω′ (⊤) + υ′ (⊤)
R0

ι0
≤

(ϱ (⊤) (Q′′ (⊤)))′

Q (ι (⊤))
ρ (⊤) +

R0 (ϱ (ι (⊤)) (Q′′ (ι (⊤))))′

ι0Q (ι (⊤))

+ω (⊤)
(ρ′ (⊤))+
ρ (⊤)

− ω2 (⊤)
ι′ (⊤)
ρ (⊤)

β1 (ι (⊤) ,⊤1)

+
R0

ι0

[
υ (⊤)

(ρ′ (⊤))+
ρ (⊤)

− v2 (⊤) β1 (ι (⊤) ,⊤1)
ι′ (⊤)
ρ (⊤)

]
.

(3.28)

From (2.2), (3.6), (3.28), and b(⊤) ≥ ι(⊤), we obtain

ω′ (⊤) + υ′ (⊤)
R0

ι0
≤ −ρ (⊤) η̃ (s) + ω (⊤)

(ρ′ (⊤))+
ρ (⊤)

− ω2 (⊤)
ι′ (⊤) β1 (ι (⊤) ,⊤1)

ρ (⊤)

+
R0

ι0

(
v (⊤)

(ρ′ (⊤))+
ρ (⊤)

− v2 (⊤)
ι′ (⊤) β1 (ι (⊤) ,⊤1)

ρ (⊤)

)
. (3.29)
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By (3.29) and (3.19), we get

ω′ (⊤) + υ′ (⊤)
R0

ι0
≤ −ρ (⊤) η̃ (s) +

(
(ρ′ (⊤))+

)2

4ι′ (⊤) ρ (⊤) β1 (ι (⊤) ,⊤1)

+
R0

ι0

(ρ′ (⊤))2
+

4ι′ (⊤) ρ (⊤) β1 (ι (⊤) ,⊤1)
. (3.30)

Integrating (3.30) from ⊤2 to ⊤, it is clear that∫ ⊤

⊤2

ρ (s) η̃ (s) −
(ι0 + R0)

(
(ρ′ (s))+

)2

4ι0 (ρ (s) β1 (ι (s) ,⊤1) ι′ (s))

 ds

≤ ω (⊤2) +
R0

ι0
v (⊤2) ,

which contradicts (3.21). The proof is complete. □

Remark 3.1. From Theorems 3.1 and 3.2, we can get some oscillation criteria for (1.1) with different
choices of ρ.

3.1. Absence of solutions in class (2.1)

Theorem 3.3. If there exists a function ζ (⊤) ∈ C([⊤0,∞), (0,∞)), b (⊤) < ζ (⊤) , and ι−1 (ζ (⊤)) < ⊤
such that the first-order delay differential equation

w′ (⊤) +
ι0η̃ (⊤) β2 (ζ (⊤) , b (⊤))

ι0 + R0
w

(
ι−1 (ζ (⊤))

)
= 0 (3.31)

is oscillatory, then case (2.1) cannot hold.

Proof. Assume that x > 0 is a solution of (1.1). Let (2.1) in Lemma 2.2 hold. By (3.6), we obtain

Q̃ (⊤) + Q (b (⊤)) η̃ (⊤) ≤ 0. (3.32)

It follows from ϱ (⊤) (Q′′ (⊤)) ≥ 0 that

−Q′ (u) ≥ Q′ (v) − Q′ (u) =
∫ v

u
Q′′ (s)

ϱ (s)
ϱ (s)

ds

≥ ϱ (v) Q′′ (v)
∫ v

u

1
ϱ (s)

ds, for v ≥ u ≥ ⊤1.

From (3.9), we have
Q (b (⊤)) ≥ ϱ (ζ)

(
Q′′ (ζ)

)
β2 (ζ, b (⊤)) ,

which from (3.32) implies that

Q̃ (⊤) ≤ −η̃ (⊤) β2 (ζ, b (⊤)) ϱ (ζ) Q′′ (ζ) . (3.33)

Since ϱ (⊤) Q′′ (⊤) is nonincreasing, we get

Q̃ (⊤) ≤
(ι0 + R0) ϱ (ι (⊤)) Q′′ (ι (⊤))

ι0
. (3.34)
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Hence, we have

ϱ (ι (⊤)) Q′′ (ι (⊤)) ≥
ι0Q̃

(
ι−1 (ζ (⊤))

)
ι0 + R0

. (3.35)

Combining (3.34) and (3.33), we note that w is a positive solution of the first-order delay differential
inequality (

Q̃ (⊤)
)′
≤
ι0η̃ (⊤) β2 (ζ (⊤) , b (⊤))

ι0 + R0
Q̃

(
ι−1 (ζ (⊤))

)
.

According to [33, Theorem 1], however, the Eq (3.31) has a positive solution, which is a contradiction.
The proof is complete. □

Corollary 3.1. If there exists a function ζ (⊤) ∈ C([⊤0,∞), (0,∞)) satisfying b (⊤) < ζ (⊤) and
ι−1 (ζ (⊤)) < ⊤ such that

lim inf
⊤→∞

∫ ⊤

ι−1(ζ(⊤))
η̃ (s) β2 (ζ (s) , b (s)) ds >

ι0 + R0

ι0e
, (3.36)

then case (2.1) cannot hold.

Proof. Based on the well-known criterion in [34, Theorem 2], we find that the delay differential
equation (3.31) is oscillatory if the condition (3.36) is satisfied. The proof is complete. □

Theorem 3.4. If there exists a function η (⊤) ∈C([⊤0,∞), (0,∞)), η (⊤) < ⊤ and b (⊤) < ι (η (⊤)) such
that

lim inf
⊤→∞

β2 (ι (η (⊤)) , b (⊤))
∫ ⊤

η(⊤)
η̃ (s) ds >

ι0 + R0

ι0
, (3.37)

then case (2.1) cannot hold.

Proof. Following the same method as in the proof of Theorem 3.3 by integrating (3.32) from η (⊤) to
⊤ and using the fact that Q is decreasing, we see that

U′ (η (⊤)) ≥ ϱ (⊤) Q′′ (⊤)

+ι−1
0 R0ϱ (ι (⊤))

(
Q′′ (ι (⊤))

) ∫ ⊤

η(⊤)
η̃ (s) Q (b (s)) ds

≥

∫ ⊤

η(⊤)
η̃ (s) Q (b (s)) ds ≥ Q (b (⊤))

∫ ⊤

η(⊤)
η̃ (s) ds,

where
U (η (⊤)) =

(
ϱ (η (⊤))

(
Q′′ (η (⊤))

)
+ ι−1

0 R0ϱ (ι (η (⊤)))
(
Q′′ (ι (η (⊤)))

))′
.

Since ι (ϱ (⊤) Q′′ (⊤))′ ≤ 0 and η (⊤) < ι (⊤), we have

ϱ (ι (η (⊤))) Q′′ (ι (η (⊤)))
(
ι−1
0 ι0 + R0

)
≥ Q (b (⊤))

∫ ⊤

η(⊤)
η̃ (s) ds. (3.38)

Using (3.9) with u = b(⊤) and v = ι (η (⊤)) in (3.38), we see that

ϱ (ι (η (⊤))) (Q′′ (ι (η (⊤))))
(ι0 + R0)−1 ι0

≥ ϱ (ι (η (⊤)))
(
Q′′ (ι (η (⊤)))

)
β2 (ι (η (⊤)) , b (⊤))

∫ ⊤

η(⊤)
η̃ (s) ds,
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that is,

ι−1
0 (ι0 + R0) ≥ β2 (ι (η (⊤)) , b (⊤))

∫ ⊤

η(⊤)
η̃ (s) ds.

The proof is complete. □

Letting η (⊤) = ι (⊤) in Theorem 3.4, the following result is immediate.

Corollary 3.2. If b (⊤) < ι (ι (⊤)) such that

lim sup
⊤→∞

β2 (ι (ι (⊤)) , b (⊤))
∫ ⊤

η(⊤)
η̃ (s) ds > ι−1

0 (ι0 + R0) ,

then case (2.1) cannot hold.

Now, note that Theorems 3.1 and 3.2 guarantee that any solution of class (2.2) converges to zero
when ⊤ → ∞, while conditions (3.36) and (3.37) remove solutions from class (2.1). Thus, by
combining Theorems 3.1 and 3.2 with Conditions (3.36) and (3.37), respectively, one can easily
provide new oscillation criteria for (1.1).

3.2. Philos-type oscillation criteria

In this section, we will establish some Philos-type oscillation results for (1.1).

Definition 3.1. Assume that D0 = {(⊤, s) : ⊤ > s ≥ ⊤0} and D = {(⊤, s) : ⊤ ≥ s ≥ ⊤0}, and F
∈ C ([D,R) satisfies the following:
(I) F (⊤, s) > 0, (⊤, s) ∈ D0, and F (⊤,⊤) = 0, for ⊤ ≥ ⊤0;
(II) ∂F

∂s (⊤, s), and ∂F
∂s (⊤, s) ≤ 0.

Under these assumptions, the function F satisfies the property P.

We introduce the following functions:

G1 (⊤, s) =:
θ (⊤, s)

β1 (b (⊤) ,⊤1) b′ (⊤)
, G2 (⊤, s) =:

θ (⊤, s)
β2 (b (⊤) ,⊤1) b′ (⊤)

and
G3 (⊤, s) =

θ (⊤, s)
β1 (ι (⊤) ,⊤1) ι′ (⊤)

, G4 (⊤, s) =
θ (⊤, s)

β2 (ι (⊤) ,⊤1) ι′ (⊤)
,

where θ (⊤, s) = (ι0+R0)(h(⊤,s))2

4ι0ρ(⊤) .

Furthermore, in this section, suppose that F ∈ C (D,R) has the property P and there exists a function
ρ ∈ C1([⊤0,∞), (0,∞)), for all ⊤1 ≥ ⊤0.

Theorem 3.5. Assume that (3.3) is satisfied, b′ (⊤) > 0, and b (⊤) ≤ ι (⊤). If

h (⊤, s)
(F (⊤, s))

1
2

ρ (s)
= −
∂

∂s
F (⊤, s) −

ρ′ (s)
ρ (s)

F (⊤, s) , (⊤, s) ∈ D0, (3.39)

and

lim sup
⊤→∞

F−1 (⊤,⊤2)
∫ ⊤

⊤2

(F (⊤, s) ρ (s) η̃ (s) −G1 (⊤, s)) ds = ∞, (3.40)

for ⊤2 > ⊤1, then (1.1) has property 𭟋.
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Proof. Assume that x > 0 be a solution of (1.1). As in Theorem 3.1, by defining ω and υ, we get
(3.18). From (3.18) and by replacing (ρ′ (⊤))+ by ρ′ (⊤), we obtain

ρ (⊤) η̃ (s) ≤ −ω′ (⊤) −
R0υ

′ (⊤)
ι0

+
ρ′ (⊤)ω (⊤)
ρ (⊤)

−
β1 (b (s) ,⊤1) b′ (s)

ρ (⊤)
ω2 (⊤)

+
R0

ι0

(
ρ′ (⊤) υ (⊤)
ρ (⊤)

−
β1 (b (s) ,⊤1) b′ (s)

ρ (⊤)
υ2 (⊤)

)
. (3.41)

Multiply both sides by F(⊤, s), then integrate from ⊤2 to ⊤. It follows that∫ ⊤

⊤2

ρ (s) F (⊤, s) η̃ (s) ds ≤ −
∫ ⊤

⊤2

F (⊤, s)ω′ (s) ds +
∫ ⊤

⊤2

F (⊤, s) ρ′ (s)ω (s)
ρ (s)

ds

−

∫ ⊤

⊤2

F (⊤, s) β1 (b (s) ,⊤1) b′ (s)
ρ (s)

ω2 (⊤) ds

−
R0

ι0

(∫ ⊤

⊤2

F (⊤, s) υ′ (s) ds +
∫ ⊤

⊤2

F (⊤, s) ρ′ (s) υ (s)
ρ (s)

ds
)

−
R0

ι0

∫ ⊤

⊤2

F (⊤, s) β1 (b (s) ,⊤1) b′ (s)
ρ (s)

υ2 (s) ds.

Thus, we have∫ ⊤

⊤2

ρ (s) F (⊤, s) η̃ (s) ds ≤ F (⊤,⊤2)ω (⊤2)

−

∫ ⊤

⊤2

(
−
∂

∂ (s)
F (⊤, s) −

ρ′ (s)
ρ (s)

F (⊤, s)
)
ω (s) ds

−

∫ ⊤

⊤2

F (⊤, s)
β1 (b (s) ,⊤1) b′ (s)

ρ (s)
ω2 (s) ds +

R0

ι0
F (⊤,⊤2) υ (⊤2)

−
R0

ι0

∫ ⊤

⊤2

[
−
∂

∂ (s)
F (⊤, s) −

1
ρ (s)
ρ′ (s) F (⊤, s)

]
υ (s) ds

−

∫ ⊤

⊤2

F (⊤, s) β1 (b (s) ,⊤1) b′ (s)
ρ (s)

υ2 (s) ds,

that is, ∫ ⊤

⊤2

F (⊤, s) ρ (s) η̃ (s) ds

≤ F (⊤,⊤2)ω (⊤2) +
R0

ι0
F (⊤,⊤2) υ (⊤2)

+

∫ ⊤

⊤2

h (⊤, s) (F (⊤, s))
1
2

ρ (s)
ω (s) −

F (⊤, s) β1 (b (s) ,⊤1) b′ (⊤)
ρ (s)

ω2 (s)

 ds

+
R0

ι0

∫ ⊤

⊤2

h (⊤, s) (F (⊤, s))
1
2

ρ (s)
υ (s) − F (⊤, s)

β1 (b (s) ,⊤1) b′ (⊤)
ρ (s)

υ2 (s)

 ds.

(3.42)
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Using (3.42) and (3.19), we find

F−1 (⊤,⊤2)
∫ ⊤

⊤2

[
F (⊤, s) ρ (s) η̃ (s) −

ι0 + R0

4ι0

(h (⊤, s))2 (F (⊤, s))2

(ρ (s) β1 (b (s) ,⊤1) b′ (s))

]
ds

≤ ω (⊤2) +
R0υ (⊤2)
ι0

,

and this contradicts (3.40). The proof is complete. □

Theorem 3.6. Assume that (3.3) is satisfied, b′ (⊤) > 0, and b (⊤) ≤ ι (⊤). If

h (⊤, s) (F (⊤, s))1/2

ρ (s)
= −
∂

∂s
F (⊤, s) −

ρ′ (s) F (⊤, s)
ρ (s)

, (⊤, s) ∈ D0 (3.43)

and

lim sup
⊤→∞

F−1 (⊤,⊤2)
∫ ⊤

⊤1

(F (⊤, s) ρ (s) η̃ (s) −G2 (⊤, s)) ds = ∞, (3.44)

for ⊤2 > ⊤1, then (1.1) has property 𭟋.

Proof. Substituting (3.6) and (3.17) in Theorem 3.1, the derivation process is similar to the proof of
Theorem 3.5. The proof is complete. □

Theorem 3.7. Let (3.3) and (3.39) be satisfied, and b(⊤) ≥ ι(⊤). If

lim sup
⊤→∞

F−1 (⊤,⊤2)
∫ ⊤

⊤2

(ρ (s) F (⊤, s) η̃ (s) −G3 (⊤, s) ds) = ∞, (3.45)

for ⊤2 > ⊤1, then (1.1) has property 𭟋.

Proof. From (3.29) in Theorem 3.2, similar to the proof of that of Theorem 3.5. The proof is complete.
□

Theorem 3.8. Let (3.3) and (3.43) be satisfied and b(⊤) ≥ ι(⊤). If

lim sup
⊤→∞

F−1 (⊤,⊤2)
∫ ⊤

⊤2

(F (⊤, s) ρ (s) η̃ (s) −G4 (⊤, s)) ds = ∞, (3.46)

for ⊤2 > ⊤1, then any solution x of (1.1) is oscillatory or satisfies (1.5).

Proof. From Theorem, similar to the proof of that of Theorem 3.5. The proof is complete. □

Remark 3.2. From Theorems 3.5–3.8, we can obtain some oscillation criteria for (1.1) with different
choices of ρ and F.

In the following theorem, we extend our results to include the equation (1.8).

Theorem 3.9. Suppose that (1.9) is satisfied, b (⊤) ≤ ι (⊤) , and b′ (⊤) > 0. If

lim sup
⊤→∞

∫ ⊤

⊤2

ρ (s) η̃ (s)
2µ−1 −

(
ι0 + Rµ0

)
(µ + 1)µ+1 ι0b′ (s) ρ (s) β1 (b (s) ,⊤1)

((
ρ′ (s)

)
+

)µ+1

 ds = ∞,

then (1.1) has property 𭟋.
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4. Examples

Example 4.1. Consider the equation(
⊤−3 (

[x (⊤) + R0x (0.5⊤)]′′
))′
+

(
⊤−6λ

)
x (0.5⊤) = 0, (4.1)

where λ > 0, R = R0 > 0. Here, ϱ (⊤) = ⊤−3, b (⊤) = ι (⊤) = 0.5⊤, ι0 = 0.5, and η (⊤) = λ⊤−6.
That is, we have

η̃ (⊤) = min{η (⊤) , η (ι (⊤))} = λ⊤−6,

and

β1 (⊤,⊤1) :=
∫ ⊤

⊤1

s3ds ≥ ⊤4.

Thus, (3.3) holds. Putting ρ (⊤) = ⊤5 and according to Theorem 3.1, we find

lim sup
⊤→∞

∫ ⊤

⊤2

[
ρ (s) η̃ (s) −

(ι0 + R0)
4ι0b′ (s) ρ (s) β1 (b (s) ,⊤1)

(
ρ′ (s)

)2
]

ds

≥ lim sup
⊤→∞

∫ ⊤

⊤2

(
λs−1 −

1
4s

22
(
1
2
+ R0

)
24.52

)
ds = ∞,

which implies that (
λ − 23.52 (2R0 + 1)

)
lim sup
⊤→∞

∫ ⊤

⊤2

s−1ds = ∞.

Thus, we conclude that any solution of (4.1) is oscillatory or satisfies (1.5) if

λ > 23.52 (2R0 + 1) . (4.2)

Example 4.2. Consider the equation(
⊤−4 [x (⊤) + R0x (1/6⊤)]′′

)′
+ λ⊤−6x (1.5⊤) = 0, (4.3)

where λ > 0 and R0 > 0. Here, ϱ (⊤) = ⊤, b (⊤) = 1.5⊤, ι (⊤) = 1/6⊤, and η (⊤) = λ⊤−6. It is easy to
see that ι′ (⊤) = ι0 = 1/6,

η̃ (⊤) = min{η (⊤) , η (ι (⊤))} = λ⊤−7,

and

β1 (⊤,⊤1) =
∫ ⊤

⊤1

s4ds ≥
1
5
⊤5.

Putting ρ (⊤) = ⊤6 and according to Theorem 3.2, we have

lim sup
⊤→∞

∫ ⊤

⊤2

ρ (s) η̃ (s) −
(ι0 + ρ0)

(
(ρ′ (s))+

)2

4ι0ι′ (s) ρ (s) β1 (ι (s) ,⊤1)

 ds

≥ lim sup
⊤→∞

∫ ⊤

⊤2

s6λs−7 −
(ι0 + ρ0)

4
(

1
5

) (
1
67

) 62s10

s6s5

 = ∞,
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which implies that ∫ ⊤

⊤2

[
λ −

5.68 (1 + 6ρ0)
4

]
lim sup
⊤→∞

∫ ⊤

⊤2

s−1ds = ∞.

Hence, if

λ >
5.68 (1 + 6ρ0)

4
,

then any solution of (4.3) is oscillatory or satisfies (1.5).

Example 4.3. Consider the equation(
⊤

([
x (⊤) + 2x

(
⊤

2

)]′′)3)′
+

(
λ

⊤6

)
x3

(
⊤

2

)
= 0, (4.4)

where λ > 0, and µ = 3. Here, ϱ (⊤) = ⊤, b (⊤) = ι (⊤) = 0.5⊤, ι0 = 0.5, and η (⊤) = λ⊤−6. It is not
difficult to see that (1.9) holds. By choosing ρ (⊤) = ⊤5, and using Theorem 3.9, we conclude that any
solution of (4.4) is oscillatory or satisfies (1.5) if

λ > 5312.5. (4.5)

Remark 4.1. Figure 1 shows that the condition (4.5) ensures the appearance of oscillatory solutions
of (4.4) by imposing a threshold on the parameter λ, which controls the system’s behavior. For values
of λ above this threshold, the system’s dynamics become conducive to oscillations. As λ increases, the
amplitude of the oscillations grows. In other words, larger values of λ result in more pronounced
oscillations, potentially altering both their frequency and amplitude and making the system more
responsive to changes in the initial conditions.

Figure 1. Numerical simulation of some solutions to Eq (4.4).

Example 4.4. Consider the equation(
⊤

(
[x (⊤) + R0x (0.5⊤)]′′

)3
)′
+

(
⊤−6λ

)
x3 (0.5⊤) = 0, (4.6)
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where λ > 0, R (⊤) = R0 > 0, and µ = 3. Here, ϱ (⊤) = ⊤, b (⊤) = ι (⊤) = 0.5⊤, ι0 = 0.5, and
η (⊤) = λ⊤−6. It is easy to see that

β1 (⊤,⊤1) :=
∫ ⊤

⊤1

s−1/3ds ≥ ⊤2/3.

Thus, (1.9) holds. Set ρ (⊤) = ⊤5, by Theorem 3.9, we conclude that any solution of (4.6) is
oscillatory or satisfies (1.5) if

Condition 1 : λ >
25.

(
54

) (
2R3

0 + 1
)

43 . (4.7)

By Theorem 1.1, we see that (1.9) holds and

lim inf
⊤→∞

⊤2λ

26

∫ ∞

⊤

1
s3 ds >

(6)3

(4)4 (1 − R0)3 ,

that is

Condition 2 : λ >
27 (6)3 (1 − R0)−3

44 . (4.8)

Based on the comparison presented in Table 1, we conclude that our results (Condition 1)
significantly outperform the previous work (Condition 2) in [27, Corollary 1]. This improvement is
particularly evident in regions where R0 exceeds 0.312. Furthermore, we observe that the magnitude
of this enhancement increases as R0 approaches higher values (Figure 2).

Figure 2. Behavior of the oscillation criteria across varying R0 values.

Table 1. Numerical comparison of λ values required for oscillation.

Special case of R0

R0 = 0.05 R0 = 0.1 R0 = 0.312 R0 = 0.4 R0 = 0.5 R0 = 0.51
Condition 1 (λ > ..) 312.58 313.13 331.49 352.50 390.63 395.41
Condition 2 (λ > ..) 126.06 148.15 332.31 500.00 864.00 918.00
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5. Conclusions

This study investigates the oscillatory behavior of solutions to Eq (1.1), building upon and refining
previous work by relaxing the conditions on the functions associated with the equation. Specifically,
we replace the commonly used conditions 0 ≤ R (⊤) < 1, −1 < R (⊤) < 0, and −1 < R (⊤) < 1
studied in [22, 23, 30, 35] with a more general and flexible constraint, 0 ≤ R (⊤) ≤ R0 < ∞. The proof
incorporates Riccati assumptions in various forms, which facilitate the derivation of results that are
applicable to a wide range of models. Additionally, we explore the Philos-type oscillatory behavior of
Eq (1.1) through Theorems 3.5–3.8.

This study contributes to advancing the current body of knowledge by establishing clear and
precise criteria for evaluating the nature of oscillatory solutions, thereby providing a solid foundation
for future research. The application of the proposed methodology to higher-order differential
equations, in particular, represents a fertile area for further exploration. Investigating oscillatory
behavior within the framework of higher-order equations clearly enhances the understanding of the
underlying mathematical structure of these systems and allows for the discovery of new patterns.
Among the promising directions for future research, one could consider removing the constraint in
(1.4) and expanding the scope of the methods presented here. This approach could also be applied to
analyze more generalized equations by replacing the corresponding function Q (⊤) with

Q (⊤) = x (⊤) +
∫ d

c
R (⊤, s) x (ι (⊤, s)) ds.
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19. S. H. Saker, J. Džurina, On the oscillation of certain class of third-order nonlinear delay differential
equations, Math. Bohem., 135 (2010), 225–237. https://doi.org/10.21136/MB.2010.140700

20. B. Batiha, N. Alshammari, F. Aldosari, F. Masood, O. Bazighifan, Nonlinear neutral delay
differential equations: Novel criteria for oscillation and asymptotic behavior, Mathematics, 13
(2025), 147. https://doi.org/10.3390/math13010147

21. F. Masood, S. Aljawi, O. Bazighifan, Novel iterative criteria for oscillatory behavior
in nonlinear neutral differential equations, AIMS Mathematics, 10 (2025), 6981–7000.
https://doi.org/10.3934/math.2025319

22. T. Candan, Oscillation criteria and asymptotic properties of solutions of third-order
nonlinear neutral differential equations, Math. Method. Appl. Sci., 38 (2015), 1379–1392.
https://doi.org/10.1002/mma.3153

23. T. Candan, Asymptotic properties of solutions of third-order nonlinear neutral dynamic equations,
Adv. Differ. Equ., 2014 (2014), 35. https://doi.org/10.1186/1687-1847-2014-35
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