Research article

Nonlinear exponential stability of traveling front solutions for a reaction-diffusion system with acidic nitrate-ferroin reaction

  • Published: 20 October 2025
  • MSC : 35B35, 35C07, 35K57, 35Q92

  • This paper is concerned with the nonlinear exponential stability of traveling front solutions for a reaction-diffusion system with acidic nitrate-ferroin reaction. For diffusion coefficient $ \delta $ near $ 1 $, we first establish the perturbation relationship and precise spatial decay rates of traveling front solutions. Subsequently, in some exponentially weighted spaces, we demonstrate the nonlinear exponential stability of the traveling front solutions with all noncritical speeds $ c > c_{\min} = \frac{2}{\sqrt{\beta+1}} $. This improves the stability results in [1], in which the authors obtained the stability of traveling front solutions for $ c > \frac{1}{\sqrt{2\beta}} $.

    Citation: Lina Wang, Xiaofan Zhu, Yanxia Wu. Nonlinear exponential stability of traveling front solutions for a reaction-diffusion system with acidic nitrate-ferroin reaction[J]. AIMS Mathematics, 2025, 10(10): 23773-23788. doi: 10.3934/math.20251056

    Related Papers:

  • This paper is concerned with the nonlinear exponential stability of traveling front solutions for a reaction-diffusion system with acidic nitrate-ferroin reaction. For diffusion coefficient $ \delta $ near $ 1 $, we first establish the perturbation relationship and precise spatial decay rates of traveling front solutions. Subsequently, in some exponentially weighted spaces, we demonstrate the nonlinear exponential stability of the traveling front solutions with all noncritical speeds $ c > c_{\min} = \frac{2}{\sqrt{\beta+1}} $. This improves the stability results in [1], in which the authors obtained the stability of traveling front solutions for $ c > \frac{1}{\sqrt{2\beta}} $.



    加载中


    [1] S. C. Fu, J. C. Tsai, Stability of travelling waves of a reaction-diffusion system for the acidic nitrate-ferroin reaction, Discrete Contin. Dyn. Syst., 33 (2013), 4041–4069. http://dx.doi.org/10.3934/dcds.2013.33.4041 doi: 10.3934/dcds.2013.33.4041
    [2] S. C. Fu, Travelling waves of a reaction-diffusion model for the acidic nitrate-ferroin reaction, Discrete Contin. Dyn. Syst., 16 (2011), 189–196. http://dx.doi.org/10.3934/dcdsb.2011.16.189 doi: 10.3934/dcdsb.2011.16.189
    [3] S. C. Fu, The existence of traveling wave fronts for a reaction-diffusion system modelling the acidic nitrate-ferroin reaction, Quart. Appl. Math., 72 (2014), 649–664. http://dx.doi.org/10.1090/S0033-569X-2014-01349-5 doi: 10.1090/S0033-569X-2014-01349-5
    [4] I. P. Nagy, G. Pota, G. Bazsa, Wave profile in the acidic nitrate-ferroin reaction, J. Chem. Soc. Faraday Trans., 87 (1991), 3613–3615. http://dx.doi.org/10.1039/FT9918703613 doi: 10.1039/FT9918703613
    [5] J. H. Merkin, M. A. Sadiq, Reaction-diffusion travelling waves in the acidic nitrate-ferroin reaction, J. Math. Chem., 17 (1995), 357–375. http://dx.doi.org/10.1007/BF01165755 doi: 10.1007/BF01165755
    [6] G. Póota, I. Lengyel, G. Bazsa, Travelling waves in the acidic nitrate-ferroin reaction, J. Chem. Soc. Faraday Trans., 85 (1989), 3871–3877. http://dx.doi.org/10.1039/F19898503871 doi: 10.1039/F19898503871
    [7] G. Póota, I. Lengyel, G. Bazsa, Travelling waves in the acidic nitrate-iron(Ⅱ) reaction: Analytical description of the wave velocity, J. Phys. Chem., 95 (1991), 4379–4381. http://dx.doi.org/10.1021/j100164a039 doi: 10.1021/j100164a039
    [8] D. Sattinger, On the stability of waves of nonlinear parabolic systems, Adv. Math., 22 (1976), 312–355. http://dx.doi.org/10.1016/0001-8708(76)90098-0 doi: 10.1016/0001-8708(76)90098-0
    [9] G. Faye, M. Holzer, Asymptotic stability of the critical Fisher-KPP front using pointwise estimates, Z. Angew. Math. Phys., 70 (2019), 13. http://dx.doi.org/10.1007/s00033-018-1048-0 doi: 10.1007/s00033-018-1048-0
    [10] M. Bramson, Convergence of solutions of the Kolmogorov equation to travelling waves, Mem. Amer. Math. Soc., 44 (1983), 285. http://dx.doi.org/10.1090/memo/0285 doi: 10.1090/memo/0285
    [11] F. Hamel, G. Nadin, Spreading properties and complex dynamics for monostable reaction-diffusion equations, Commun. Partial Differ. Equ., 37 (2012), 511–537. http://dx.doi.org/10.1080/03605302.2011.647198 doi: 10.1080/03605302.2011.647198
    [12] F. Hamel, J. Nolen, J. M. Roquejoffre, L. Ryzhik, A short proof of the logarithmic Bramson correction in Fisher-KPP equations, Netw. Heterog. Media, 8 (2013), 275–289. http://dx.doi.org/10.3934/nhm.2013.8.275 doi: 10.3934/nhm.2013.8.275
    [13] F. Hamel, L. Roques, Fast propagation for KPP equations with slowly decaying initial conditions, J. Differ. Equ., 249 (2010), 1726–1745. http://dx.doi.org/10.1016/j.jde.2010.06.025 doi: 10.1016/j.jde.2010.06.025
    [14] K. Uchiyama, The behavior of solutions of some nonlinear diffusion equations for large time, J. Math. Kyoto Univ., 18 (1978), 453–508. https://doi.org/10.1215/kjm/1250522506 doi: 10.1215/kjm/1250522506
    [15] Y. Li, Y. Wu, Stability of traveling front solutions with algebraic spatial decay for some autocatalytic chemical reaction systems, SIAM J. Math. Anal., 44 (2012), 1474–1521. http://dx.doi.org/10.1137/100814974 doi: 10.1137/100814974
    [16] J. Li, Q. Yu, Traveling waves in a three-variable reaction-diffusion-mechanics model of cardiac tissue, Commun. Pure Appl. Anal., 24 (2025), 892–925. http://dx.doi.org/10.3934/cpaa.2025016 doi: 10.3934/cpaa.2025016
    [17] J. Y. Li, L. N. Wang, Y. P. Wu, Stability of large-amplitude traveling fronts for a traffic flow model with moving barriers, Discrete Contin. Dyn. Syst. Ser. S, 17 (2024), 720–741. http://dx.doi.org/10.3934/dcdss.2023087 doi: 10.3934/dcdss.2023087
    [18] Q. Qiao, Traveling waves and their spectral instability in volume-filling chemotaxis model, J. Differ. Equ., 382 (2024), 77–96. http://dx.doi.org/10.1016/j.jde.2023.11.012 doi: 10.1016/j.jde.2023.11.012
    [19] Q. Qiao, X. Zhang, Traveling waves to a chemotaxis-growth model with Allee effect, J. Differ. Equ., 416 (2025), 1747–1770. http://dx.doi.org/10.1016/j.jde.2024.10.040 doi: 10.1016/j.jde.2024.10.040
    [20] D. Henry, Geometric thoery of semilinear parabolic equations, Berlin, Heidelberg: Springer, 1981. http://dx.doi.org/10.1007/BFb0089647
    [21] Q. Ye, Z. Li, M. Wang, Y. Wu, Introduction to reaction-diffusion equations, Beijing: Science Press; 2011.
    [22] J. Alexander, R. Gardner, C. Jones, A topological invariant arising in the stability of traveling waves, J. Reine Angew. Math., 410 (1990), 167–212. http://dx.doi.org/10.1515/crll.1990.410.167 doi: 10.1515/crll.1990.410.167
    [23] R. L. Pego, M. I. Weinstein, Eigenvalues, and instability of solitary waves, Philos. Trans. Roy. Soc. London Ser. A, 340 (1992), 47–94. https://doi.org/10.1098/rsta.1992.0055 doi: 10.1098/rsta.1992.0055
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(251) PDF downloads(11) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog