Starting from the system of orthogonal projections mapping the $ n $-poly-Fock space $ F_n^2(\mathbb{C}) $ onto the true-poly-Fock components, we constructed a system of all-but-one orthogonal projections in generic position. We described the $ C^* $-algebra generated by these projections via an isomorphism with a subalgebra of matrix-valued continuous functions on the two-point compactification of the real line. In addition, we studied the $ C^* $-algebra generated by a Toeplitz operator with a horizontal symbol and the orthogonal projections from $ F_n^2(\mathbb{C}) $ onto the true-poly-Fock subspaces. An interesting fact in this work was that the $ C^* $-algebras studied herein contain the $ C^* $-algebra generated by all Toeplitz operators acting on $ F_n^2(\mathbb{C}) $ with horizontal symbols having limit values at $ \pm \infty $. Our approach combines unitary equivalences induced by Bargmann-type transforms with a noncommutative Stone–Weierstrass-type argument to describe the algebras.
Citation: Maribel Loaiza, Miguel A. Morales-Ramos, María del Rosario Ramírez-Mora, Josué Ramírez-Ortega. $ C^* $-Algebra generated by $ n $-orthogonal projections and its relationship to Toeplitz operators acting on the poly-Fock space[J]. AIMS Mathematics, 2025, 10(10): 24352-24370. doi: 10.3934/math.20251080
Starting from the system of orthogonal projections mapping the $ n $-poly-Fock space $ F_n^2(\mathbb{C}) $ onto the true-poly-Fock components, we constructed a system of all-but-one orthogonal projections in generic position. We described the $ C^* $-algebra generated by these projections via an isomorphism with a subalgebra of matrix-valued continuous functions on the two-point compactification of the real line. In addition, we studied the $ C^* $-algebra generated by a Toeplitz operator with a horizontal symbol and the orthogonal projections from $ F_n^2(\mathbb{C}) $ onto the true-poly-Fock subspaces. An interesting fact in this work was that the $ C^* $-algebras studied herein contain the $ C^* $-algebra generated by all Toeplitz operators acting on $ F_n^2(\mathbb{C}) $ with horizontal symbols having limit values at $ \pm \infty $. Our approach combines unitary equivalences induced by Bargmann-type transforms with a noncommutative Stone–Weierstrass-type argument to describe the algebras.
| [1] | M. B. Balk, Polyanalitic functions, Berlin: Akademie Verlag, 1991. |
| [2] | J. Dixmier, $C^*$-Algebras, Amsterdam: North-Holland Publishing Company, 1977. |
| [3] |
R. G. Douglas, Local Toeplitz operators, P. Lond. Math. Soc., 3 (1978), 243–272. https://doi.org/10.1112/plms/s3-36.2.243 doi: 10.1112/plms/s3-36.2.243
|
| [4] |
K. Esmeral, N. Vasilevski, $C^*$-Algebra generated by horizontal Toeplitz operators on the Fock space, Bol. Soc. Mat. Mex., 22 (2016), 567–582. https://doi.org/10.1007/s40590-016-0110-1 doi: 10.1007/s40590-016-0110-1
|
| [5] |
J. Glimm, A Stone–Weierstrass theorem for $C^*$-algebras, Ann. Math., 72 (1960), 216–244. https://doi.org/10.2307/1970133. doi: 10.2307/1970133
|
| [6] |
P. R. Halmos, Two subspaces, Trans. Amer. Math. Soc., 144 (1969), 381–389. https://doi.org/10.1090/S0002-9947-1969-0251519-5 doi: 10.1090/S0002-9947-1969-0251519-5
|
| [7] |
I. Kaplansky, The structure of certain operator algebras, Trans. Amer. Math. Soc., 70 (1951), 219–255. https://doi.org/10.1090/S0002-9947-1951-0042066-0 doi: 10.1090/S0002-9947-1951-0042066-0
|
| [8] | T. K. Lee, Extreme points related to matrix algebras, Kangweon-Kyungki Math. Jour., 9 (2001), 45–52. |
| [9] | E. A. Maximenko, A. M. Tellería-Romero, Radial operators on polyanalytic Bargmann–Segal–Fock spaces, In: Operator algebras, Toeplitz operators and related topics, Cham: Birkhäuser, 2020,277–305. https://doi.org/10.1007/978-3-030-44651-2_18 |
| [10] |
G. K. Pedersen, Measure theory for $C^*$-algebras Ⅱ, Mat. Scand., 22 (1968), 63–74. https://doi.org/10.7146/math.scand.a-10871 doi: 10.7146/math.scand.a-10871
|
| [11] |
J. Ramírez-Ortega, A. Sánchez-Nungaray, Toeplitz operators with vertical symbols acting on the poly-Bergman spaces of the upper half-plane, Complex Anal. Oper. Theory, 9 (2015), 1801–1817. https://doi.org/10.1007/s11785-015-0469-4 doi: 10.1007/s11785-015-0469-4
|
| [12] |
A. Sánchez-Nungaray, C. González-Flores, R. R. López-Martínez, J. L. Arroyo-Neri, Toeplitz operators with horizontal symbols acting on the poly-Fock space, J. Funct. Space., 2018 (2018), 8031259. https://doi.org/10.1155/2018/8031259 doi: 10.1155/2018/8031259
|
| [13] | N. L. Vasilevski, I. M. Spitkovsky, On the algebra generated by two projectors, Dokl. Akad. Nauk. UKSSR, A, 8 (1981), 10–13. |
| [14] |
N. L. Vasilevski, $C^*$-Algebras generated by orthogonal projections and their applications, Integr. Equ. Oper. Theory, 31 (1998), 113–132. https://doi.org/10.1007/BF01203459 doi: 10.1007/BF01203459
|
| [15] | N. L. Vasilevski, Poly-Fock spaces, In: Differential operators and related topics, Basel: Birkhäuser, 2000,371–386. https://doi.org/10.1007/978-3-0348-8403-7_28 |
| [16] | N. L. Vasilevski, Commutative algebras of Toeplitz operators on the Bergman space, Basel: Birkhäuser, 2008. https://doi.org/10.1007/978-3-7643-8726-6 |