This work presents new Kneser-type oscillation criteria for second-order quasilinear functional dynamic equations defined on arbitrary unbounded above time scales. Our approach employs the Riccati transformation technique in conjunction with the integral averaging method. The results show a significant improvement over recent Kneser-type oscillation criteria. We provided several illustrative examples to highlight the importance of our findings.
Citation: Taher S. Hassan, Elvan Akın, Bassant M. El-Matary, Ioan-Lucian Popa, Mouataz Billah Mesmouli, Ismoil Odinaev, Akbar Ali. Enhanced Kneser-type oscillation criteria for second-order functional quasilinear dynamic equations on time scales[J]. AIMS Mathematics, 2025, 10(10): 23789-23802. doi: 10.3934/math.20251057
This work presents new Kneser-type oscillation criteria for second-order quasilinear functional dynamic equations defined on arbitrary unbounded above time scales. Our approach employs the Riccati transformation technique in conjunction with the integral averaging method. The results show a significant improvement over recent Kneser-type oscillation criteria. We provided several illustrative examples to highlight the importance of our findings.
| [1] | M. Bohner, A. Peterson, Dynamic equations on time scales: An introduction with applications, Boston: Birkhäuser, 2001. |
| [2] | M. Bohner, A. Peterson, Advances in dynamic equations on time scales, Boston: Birkhäuser, 2003. |
| [3] | R. P. Agarwal, M. Bohner, D. O'Regan, A. Peterson, Dynamic equations on time scales: A survey, J. Comput. Appl. Math., 141, (2002), 1–26. https://doi.org/10.1016/S0377-0427(01)00432-0 |
| [4] |
Z. Jiao, I. Jadlovská, T. Li, Global existence in a fully parabolic attraction-repulsion chemotaxis system with singular sensitivities and proliferation, J. Differ. Equations, 411 (2024), 227–267. https://doi.org/10.1016/j.jde.2024.07.005 doi: 10.1016/j.jde.2024.07.005
|
| [5] |
T. Li, S. Frassu, G. Viglialoro, Combining effects ensuring boundedness in an attraction-repulsion chemotaxis model with production and consumption, Z. Angew. Math. Phys., 74 (2023), 1–21. https://doi.org/10.1007/s00033-023-01976-0 doi: 10.1007/s00033-023-01976-0
|
| [6] |
T. Li, D. A. Soba, A. Columbu, G. Viglialoro, Dissipative gradient nonlinearities prevent $\delta$-formations in local and nonlocal Attraction–Repulsion chemotaxis models, Stud. Appl. Math., 154 (2025), e70018. https://doi.org/10.1111/sapm.70018 doi: 10.1111/sapm.70018
|
| [7] |
B. Baculikova, Oscillation of second-order nonlinear noncanonical differential equations with deviating argument, Appl. Math. Lett., 91 (2019), 68–75. https://doi.org/10.1016/j.aml.2018.11.021 doi: 10.1016/j.aml.2018.11.021
|
| [8] | O. Bazighifan, E. M. E. Nabulsi, Different techniques for studying oscillatory behavior of solution of differential equations. Rocky Mt. J. Math., 51 (2021), 77–86. https://doi.org/10.1216/rmj.2021.51.77 |
| [9] |
J. Džurina, I. Jadlovská, A note on oscillation of second-order delay differential equations, Appl. Math. Lett., 69 (2017), 126–132. https://doi.org/10.1016/j.aml.2017.02.003 doi: 10.1016/j.aml.2017.02.003
|
| [10] |
B. Almarri, A. H. Ali, A. M. Lopes, O. Bazighifan, Nonlinear differential equations with distributed delay: Some new oscillatory solutions, Mathematics, 10 (2022), 995. https://doi.org/10.3390/math10060995 doi: 10.3390/math10060995
|
| [11] |
G. E. Chatzarakis, O. Moaaz, T. Li, B. Qaraad, Some oscillation theorems for nonlinear second-order differential equations with an advanced argument, Adv. Differ. Equ., 160 (2020), 17. https://doi.org/10.1186/s13662-020-02626-9 doi: 10.1186/s13662-020-02626-9
|
| [12] |
R. P. Agarwal, C. Zhang, T. Li, New Kamenev-type oscillation criteria for second-order nonlinear advanced dynamic equations, Appl. Math. Comput., 225 (2013), 822–828. https://doi.org/10.1016/j.amc.2013.09.072 doi: 10.1016/j.amc.2013.09.072
|
| [13] |
S. R. Grace, G. N. Chhatria, S. Abbas, Nonlinear second-order delay dynamic equations on time scales: New oscillatory criteria, Qual. Theor. Dyn. Syst., 22 (2023), 102. https://doi.org/10.1007/s12346-023-00800-4 doi: 10.1007/s12346-023-00800-4
|
| [14] |
R. P. Agarwal, M. Bohner, T. Li, C. Zhang, Oscillation criteria for second-order dynamic equations on time scales, Appl. Math. Lett., 31 (2014), 34–40. https://doi.org/10.1016/j.aml.2014.01.002 doi: 10.1016/j.aml.2014.01.002
|
| [15] |
T. S. Hassan, M. Bohner, I. L. Florentina, A. Abdel Menaem, M. B. Mesmouli, New Criteria of oscillation for linear Sturm–Liouville delay noncanonical dynamic equations, Mathematics, 11 (2023), 4850. https://doi.org/10.3390/math11234850 doi: 10.3390/math11234850
|
| [16] |
T. S. Hassan, R. Ahmad, A. Abdel Menaem, Amended criteria of oscillation for nonlinear functional dynamic equations of second-order, Mathematics, 9 (2021), 1191. https://doi.org/10.3390/math9111191 doi: 10.3390/math9111191
|
| [17] | E. A. Bohner, M. Bohner, S. Saker, Oscillation criteria for a certain class of second-order Emden-Fowler dynamic equations, Electron. T. Numer. Ana., 27 (2007), 1–12. |
| [18] |
C. Zhang, T. Li, Some oscillation results for second-order nonlinear delay dynamic equations, Appl. Math. Lett., 26 (2013), 1114–1119. https://doi.org/10.1016/j.aml.2013.05.014 doi: 10.1016/j.aml.2013.05.014
|
| [19] | E. A. Bohner, Regularly and strongly decaying solutions for quasilinear dynamic equations, Adv. Dyn. Syst. Appl., 3 (2008), 15–24. |
| [20] |
S. R. Grace, G. N. Chhatria, Improved oscillation criteria for second-order quasilinear dynamic equations of noncanonical type, Rend. Circ. Mat. Palerm., 73 (2024), 127–140. https://doi.org/10.1007/s12215-023-00905-4 doi: 10.1007/s12215-023-00905-4
|
| [21] |
T. S. Hassan, C. Cesarano, R. A. E. Nabulsi, W. Anukool, Improved Hille-type oscillation criteria for second-order quasilinear dynamic equations, Mathematics, 10 (2022), 3675. https://doi.org/10.3390/math10193675 doi: 10.3390/math10193675
|
| [22] |
S. R. Grace, T. S. Hassan, Oscillation criteria for higher order nonlinear dynamic equations, Math. Nachr., 287 (2014), 1659–1673. https://doi.org/10.1002/mana.201300157 doi: 10.1002/mana.201300157
|
| [23] |
A. Kneser, Untersuchungen über die reellen Nullstellender Integrale linearer Differentialgleichungen, Math. Ann., 42 (1893), 409–435. https://doi.org/10.1007/BF01444165 doi: 10.1007/BF01444165
|
| [24] | O Došly, P. Řehák, Half-linear differential equations, Amsterdam: Elsevier, 2005. |
| [25] | R. P. Agarwal, S. R. Grace, D. O'Regan, Oscillation theory for second-order linear, half-linear superlinear and sublinear dynamic equations, Dordrecht: Kluwer Academic Publishers, 2002. |
| [26] |
I. Jadlovská, J. Džurina, Kneser-type oscillation criteria for second-order half-linear delay differential equations, Appl. Math. Comput., 380 (2020), 125289. https://doi.org/10.1016/j.amc.2020.125289 doi: 10.1016/j.amc.2020.125289
|
| [27] |
T. S. Hassan, A. A. Menaem, Y. Jawarneh, N. Iqbal, A. Ali, Oscillation criterion of Kneser type for half-linear second-order dynamic equations with deviating arguments, AIMS Math, 9 (2024), 19446–19458. https://doi.org/10.3934/math.2024947 doi: 10.3934/math.2024947
|
| [28] |
T. S. Hassan, Y. Sun, A. A. Menaem, Improved oscillation results for functional nonlinear dynamic equations of second-order, Mathematics, 8 (2020), 1897. https://doi.org/10.3390/math8111897 doi: 10.3390/math8111897
|