Research article

Similarity reduction and novel Jacobi wave solutions for the variable (4+1)-dimensional Fokas equation

  • Published: 21 October 2025
  • MSC : 35-XX, 35C08

  • In this study, the (4+1)-dimensional Fokas equation with variable coefficients, which describes water waves in deep and wider channels, was reduced to a sixth-order nonlinear ordinary differential equation using the direct similarity reduction method. Then, the Jacobi expansion method was used to obtain multiple novel types of traveling wave solutions, including solitons, periodic waves, and singular waves. The obtained Jacobi wave solutions were considered new and have never been obtained before. Last, the dynamic behavior of the periodic and soliton wave solutions was explained according to different variable coefficient values and visualized by 3D plots.

    Citation: Rehab M. El-Shiekh, Mahmoud Gaballah. Similarity reduction and novel Jacobi wave solutions for the variable (4+1)-dimensional Fokas equation[J]. AIMS Mathematics, 2025, 10(10): 23869-23879. doi: 10.3934/math.20251061

    Related Papers:

  • In this study, the (4+1)-dimensional Fokas equation with variable coefficients, which describes water waves in deep and wider channels, was reduced to a sixth-order nonlinear ordinary differential equation using the direct similarity reduction method. Then, the Jacobi expansion method was used to obtain multiple novel types of traveling wave solutions, including solitons, periodic waves, and singular waves. The obtained Jacobi wave solutions were considered new and have never been obtained before. Last, the dynamic behavior of the periodic and soliton wave solutions was explained according to different variable coefficient values and visualized by 3D plots.



    加载中


    [1] A. S. Fokas, Integrable nonlinear evolution partial differential equations in 4+2 and 3+1 dimensions, Phys. Rev. Lett., 96 (2006), 190201. https://doi.org/10.1103/PhysRevLett.96.190201 doi: 10.1103/PhysRevLett.96.190201
    [2] G. Akram, M. Sadaf, M. Atta Ullah Khan, Dynamics investigation of the (4+1)-dimensional Fokas equation using two effective techniques, Results Phys., 42 (2022), 105994. https://doi.org/10.1016/j.rinp.2022.105994 doi: 10.1016/j.rinp.2022.105994
    [3] J. Lee, R. Sakthivel, L. Wazzan, Exact traveling wave solutions of a higher-dimensional nonlinear evolution equation, Mod. Phys. Lett. B, 24 (2010), 1011–1021. https://doi.org/10.1142/S0217984910023062 doi: 10.1142/S0217984910023062
    [4] S. Kumar, M. Niwas, M. S. Osman, M. A. Abdou, Abundant different types of exact soliton solution to the (4+1)-dimensional Fokas and (2+1)-dimensional breaking soliton equations, Commun. Theor. Phys., 73 (2021), 105007. https://doi.org/10.1088/1572-9494/ac11ee doi: 10.1088/1572-9494/ac11ee
    [5] R. M. El-Shiekh, M. Gaballah, Novel optical waves for the perturbed nonlinear Chen-Lee-Liu equation with variable coefficients using two different similarity techniques, Alex. Eng. J., 86 (2024), 548–555. https://doi.org/10.1016/j.aej.2023.12.003 doi: 10.1016/j.aej.2023.12.003
    [6] M. Gaballah, R. M. El-Shiekh, Bäcklund transformation, similarity reduction and new solutions for the (2+1)-dimensional graphene sheets thermophoretic motion equation with variable heat transmission, Alex. Eng. J., 95 (2024), 24–29. https://doi.org/10.1016/j.aej.2024.03.046 doi: 10.1016/j.aej.2024.03.046
    [7] J. Chai, B. Tian, W. R. Sun, X. Y. Xie, Solitons and rouge waves for a generalized (3+1)-dimensional variable-coefficient Kadomtsev-Petviashvili equation in fluid mechanics, Comput. Math. Appl., 71 (2016), 2060–2068. https://doi.org/10.1016/j.camwa.2016.03.022 doi: 10.1016/j.camwa.2016.03.022
    [8] J. G. Liu, Q. Ye, Stripe solitons and lump solutions for a generalized Kadomtsev-Petviashvili equation with variable coefficients in fluid mechanics, Nonlinear Dyn., 96 (2019), 23–29. https://doi.org/10.1007/s11071-019-04770-8 doi: 10.1007/s11071-019-04770-8
    [9] Y. Wang, X. Lü, Exact solutions and Bäcklund transformation for a generalized (3+1)-dimensional variable-coefficient Fokas-typed equation, Commun. Nonlinear Sci., 143 (2025), 108567. https://doi.org/10.1016/j.cnsns.2024.108567 doi: 10.1016/j.cnsns.2024.108567
    [10] H. Yang, B. He, Bilinear Bäcklund transformations, lump solutions and interaction solutions for (4+1)-dimensional variable-coefficient Fokas equation, Z. Angew. Math. Phys., 74 (2023), 155. https://doi.org/10.1007/s00033-023-02052-3 doi: 10.1007/s00033-023-02052-3
    [11] C. Chevalley, Theory of Lie groups, Princeton: Princeton University Press, 2018.
    [12] D. Bump, Lie groups, New York: Springer, 2013. https://doi.org/10.1007/978-1-4614-8024-2
    [13] R. M. El-Shiekh, M. Gaballah, Bright and dark optical chirp waves for Kundu-Eckhaus equation using Lie group analysis, Z. Naturforsch. A, 80 (2025), 1–7. https://doi.org/10.1515/zna-2024-0154 doi: 10.1515/zna-2024-0154
    [14] R. M. El-Shiekh, M. Gaballah, Similarity reduction and new wave solutions for the 2D stochastic cubic Schrödinger equation with multiplicative white noise arising in optics, Opt. Quant. Electron., 56 (2024), 197. https://doi.org/10.1007/s11082-023-05822-5 doi: 10.1007/s11082-023-05822-5
    [15] M. Gaballah, R. M. El-Shiekh, Novel nonlinear quantum dust acoustic waves for modified variable coefficients Zakharove-Kusnetsov equation in dusty plasma, Math. Method. Appl. Sci., 47 (2024), 11530–11538. https://doi.org/10.1002/mma.10141 doi: 10.1002/mma.10141
    [16] R. M. El-Shiekh, M. Gaballah, Similarity reduction, Bäcklund transformation and solitary waves for a generalized shallow water wave equation with the variable coefficients, Ain Shams Eng. J., 16 (2025), 103618. https://doi.org/10.1016/j.asej.2025.103618 doi: 10.1016/j.asej.2025.103618
    [17] E. Zayed, M. Alngar, Optical solitons in birefringent fibers with Biswas-Arshed model by generalized Jacobi elliptic function expansion method, Optik, 203 (2020), 163922. https://doi.org/10.1016/J.IJLEO.2019.163922 doi: 10.1016/J.IJLEO.2019.163922
    [18] E. Zayed, K. Alurrfi, Solitons and other solutions for two nonlinear Schrödinger equations using the new mapping method, Optik, 144 (2017), 132–48. https://doi.org/10.1016/J.IJLEO.2017.06.101 doi: 10.1016/J.IJLEO.2017.06.101
    [19] Z. Yang, W. P. Zhong, M. Belić, Dark localized waves in shallow waters: analysis within an extended Boussinesq system, Chinese Phys. Lett., 41 (2024), 044201. https://doi.org/10.1088/0256-307X/41/4/044201 doi: 10.1088/0256-307X/41/4/044201
    [20] R. M. El-Shiekh, M. Gaballah, Solitary chirp pulses and soliton control for variable coefficients cubic-quintic nonlinear Schrödinger equation in nonuniform management system, Open Phys., 23 (2025), 20250147. https://doi.org/10.1515/phys-2025-0147 doi: 10.1515/phys-2025-0147
    [21] C. Gu, Soliton theory and its applications, Berlin: Springer-Verlag, 1995. https://doi.org/10.1007/978-3-662-03102-5
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(296) PDF downloads(18) Cited by(0)

Article outline

Figures and Tables

Figures(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog