Typesetting math: 100%
Research article

A Legendre-tau-Galerkin method in time for two-dimensional Sobolev equations

  • This work is devoted to present the Legendre space-time spectral method for two-dimensional (2D) Sobolev equations. Considering the asymmetry of the first-order differential operator, the Legendre-tau-Galerkin method is employed in time discretization and its multi-interval form is also investigated. In the theoretical analysis, rigorous proof of the stability and L2(Σ)-error estimates is given for the fully discrete schemes in both single-interval and multi-interval forms. Being different from the general Legendre-Galerkin method, we specifically take the Fourier-like basis functions in space to save the computing time and memory in the algorithm of the proposed method. Numerical experiments were included to confirm that our method attains exponential convergence in both time and space and that the multi-interval form can achieve improved numerical results compared with the single interval form.

    Citation: Siqin Tang, Hong Li. A Legendre-tau-Galerkin method in time for two-dimensional Sobolev equations[J]. AIMS Mathematics, 2023, 8(7): 16073-16093. doi: 10.3934/math.2023820

    Related Papers:

    [1] Yuanqiang Chen, Jihui Zheng, Jing An . A Legendre spectral method based on a hybrid format and its error estimation for fourth-order eigenvalue problems. AIMS Mathematics, 2024, 9(3): 7570-7588. doi: 10.3934/math.2024367
    [2] Hui-qing Liao, Ying Fu, He-ping Ma . A space-time spectral method for the 1-D Maxwell equation. AIMS Mathematics, 2021, 6(7): 7649-7668. doi: 10.3934/math.2021444
    [3] A.S. Hendy, R.H. De Staelen, A.A. Aldraiweesh, M.A. Zaky . High order approximation scheme for a fractional order coupled system describing the dynamics of rotating two-component Bose-Einstein condensates. AIMS Mathematics, 2023, 8(10): 22766-22788. doi: 10.3934/math.20231160
    [4] Zunyuan Hu, Can Li, Shimin Guo . Fast finite difference/Legendre spectral collocation approximations for a tempered time-fractional diffusion equation. AIMS Mathematics, 2024, 9(12): 34647-34673. doi: 10.3934/math.20241650
    [5] A. K. Omran, V. G. Pimenov . High-order numerical algorithm for fractional-order nonlinear diffusion equations with a time delay effect. AIMS Mathematics, 2023, 8(4): 7672-7694. doi: 10.3934/math.2023385
    [6] Jeong-Kweon Seo, Byeong-Chun Shin . Reduced-order modeling using the frequency-domain method for parabolic partial differential equations. AIMS Mathematics, 2023, 8(7): 15255-15268. doi: 10.3934/math.2023779
    [7] Chuanhua Wu, Ziqiang Wang . The spectral collocation method for solving a fractional integro-differential equation. AIMS Mathematics, 2022, 7(6): 9577-9587. doi: 10.3934/math.2022532
    [8] Mahmoud A. Zaky, Weam G. Alharbi, Marwa M. Alzubaidi, R.T. Matoog . A Legendre tau approach for high-order pantograph Volterra-Fredholm integro-differential equations. AIMS Mathematics, 2025, 10(3): 7067-7085. doi: 10.3934/math.2025322
    [9] Bo Tang, Huasheng Wang . The a posteriori error estimate in fractional differential equations using generalized Jacobi functions. AIMS Mathematics, 2023, 8(12): 29017-29041. doi: 10.3934/math.20231486
    [10] Yingchao Zhang, Yingzhen Lin . An -approximation solution of time-fractional diffusion equations based on Legendre polynomials. AIMS Mathematics, 2024, 9(6): 16773-16789. doi: 10.3934/math.2024813
  • This work is devoted to present the Legendre space-time spectral method for two-dimensional (2D) Sobolev equations. Considering the asymmetry of the first-order differential operator, the Legendre-tau-Galerkin method is employed in time discretization and its multi-interval form is also investigated. In the theoretical analysis, rigorous proof of the stability and L2(Σ)-error estimates is given for the fully discrete schemes in both single-interval and multi-interval forms. Being different from the general Legendre-Galerkin method, we specifically take the Fourier-like basis functions in space to save the computing time and memory in the algorithm of the proposed method. Numerical experiments were included to confirm that our method attains exponential convergence in both time and space and that the multi-interval form can achieve improved numerical results compared with the single interval form.





    [1] G. Mesri, A. Rokhsar, Theory of consolidation for clays, J. Geotech. Eng. Div., 100 (1974), 889–904. https://doi.org/10.1061/AJGEB6.0000075 doi: 10.1061/AJGEB6.0000075
    [2] P. J. Chen, M. E. Gurtin, On a theory of heat conduction involving two temperatures, Z. Angew. Math. Phys., 19 (1968), 614–627. https://doi.org/10.1007/BF01594969 doi: 10.1007/BF01594969
    [3] X. Cao, I. S. Pop, Degenerate two-phase porous media flow model with dynamic capillarity, J. Differ. Equ., 260 (2016), 2418–2456. https://doi.org/10.1016/j.jde.2015.10.008 doi: 10.1016/j.jde.2015.10.008
    [4] Ankur, R. Jiwari, N. Kumar, Analysis and simulation of Korteweg-de Vries-Rosenau-regularised long-wave model via Galerkin finite element method, Comput. Math. Appl., 135 (2023), 134–148. https://doi.org/10.1016/j.camwa.2023.01.027 doi: 10.1016/j.camwa.2023.01.027
    [5] Z. C. Fang, J. Zhao, H. Li, Y. Liu, A fast time two-mesh finite volume element algorithm for the nonlinear time-fractional coupled diffusion model, Numer. Algorithms, 2022 (2022), 1–36. https://doi.org/10.1007/s11075-022-01444-2 doi: 10.1007/s11075-022-01444-2
    [6] K. H. Kumar, R. Jiwari, A hybrid approach based on Legendre wavelet for numerical simulation of Helmholtz equation with complex solution, Int. J. Comput. Math., 99 (2022), 2221–2236. https://doi.org/10.1080/00207160.2022.2041193 doi: 10.1080/00207160.2022.2041193
    [7] Y. X. Niu, Y. Liu, H. Li, F. W. Liu, Fast high-order compact difference scheme for the nonlinear distributed-order fractional Sobolev model appearing in porous media, Math. Comput. Simul., 203 (2023), 387–407. https://doi.org/10.1016/j.matcom.2022.07.001 doi: 10.1016/j.matcom.2022.07.001
    [8] H. Li, Z. D. Luo, J. An, P. Sun, A fully discrete finite volume element formulation for Sobolev equation and numerical simulations, Math. Numer. Sinica, 34 (2012), 163–172. https://doi.org/10.12286/jssx.2012.2.163 doi: 10.12286/jssx.2012.2.163
    [9] Z. D. Luo, F. Teng, J. Chen, A POD-based reduced-order Crank-Nicolson finite volume element extrapolating algorithm for 2D Sobolev equations, Math. Comput. Simul., 146 (2018), 118–133. https://doi.org/10.1016/j.matcom.2017.11.002 doi: 10.1016/j.matcom.2017.11.002
    [10] Z. D. Luo, A Crank-Nicolson finite volume element method for two-dimensional Sobolev equations, J. Inequal. Appl., 2016 (2016), 1–15. https://doi.org/10.1186/s13660-016-1131-z doi: 10.1186/s13660-016-1131-z
    [11] X. Q. Zhang, W. Q. Wang, T. C. Lu, Continuous interior penalty finite element methods for Sobolev equations with convection-dominated term, Numer. Methods Partial Differ. Equ., 28 (2012), 1399–1416. https://doi.org/10.1002/num.20693 doi: 10.1002/num.20693
    [12] Z. H. Zhao, H. Li, Z. D. Luo, Analysis of a space-time continuous Galerkin method for convection-dominated Sobolev equations, Comput. Math. Appl., 73 (2017), 1643–1656. https://doi.org/10.1016/j.camwa.2017.01.023 doi: 10.1016/j.camwa.2017.01.023
    [13] T. J. Sun, D. P. Yang, The finite difference streamline diffusion methods for Sobolev equations with convection-dominated term, Appl. Math. Comput., 125 (2002), 325–345. https://doi.org/10.1016/S0096-3003(00)00135-1 doi: 10.1016/S0096-3003(00)00135-1
    [14] M. Abbaszadeh, M. Dehghan, Interior penalty discontinuous Galerkin technique for solving generalized Sobolev equation, Appl. Numer. Math., 154 (2020), 172–186. https://doi.org/10.1016/j.apnum.2020.03.019 doi: 10.1016/j.apnum.2020.03.019
    [15] D. Y. Shi, J. J. Sun, Superconvergence analysis of an H1-Galerkin mixed finite element method for Sobolev equations, Comput. Math. Appl., 72 (2016), 1590–1602. https://doi.org/10.1016/j.camwa.2016.07.023 doi: 10.1016/j.camwa.2016.07.023
    [16] X. L. Li, H. X. Rui, A block-centered finite difference method for the nonlinear Sobolev equation on nonuniform rectangular grids, Appl. Math. Comput., 363 (2019), 124607. https://doi.org/10.1016/j.amc.2019.124607 doi: 10.1016/j.amc.2019.124607
    [17] S. He, H. Li, Y. Liu, Time discontinuous Galerkin space-time finite element method for nonlinear Sobolev equations, Front. Math. China, 8 (2013), 825–836. https://doi.org/10.1007/s11464-013-0307-9 doi: 10.1007/s11464-013-0307-9
    [18] M. Dehghan, N. Shafieeabyaneh, M. Abbaszadeh, Application of spectral element method for solving Sobolev equations with error estimation, Appl. Numer. Math., 158 (2020), 439–462. https://doi.org/10.1016/j.apnum.2020.08.010 doi: 10.1016/j.apnum.2020.08.010
    [19] A. Quarteroni, Fourier spectral methods for pseudoparabolic equations, SIAM J. Numer. Anal., 24 (1987), 323–335. https://doi.org/10.1137/0724024 doi: 10.1137/0724024
    [20] C. Zhang, H. F. Yao, H. Y. Li, New space-time spectral and structured spectral element methods for high order problems, J. Comput. Appl. Math., 351 (2019), 153–166. https://doi.org/10.1016/j.cam.2018.08.038 doi: 10.1016/j.cam.2018.08.038
    [21] J. Scheffel, K. Lindvall, H. F. Yik, A time-spectral approach to numerical weather prediction, Comput. Phys. Commun., 226 (2018), 127–135. https://doi.org/10.1016/j.cpc.2018.01.010 doi: 10.1016/j.cpc.2018.01.010
    [22] Y. H. Qin, H. P. Ma, Legendre-tau-Galerkin and spectral collocation method for nonlinear evolution equations, Appl. Numer. Math., 153 (2020), 52–65. https://doi.org/10.1016/j.apnum.2020.02.001 doi: 10.1016/j.apnum.2020.02.001
    [23] S. H. Lui, Legendre spectral collocation in space and time for PDEs, Numer. Math., 136 (2017), 75–99. https://doi.org/10.1007/s00211-016-0834-x doi: 10.1007/s00211-016-0834-x
    [24] S. H. Lui, S. Nataj, Spectral collocation in space and time for linear PDEs, J. Comput. Phys., 424 (2021), 109843. https://doi.org/10.1016/j.jcp.2020.109843 doi: 10.1016/j.jcp.2020.109843
    [25] W. J. Liu, J. B. Sun, B. Y. Wu, Space-time spectral method for the two-dimensional generalized sine-Gordon equation, J. Math. Anal. Appl., 427 (2015), 787–804. https://doi.org/10.1016/j.jmaa.2015.02.057 doi: 10.1016/j.jmaa.2015.02.057
    [26] S. Q. Tang, H. Li, B. L. Yin, A space-time spectral method for multi-dimensional Sobolev equations, J. Math. Anal. Appl., 499 (2021), 124937. https://doi.org/10.1016/j.jmaa.2021.124937 doi: 10.1016/j.jmaa.2021.124937
    [27] J. G. Tang, H. P. Ma, Single and multi-interval Legendre τ-methods in time for parabolic equations, Adv. Comput. Math., 17 (2002), 349–367. https://doi.org/10.1023/A:1016273820035 doi: 10.1023/A:1016273820035
    [28] J. G. Tang, H. P. Ma, Single and multi-interval Legendre spectral methods in time for parabolic equations, Numer. Methods Partial Differ. Equ., 22 (2006), 1007–1034. https://doi.org/10.1002/num.20135 doi: 10.1002/num.20135
    [29] J. G. Tang, H. P. Ma, A Legendre spectral method in time for first-order hyperbolic equations, Appl. Numer. Math., 57 (2007), 1–11. https://doi.org/10.1016/j.apnum.2005.11.009 doi: 10.1016/j.apnum.2005.11.009
    [30] J. Shen, L. L. Wang, Fourierization of the Legendre-Galerkin method and a new space-time spectral method, Appl. Numer. Math., 57 (2007), 710–720. https://doi.org/10.1016/j.apnum.2006.07.012 doi: 10.1016/j.apnum.2006.07.012
    [31] J. Shen, T. Tang, L. L. Wang, Spectral methods: Algorithms, analysis and applications, Berlin, Heidelberg: Springer, 2011. https://doi.org/10.1007/978-3-540-71041-7
    [32] A. J. Laub, Matrix analysis for scientists and engineers, Philadelphia: SIAM, 2004.
  • This article has been cited by:

    1. Karuvelan Murugan, Namasivayam Vasudevan, Intracellular toxicity exerted by PCBs and role of VBNC bacterial strains in biodegradation, 2018, 157, 01476513, 40, 10.1016/j.ecoenv.2018.03.014
    2. Pouria Mohammadparast-Tabas, Morteza Arab-Zozani, Kobra Naseri, Majid Darroudi, Hamed Aramjoo, Hanie Ahmadian, Mostafa Ashrafipour, Tahereh Farkhondeh, Saeed Samarghandian, Polychlorinated biphenyls and thyroid function: a scoping review, 2023, 0048-7554, 10.1515/reveh-2022-0156
    3. Adewale Adewuyi, Qilin Li, Emergence of microplastics in African environmental drinking water sources: A review on sources, analysis and treatment strategies, 2024, 16, 27724166, 100465, 10.1016/j.hazadv.2024.100465
    4. Kuok Ho Daniel Tang, Ronghua Li, Zhi Li, Dun Wang, Health risk of human exposure to microplastics: a review, 2024, 22, 1610-3653, 1155, 10.1007/s10311-024-01727-1
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1495) PDF downloads(52) Cited by(0)

Article outline

Figures and Tables

Figures(8)  /  Tables(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog