Loading [MathJax]/jax/output/SVG/jax.js
Research article

High order approximation scheme for a fractional order coupled system describing the dynamics of rotating two-component Bose-Einstein condensates

  • Received: 12 May 2023 Revised: 19 June 2023 Accepted: 25 June 2023 Published: 18 July 2023
  • MSC : 78M22, 65M06, 34K37

  • A coupled system of fractional order Gross-Pitaevskii equations is under consideration in which the time-fractional derivative is given in Caputo sense and the spatial fractional order derivative is of Riesz type. This kind of model may shed light on some time-evolution properties of the rotating two-component Bose¢ Einstein condensates. An unconditional convergent high-order scheme is proposed based on L2-1σ finite difference approximation in the time direction and Galerkin Legendre spectral approximation in the space direction. This combined scheme is designed in an easy algorithmic style. Based on ideas of discrete fractional Grönwall inequalities, we can prove the convergence theory of the scheme. Accordingly, a second order of convergence and a spectral convergence order in time and space, respectively, without any constraints on temporal meshes and the specified degree of Legendre polynomials N. Some numerical experiments are proposed to support the theoretical results.

    Citation: A.S. Hendy, R.H. De Staelen, A.A. Aldraiweesh, M.A. Zaky. High order approximation scheme for a fractional order coupled system describing the dynamics of rotating two-component Bose-Einstein condensates[J]. AIMS Mathematics, 2023, 8(10): 22766-22788. doi: 10.3934/math.20231160

    Related Papers:

    [1] A. K. Omran, V. G. Pimenov . High-order numerical algorithm for fractional-order nonlinear diffusion equations with a time delay effect. AIMS Mathematics, 2023, 8(4): 7672-7694. doi: 10.3934/math.2023385
    [2] Şuayip Toprakseven, Seza Dinibutun . A high-order stabilizer-free weak Galerkin finite element method on nonuniform time meshes for subdiffusion problems. AIMS Mathematics, 2023, 8(12): 31022-31049. doi: 10.3934/math.20231588
    [3] Siqin Tang, Hong Li . A Legendre-tau-Galerkin method in time for two-dimensional Sobolev equations. AIMS Mathematics, 2023, 8(7): 16073-16093. doi: 10.3934/math.2023820
    [4] Shanshan Wang . Split-step quintic B-spline collocation methods for nonlinear Schrödinger equations. AIMS Mathematics, 2023, 8(8): 19794-19815. doi: 10.3934/math.20231009
    [5] Xiaojun Zhou, Yue Dai . A spectral collocation method for the coupled system of nonlinear fractional differential equations. AIMS Mathematics, 2022, 7(4): 5670-5689. doi: 10.3934/math.2022314
    [6] Haitham Qawaqneh, Ali Altalbe, Ahmet Bekir, Kalim U. Tariq . Investigation of soliton solutions to the truncated M-fractional (3+1)-dimensional Gross-Pitaevskii equation with periodic potential. AIMS Mathematics, 2024, 9(9): 23410-23433. doi: 10.3934/math.20241138
    [7] Bin Fan . Efficient numerical method for multi-term time-fractional diffusion equations with Caputo-Fabrizio derivatives. AIMS Mathematics, 2024, 9(3): 7293-7320. doi: 10.3934/math.2024354
    [8] Obaid Algahtani, M. A. Abdelkawy, António M. Lopes . A pseudo-spectral scheme for variable order fractional stochastic Volterra integro-differential equations. AIMS Mathematics, 2022, 7(8): 15453-15470. doi: 10.3934/math.2022846
    [9] Zunyuan Hu, Can Li, Shimin Guo . Fast finite difference/Legendre spectral collocation approximations for a tempered time-fractional diffusion equation. AIMS Mathematics, 2024, 9(12): 34647-34673. doi: 10.3934/math.20241650
    [10] Yanhua Gu . High-order numerical method for the fractional Korteweg-de Vries equation using the discontinuous Galerkin method. AIMS Mathematics, 2025, 10(1): 1367-1383. doi: 10.3934/math.2025063
  • A coupled system of fractional order Gross-Pitaevskii equations is under consideration in which the time-fractional derivative is given in Caputo sense and the spatial fractional order derivative is of Riesz type. This kind of model may shed light on some time-evolution properties of the rotating two-component Bose¢ Einstein condensates. An unconditional convergent high-order scheme is proposed based on L2-1σ finite difference approximation in the time direction and Galerkin Legendre spectral approximation in the space direction. This combined scheme is designed in an easy algorithmic style. Based on ideas of discrete fractional Grönwall inequalities, we can prove the convergence theory of the scheme. Accordingly, a second order of convergence and a spectral convergence order in time and space, respectively, without any constraints on temporal meshes and the specified degree of Legendre polynomials N. Some numerical experiments are proposed to support the theoretical results.



    Of concern is proposing a numerical scheme based on a high-order finite difference/Legendre-Galerkin spectral method for solving the coupled Gross¢Pitaevskii equations in the dimensionless form with time and space fractional derivatives:

    iC0Dβtψ=[12α|x|α+V(x)+δ+β11|ψ|2+β12|ϕ|2]ψ+λϕ,xΩ, tI, (1.1a)
    iC0Dβtϕ=[12α|x|α+V(x)+β21|ψ|2+β22|ϕ|2]ϕ+λψ,xΩ, tI, (1.1b)

    with the initial conditions

    ψ(x,0)=ψ0(x), ϕ(x,0)=ϕ0(x), xΩ, (1.1c)

    and the homogeneous boundary conditions

    ψ(a,t)=ψ(b,t)=ϕ(a,t)=ϕ(b,t)=0, tI, (1.1d)

    such that Ω=(a,b)R and I=(0,T]R. The parameters δ,β11, β12, β21, β22 and λ are constants to be given and ϕ0(x) and ψ0(x) are given smooth functions.

    The temporal fractional derivative is defined in Caputo sense [26], which means

    C0DβtΨ(x,t):={1Γ(1β)t0(ts)βΨ(x,s)sds,0<β<1,Ψ(x,t)t, β=1. (1.2)

    The spatial fractional operator of Riesz type of order α with respect to axb [26], namely

    αΨ|x|α=cα(aDαxΨ(x,t)+xDαbΨ(x,t)),cα=12cosπα2,1<α<2,

    where aDαxΨ(x,t) and xDαbΨ(x,t) are the left- and right-Riemann–Liouville derivatives of order α with respect to x(a,b), and are defined as

    aDαxΨ(x,t)=1Γ(nα)nxnxa(xτ)n1αΨ(τ,t)dτ, (1.3)

    and

    xDαbΨ(x,t)=(1)nΓ(nα)nxnbx(τx)n1αΨ(τ,t)dτ. (1.4)

    Bose and Einstein predicted theoretically Bose-Einstein condensations (BEC) which were detected experimentally by Anderson et al. in 1995 [4]. The link between the spin angular momentum of the electron spin and the orbital angular momentum was performed by the spin-orbit (SO) coupling such as Rasha type and Dresselhaus type. The SO coupling had been extensively discussed experimentally. Bosons and fermions SO coupling was achieved by Jacob et al. in 2008 [20]. A non-dimensionalization and dimension reduction were applied in [12,40]. Then, a two-component BEC with an internal atomic Josephson junction (or an external driving field) can be well modeled by coupled Gross-Pitaevskii equations in dimensionless form.

    Lately, Laskin extended the Feynman path integral approach over the more general Lvy-like quantum paths and derived a fractional Schrödinger equation, which modifies the integer equation by invoking the fractional Laplacian. It has been proposed to study BEC of which the particles obey a non-Gaussian distribution law [10,31,32], where fractional Schrödinger was named as fractional Gross¢Pitaevskii Equation (FGPE) and BEC as fractional BEC.

    Due to the nonlocality of fractional differential operators, the numerical solutions of the fractional models are more complicated than the classical models. There are several analytical methods to solve fractional differential equations. However, analytical methods do not work well on most of the fractional differential equations, e.g. with nonlinearities or linear equations with time-dependent coefficients. From the numerical implementation point of view, the time-dependent Gross¢Pitaevskii equation describing the dynamics of rotating Bose-Einstein condensates and its discretization with the finite element method were considered in [19]. The approach in [14] exerted some efforts to propose a finite-difference method based on weighted-shifted Grünwald differences for solving the multi-dimensional Gross¢Pitaevskii equation, which considers fractional derivatives of the Riesz type in space, a generalized potential function and angular momentum rotation. An analysis based on a compact finite difference scheme was proposed in [33] for the integer-order coupled Gross¢Pitaevskii equations in one space dimension. That scheme can conserve the total mass and energy at the discrete level. In [21], a sine pseudo-spectral/difference scheme that preserves the discrete mass and energy was produced and analyzed for the integer-order coupled Gross¢Pitaevskii equations with Dirichlet boundary conditions in several spatial dimensions. The approach in [23] was devoted to analyzing the convergence of explicit finite difference schemes for computing the integer-order coupled Gross¢Pitaevskii equations in high space dimensions.

    The combination of the efficiency of finite difference quotients based interpolation formulas of L1 or L2-1σ [3] and Galerkin Legendre spectral method is widely used to solve numerically different kinds of fractional order differential problems. For fractional diffusion problems, we refer to [13,36]. For the distributed-order weakly singular integral-partial differential model, we refer to [1]. For nonlinear fractional Schrödinger equations with Riesz space-and Caputo time-fractional derivatives, we refer to [35]. For a coupled system of time and space fractional diffusion equations, we refer to [17]. The propagation of solitons through a new type of quantum couplers called time-space fractional quantum couplers was presented in [18]. Concerning the Gross¢Pitaevskii equation arising in Bose-Einstein Condensation [25] as a generalization of the nonlinear fractional Schrödinger equations, numerous extensions to relevant physical situations are now clarified [6,5,8] (multi-components, nonlocal nonlinear interactions, etc.). For the fractional case, the situation is more complicated and still needs to be analyzed deeply. Serna-Reyes et al. [27] introduced and theoretically analyzed various numerical techniques for approximating the solutions of a fractional extension of a double condensate system that extends the well-known Gross¢Pitaevskii equation to the fractional scenario with two interacting condensates. Antoine et al. [7] proposed numerical schemes for time or space fractional nonlinear Schrödinger equations with some applications in Bose-Einstein condensation. Ainsworth and Mao [2] established the well-posedness of the fractional partial differential equation which arises by considering the gradient flow associated with a fractional Gross¢Pitaevskii free energy functional and some basic properties of the solution. Zhang et al. [39] studied the ground and first excited states of the fractional Bose¢Einstein condensates which are modeled by the fractional Gross¢Pitaevskii equation. They used the weighted shifted Grünwald¢Letnikov difference method to discretize the Gross¢Pitaevskii equation. Liang et al. [22] introduced efficient local extrapolation of the exponential operator splitting scheme to solve the multi-dimensional space-fractional nonlinear Schrödinger equations including the space-fractional Gross-Pitaevskii equation, which is used to model optical solitons in graded-index fibers.

    In this paper, our goal is to numerically solve (1.1a)-(1.1b) by implementing a combined high-order numerical approach. This approach is based on the Alikhanov high-order interpolation scheme to be used to approximate the time Caupto fractional derivatives side by side to a Galerkin-type formulation base on Legendre orthogonal polynomials basis to approximate Riesz space fractional derivatives. We used the recently introduced discrete fractional Grönwall inequalities [24] in discrete energy estimates to prove the unconditional convergence of the proposed scheme.

    We fix the following notations.

    (,)0,Ω denotes the inner product on the space L2(Ω) with the L2-norm 0,Ω and the maximum norm .

    C0(Ω) denotes the space of non-singular functions with compact support in Ω.

    Hr(Ω) and Hr0(Ω) are Sobolev spaces with the norm Hr and semi-norm ||Hr.

    PN(Ω) is the space of polynomials on Ω of degree less than or equal to N.

    ● The approximation space V0N is defined as

    V0N=PN(Ω)H10(Ω).

    IN is the interpolation operator of Legendre-Gauss-Lobatto type, IN:C(ˉΩ)VN,

    Ψ(xk)=INΨ(xk)PN,k=0,1,,N.

    We also define function spaces [11] which will be used in the construction of the numerical scheme.

    Definition 1 (Fractional Sobolev space). The fractional Sobolev space Hη(Ω) for η>0, is defined as

    Hη(Ω)={ΨL2(Ω) :|ω|ηF(˜Ψ)L2(R)},

    endowed with the semi-norm and norm respectively as

    ΨHη(Ω)=ωηF(˜Ψ)0,R,ΨHη(Ω)=(Ψ2Hη(Ω)+Ψ20,Ω)1/2,

    such that Hη0(Ω) is the closure of C0(Ω) with respect to Hη(Ω). Also, F(˜Ψ) is the Fourier transformation of the function ˜Ψ and the zero extension of Ψ outside Ω denoted by ˜Ψ.

    Lemma 1 (Adjoint property). By choosing 1<η<2, then ΨHη0(Ω) and νHη/20(Ω), we deduce

    (aDηxΨ,ν)0,Ω=(aDη/2xΨ,xDη/2bν)0,Ω,(xDηbΨ,ν)0,Ω=(xDη/2bΨ,aDη/2xν)0,Ω.

    The temporal domain I is partitioned by tj=jτ, j=0, 1,,M with τ=T/M. Denote tj+σ=(j+σ)τ=σtj+1+(1σ)tj, for j=0, 1,,M1. We take Ψj+σ=Ψj+σ()=Ψ(,tj+σ).

    Definition 2. Let 0<β<1 and σ=1β2. Then we define

    a(β,σ)s={σ1β,s=0,(s+σ)1β(s1+σ)1β,s1, (2.1)
    b(β,σ)s=12β[(s+σ)2β(s1+σ)2β]12[(s+σ)1β+(s1+σ)1β],s1, (2.2)

    and

    C(j,β,σ)s={a(β,σ)0,s=j=0,a(β,σ)0+b(β,σ)1,s=0, j1,a(β,σ)s+b(β,σ)s+1b(β,σ)s,1sj1,a(β,σ)jb(β,σ)j,1s=j. (2.3)

    Lemma 2 (see [3]). L2-1σ interpolation formula is given as follows. Assume that Ψ(t)C3[0,tj+1], 0jM1, is formulated as

    |0Dβtj+σΨ=τβΓ(2β)jr=0C(j,β,σ)jrδtΨr+O(τ3β),0<β<1, (2.4)

    where δtΨr=Ψr+1Ψr.

    It can be also given as follows

    |0Dβtj+σΨ=τβΓ(2β)jr=0d(j,β,σ)rΨr+O(τ3β), (2.5)

    where d(0,β,σ)1=d(0,β,σ)0=σ1β j=0, and j1,

    d(j,β,σ)s={C(j,β,σ)j,s=0,C(j,β,σ)js+1C(j,β,σ)js,1sj,C(j,β,σ)0,s=j+1. (2.6)

    Accordingly, L2-1σ Alikhanov formula at the node tj+σ is defined as

    |0DβτΨj+σ=τβΓ(2β)j+1r=0d(j,β,σ)rΨr,0<β<1. (2.7)

    Lemma 3. Taylor's theorem can be used directly to obtain that identity

    Ψ(,tj+σ)=σΨ(,tj+1)+(1σ)Ψ(,tj)+O(τ2). (2.8)

    Initiating by L2-1σ formula (2.7) to discretize the time Caputo fractional derivative of (1.1a), leads to

    i0Dβτψj+σ+12αψj+σ|x|αV(x)ψj+σδψj+σβ11|ψj+σ|2ψj+σβ12|ϕj+σ|2ψj+σλϕj+σ=0,xΩ, (2.9a)
    i0Dβτϕj+σ+12αϕj+σ|x|αV(x)ϕj+σβ21|ψj+σ|2ϕj+σβ22|ϕj+σ|2ϕj+σλψj+σ=0,xΩ. (2.9b)

    Define the following parameters

    ξ(β,σ)j=(id(j,β,σ)j+1τβΓ(2β))1,˜d(j,β,σ)s=iξ(β,σ)jd(j,β,σ)sτβΓ(2β), 0sj.

    Then (2.9) has that equivalent form:

    ψj+1+σ2ξ(β,σ)jαψj+1|x|α=σ12ξ(β,σ)jαψj|x|αji=0˜d(j,β,σ)jψi+λσξ(β,σ)jϕj+1+λ(1σ)ξ(β,σ)jϕj+σξ(β,σ)j(V(x)+δ+β11|ψj+1|2+β12|ϕj+1|2)ψj+1+(1σ)ξ(β,σ)j(V(x)+δ+β11|ψj|2ψj+β12|ϕj|2)ψj, (2.10a)
    ϕj+1+σ2ξ(β,σ)jαϕj+1|x|α=σ12ξ(β,σ)jαϕj|x|αji=0˜d(j,β,σ)jϕi+λσξ(β,σ)jψj+1+λ(1σ)ξ(β,σ)jψj+σξ(β,σ)j(V(x)+β21|ψj+1|2+β22|ϕj+1|2)ϕj+1+(1σ)ξ(β,σ)j(V(x)+β21|ψj|2ψj+β22|ϕj|2)ϕj. (2.10b)

    then, the full discrete scheme is to find ψj+1N, ϕj+1NV0N, j0, νV0N such that

    {(ψj+1,v)+σ2ξ(β,σ)j(αψj+1|x|α,v)=σ12ξ(β,σ)j(αψj|x|α,v)ji=0˜d(j,β,σ)j(ψi,v)+λσξ(β,σ)j(ϕj+1,v)+λ(1σ)ξ(β,σ)j(ϕj,v)+σξ(β,σ)j(IN(V(x)+δ+β11|ψj+1|2+β12|ϕj+1|2)ψj+1,v)+(1σ)ξ(β,σ)j(IN(V(x)+δ+β11|ψj|2ψj+β12|ϕj|2)ψj,v),(ϕj+1,v)+σ2ξ(β,σ)j(αϕj+1|x|α,v)=σ12ξ(β,σ)j(αϕj|x|α,v)ji=0˜d(j,β,σ)j(ϕi,v)+λσξ(β,σ)j(ψj+1,v)+λ(1σ)ξ(β,σ)j(ψj,v)+σξ(β,σ)j(IN(V(x)+β21|ψj+1|2+β22|ϕj+1|2)ϕj+1,v)+(1σ)ξ(β,σ)j(IN(V(x)+β21|ψj|2ψj+β22|ϕj|2)ϕj,v),ψ0N=PNψ0,ϕ0N=PNϕ0, (2.11)

    where PN is a projection operator.

    Jacobi polynomials Jα,βi(x) by the aid of Via the hypergeometric function can be (for α,β>1 and x(1,1)) as [29]:

    Jα,βi(x)=(α+1)ii!2F1(i,α+β+i+1;α+1;1x2), x(1,1), iN, (3.1)

    such that the notation ()i represents the symbol of Pochhammer. Then, the equivalent three-term recurrence relation can be yielded

    Jα,β0(x)=1,Jα,β1(x)=12(α+β+2)x+12(αβ),Jα,βi+1(x)=(ˆaα,βixˆbα,βi)Jα,βi(x)ˆcα,βiJα,βi1(x),i1, (3.2)

    where

    ˆaα,βi=(2i+β+α+1)(2i+β+α+2)2(i+1)(i+β+α+1),ˆbα,βi=(2i+β+α+1)(β2α2)2(i+1)(i+β+α+1)(2i+β+α),ˆcα,βi=(2i+β+α+2)(i+α)(i+β)(i+1)(i+β+α+1)(2i+β+α). (3.3)

    The Legendre polynomial Li(x) is a special case of the Jacobi polynomia. This means

    Li(x)=J0,0i(x)=2F1(i,i+1;1;1x2). (3.4)

    The weight function which makes the orthogonality of Jacobi polynomials valid is given as ωα,β(x)=(1x)α(1+x)β, i.e.,

    11Jα,βi(x)Jα,βj(x)ωα,β(x)dx=γα,βiδij, (3.5)

    where δij is the Dirac Delta symbol, and

    γα,βi=2(α+β+1)Γ(i+β+1)Γ(i+α+1)i!(2i+α+β+1)Γ(i+α+β+1). (3.6)

    Lemma 4 (see for example [34]). For α>0, one has

    1DαˆxLr(ˆx)=Γ(r+1)Γ(rα+1)(1+ˆx)αJα,αr(ˆx),ˆx[1,1],ˆxDα1Lr(ˆx)=Γ(r+1)Γ(rα+1)(1ˆx)αJα,αr(ˆx),ˆx[1,1]. (3.7)

    We introduce the following rescale functions:

    :[a,b][1,1]:x2x(a+b)ba
    1:[1,1][a,b]:t(ba)t+a+b2

    and we write (x) as ˆx. The basis functions selected for the spatial discretization are given by [37,28]:

    φn(x)=Ln(ˆx)Ln+2(ˆx)=2n+32(n+1)(1ˆx2)J1,1n(ˆx),x[a,b]. (3.8)

    The function space V0N can be specified as follows:

    V0N=span{φn(x),n=0,1,,N2}. (3.9)

    The approximate solutions ψj+1N and ϕj+1N may be expressed as

    ψj+1N(x)=N2i=0ˆψj+1iφi(x),ϕj+1N(x)=N2i=0ˆϕj+1iφi(x), (3.10)

    where ˆψj+1i and ˆϕj+1i are the unknown expansion coefficients to be determined. Choosing v=φi, 0iN2. Then, the matrix representation of the Alikhanov L2-1σ Legendre-Galerkin spectral scheme has the following representation:

    [ˆM+σcα2ξ(β,σ)j(S+ST)]Ψj+1=Rj1+σHj+11,[ˆM+σcα2ξ(β,σ)j(S+ST)]Φj+1=Rj2+σHj+12, (3.11)

    where

    Ψj=(ˆψj0,ˆψj1,,ˆψjN2)T,Φj=(ˆϕj0,ˆϕj1,,ˆϕjN2)T, (3.12)
    sij=ΩaDα2xφi(x)xDα2bφj(x)dx,S=(sij)N2i,j=0, (3.13)
    mij=Ωφi(x)φj(x)dx,ˆM=(mij)N2i,j=0, (3.14)
    hj1,i=ξ(β,σ)jΩφi(x)[λϕjN+IN(V(x)+δ+β11|ψjN|2ψjN+β12|ϕjN|2)ψjN]dx (3.15)
    hj2,i=ξ(β,σ)jΩφi(x)[λψjN+IN(V(x)+β21|ψjN|2ψjN+β22|ϕjN|2)ϕjN]dx (3.16)
    Hj1=(hj1,0,hj1,1,,hj1,N2)T,Hj2=(hj2,0,hj2,1,,hj2,N2)T, (3.17)
    Rj1=(σ1)cα2ξ(β,σ)j(S+ST)Ψj+(1σ)Hj1Kj1 (3.18)
    Rj2=(σ1)cα2ξ(β,σ)j(S+ST)Φj+(1σ)Hj2Kj2 (3.19)
    Kj1=ji=0˜d(j,β,σ)iˆMΨi,Kj2=ji=0˜d(j,β,σ)iˆMΦi. (3.20)

    Lemma 5 (see [37,29]). The elements of the stiffness matrix S are given by

    sij=ajiaj+2iaji+2+aj+2i+2, (3.21)

    where

    aji=ΩaDα2xLi(ˆx)xDα2bLj(ˆx)dx=(ba2)1αΓ(i+1)Γ(j+1)Γ(iα2+1)Γ(jα2+1)Nr=0ϖα2,α2rJα2,α2i(xα2,α2r)Jα2,α2j(xα2,α2r), (3.22)

    and {xα2,α2r,ϖα2,α2r}Nr=0 are Jacobi-Gauss points and their weights with respect to the weight function ωα2,α2. The mass matrix ˆM is symmetric and its nonzero elements are given as

    mij=mji={ba2j+1+ba2j+5,i=j,ba2j+5,i=j+2. (3.23)

    Monitoring Hj+1,rq=Hj+1q(ψj+1,rN,ϕj+1,rN), q=1,2, r0. Then, the linear system (3.11) can be solved by the following iteration algorithm 1:

    Algorithm 1 Iterative algorithm for problem (1.1).
    Set Ψj+1,0=Ψj, ψj+1,0N=N2i=0ˆψj+1,0iφi(x), Φj+1,0=Φj, ϕj+1,0N=N2i=0ˆϕj+1,0iφi(x)
    Set Ψn=Ψn,r+1 and Φn=Φn,r+1.

     | Show Table
    DownLoad: CSV

    We fix C to be a generic positive constant which may differ from one inequality to another and is independent of τ, N, and n. Firstly, the following lemma is devoted to introducing the property of the projector operator PN.

    Lemma 6 (see [38]). ΨHα20(Ω)Hs(Ω), there exists PN such that:

    ΨPNΨCNsΨs,α32, (4.1)
    ΨPNΨCNϵsΨs,α=32,0<ϵ<12, (4.2)

    where ϵ and s are real numbers satisfying s>α2.

    The interpolation operator IN achieves the following property:

    Lemma 7 (see [29]). Suppose that ΨHs(Ω) (s1). Then,

    ΨINΨlCNlsΨs,0l1,

    and the constant C>0 is independent of N.

    Lemma 8 (see [30]). For any complex functions Ψ,Φ,ψ and ϕ, we have

    ||Ψ|2Φ|ψ|2ϕ|(max{|Φ|,|Ψ|,|ϕ|,|ψ|})2(2|Ψψ|+|Φϕ|).

    Lemma 9 (see [3]). Assume the existence of an absolute continuous function Ψ(t) in [0,T]. Then,

    Ψ(t)|0DβtΨ(t)120DβtΨ2(t).

    Lemma 10 (Grönwall inequality [26,9]). Let Ψ(t)0 be a non-negative function which is locally integrable on [0,+] such that |0DβtΨ(t)λΨ(t)+b. Then, we have Ψ(t)Ψ0Eβ(λtβ)+btβEβ,1+β(λtβ), where the Mittag-Leffler function Eβ(z) and the generalized Mittag-Leffler function Eβ1,β2(z) are defined by

    Eβ(z)=k=0zkΓ(1+βk),Eβ1,β2(z)=k=0zkΓ(β2+β1k),β1, β2>0,zC.

    Lemma 11 (see [26,9]). For 0<β1<2, and β2R, we assume that there exists μ such that πβ1/2<μ<min(π,πβ2). Then, also there exists a constant C=C(β1,β2,μ) such that |Eβ1,β2(z)|C1+|z|, for μ|arg(z)|π. In addition, if β1(0,1), then we have the following properties

    Eβ1(t)=Eβ1,1(t)>0,ddtEβ1,β1(t)>0.

    By fixing the following notation, and if we denote

    A(ψ,Ψ)=cα[(aDα/2xψ,xDα/2bΨ)+(xDα/2bψ,aDα/2xΨ)], (4.3)

    then for 1<α2, the semi-norm and the norm are defined by

    |Ψ|α/2=A(Ψ,Ψ),Ψα/2=(Ψ2+|Ψ|2α/2)12, (4.4)

    and for any u, vHα/20(Ω). Then, there exist positive constants C1, C2 such that

    A(ψ,Ψ)C1ψα/2Ψα/2, A(ψ,ψ)C2ψ2α/2. (4.5)

    The orthogonal projection operator PN:Hα20(Ω)V0N satisfies

    A(ψPNψ,Ψ)=0,ΨV0N. (4.6)

    Lemma 12 (see [3]). Let Ψ(t) be any function defined on Ω and 0<α<1. If Ψ(σ)=σΨj+1+(1σ)Ψj then

    Ψ(σ)|0Dαtj+σΨ(t)12|0Dαj+σΨ2(t). (4.7)

    Lemma 13 (L2-1σ discrete fractional form of Grönwall inequality [24,15]). Suppose that the non-negative sequences {ωj,gj|j=0,1,2,...} satisfy |0Dβτωj+σλ1ωj+1+λ2ωj+gj. Then, there exists of a positive constant τ such that

    ωj+12(ω0+tβjΓ(1+β)max0j0ngj0)Eβ(2λtβj), (4.8)

    whenever τ(τ)β=1/(2Γ(2β)λ1) and

    λ=λ1+λ2c(β,σ)0c(β,σ)1. (4.9)

    Theorem 1. Let {0<β<1,1<α<2,s1}. Assume that the solutions {ψ,ϕ} and {ψN,ϕN} of (1.1) and (2.9), respectively, are bounded. Thus, satisfying {ψ,ϕ}H1(I;Hα20(Λ)Hs(Λ)), such that the external potential function V=V(x) satisfies VC(Ω). Then, we get

    ψNψ+ϕNϕCNs,α32,
    ψNψ+ϕNϕCNμs,α=32,0<μ<12.

    Proof. The variational formulation is derived by taking the inner product of (1.1a) with v1,

    i(C0Dβtψ,v1)+12(αψ|x|α,v1)(V+δ)(ψ,v1)β11(|ψ|2ψ,v1)β12(|ϕ|2ψ,v1)λ(ϕ,v1)=0, (4.10)

    Let e=ψψN, ζe=ψPNψ and ηe=PNψψN. Then, we get e=ζe+ηe. Also, let E=ϕϕN, ζE=ϕPNϕ and ηE=PNϕϕN. Hence, we get E=ζE+ηE. Now, making use of Lemma 6 and in the case of α32, then the following two estimates are obtained:

    eζe+ηeCNsψs+ηe, (4.11)
    EζE+ηECNsϕs+ηE. (4.12)

    Subtracting (4.10) from (2.11), then we get

    i(C0Dβte,v1)+12(αe|x|α,v1)(V+δ)(e,v1)β11(IN|ψN|2ψN|ψ|2ψ,v1)β12(IN|ϕN|2ψN|ϕ|2ψ,v1)λ(E,v1)=0. (4.13)

    The orthogonality of PN, yields

    (aDαxe,v1)=(ζ,xDαbv1)+(aDα/2xηe,xDα/2bv1)=(aDα/2xηe,xDα/2bv1). (4.14)

    Taking the inner product of (4.13) with ηe and noting (4.6), and choosing the imaginary part of the resulting equation, we get

    (C0Dβtηe,ηe)+(C0Dβtζe,ηe)+Im[β11(IN|ψN|2ψN|ψ|2ψ,ηe)]+Im[β12(IN|ϕN|2ψN|ϕ|2ψ,ηe)]+λIm[(ζE+ηE,ηe)]=0. (4.15)

    Similarly, the imaginary part of the error difference equation concerned with (1.1b) and its semi discrete approximation in (2.11) has the following form

    (C0DβtηE,ηE)+(C0DβtζE,ηE)+Im[β21(IN|ϕN|2ϕN|ϕ|2ϕ,ηE)]+Im[β22(IN|ψN|2ϕN|ψ|2ϕ,ηe)]+λIm[(ζe+ηe,ηE)]=0. (4.16)

    Adding (4.15) and (4.16), and noticing that

    Im[(ηE,ηe)]+Im[(ηe,ηE)]=0

    yields

    (C0Dβt(ηe+ηE),(ηe+ηE))+(C0Dβt(ζe+ζE),(ηe+ηE))+Im[β11(IN|ψN|2ψN|ψ|2ψ,ηe)]+Im[β12(IN|ϕN|2ψN|ϕ|2ψ,ηe)]+Im[β21(IN|ϕN|2ϕN|ϕ|2ϕ,ηE)]+Im[β22(IN|ψN|2ϕN|ψ|2ϕ,ηe)]+λIm[((ζe+ζE),(ηe+ηE))]=0. (4.17)

    Define

    BN=Im[β11(|ψN|2ψN|ψ|2ψ,ηe)]+Im[β12(|ϕN|2ψN|ϕ|2ψ,ηe)],
    DN=Im[β21(|ϕN|2ϕN|ϕ|2ϕ,ηE)]+Im[β22(|ψN|2ϕN|ψ|2ϕ,ηe)],

    then assuming the boundness of the exact solutions {ψ,ϕ} and the approximate solutions {ψN,ϕN} for the system (1.1a)-(1.1d) and invoking Lemma 8 give

    |BN||β11|(2max{|ψN|,|ψ|})2(3|ψNψ|)+|β12|(max{|ψN|,|ϕN|,|ψ|,|ϕ|})2(2|ϕNϕ|+|ψNψ|)c3(|ϕNϕ|+|ψNψ|)c4(|ηe|+|ηE|+CNs(|ψ|s+|ϕ|s)). (4.18)

    Similar analysis leads to

    |DN|c5(|ϕNϕ|+|ψNψ|)c5(|ηe|+|ηE|+CNs(|ψ|s+|ϕ|s)). (4.19)

    Define G(ε)=|ε|2ε, and making use of Cauchy-Schwarz inequality, we deduce

    (ING(εN)G(ε),ηe)12ING(εN)G(ε)2+12ηe2,
    (ING(εN)G(ε),ηE)12ING(εN)G(ε)2+12ηE2,
    (IN|ϕN|2ψN|ϕ|2ψ,ηe)12IN(|ϕN|2ψN)|ϕ|2ψ2+12ηe2,
    (IN|ψN|2ϕN|ψ|2ϕ,ηE)12IN(|ψN|2ϕN)|ψ|2ϕ2+12ηE2,
    λIm[((ζe+ζE),(ηe+ηE))]|λ|2(ηe+ηE)2+C|λ|2N2s(ψs+ϕs)2,
    (C0Dβt(ζe+ζE),(ηe+ηE))12(ηe+ηE)2+C12N2s(C0Dβtψs+C0Dβtϕs)2.

    By Lemma 7, we have

    ING(εN)G(ε)IN(G(εN)G(ε))+ING(ε)G(ε)CG(εN)G(ε)+CNsεs.

    Also,

    IN(|ϕN|2ψN)|ϕ|2ψC|ϕN|2ψN|ϕ|2ψ+CNsϕ2sψs,
    IN(|ψN|2ϕN)|ψ|2ϕC|ψN|2ϕN|ψ|2ϕ+CNsψ2sϕs,

    accordingly and after some rather manipulations and invoking Lemma 9, we finally get

    C0Dβt(ηe+ηE)2c6(N2s+(ηe+ηE)2). (4.20)

    An implementation of Lemmas 10 and 11, yields that (ηe+ηE)2c7N2s. The other inequality can be achieved in a similar fashion if α=32 and 0<μ<12.

    Theorem 2 (Convergence of the uniform L2-1σ – Galerkin spectral scheme). Let {ψ,ϕ} and {ψnN,ϕnN} be solutions of (1.1) and (2.9), respectively, with the condition that the external potential function V=V(x) satisfies VC(Ω) and suppose that the unique solution {ψ,ϕ}L([0,T;Hα20(Ω)Hs(Ω)) is sufficiently regular in temporal and spatial directions, bounded and βψtβ,βϕtβL([0,T;Hα20(Ω)Hs(Ω)). Then, a positive constant τ is existed such that when 0<ττ, the Galerkin spectral scheme (2.9a)–(2.9b) admits a unique solution {ψnN,ϕnN} satisfying

    ψnNψ(x,tn)+ϕnNϕ(x,tn)C(τ2+Ns),ifα32, (4.21)
    ψnNψ(x,tn)+ϕnNϕ(x,tn)C(τ2+Nμs),ifα=32and0<μ<12. (4.22)

    where C is a positive constant that has no dependence on n, τ and N.

    Proof. The next variational formula is derived by taking the inner product of (1.1a) with v1,

    i(C0Dβtψj+σ,v1)+12(αψj+σ|x|α,v1)(V+δ)(ψj+σ,v1)β11(|ψj+σ|2ψj+σ,v1)β12(|ϕj+σ|2ψj+σ,v1)λ(ϕj+σ,v1)=0, (4.23)

    Let e=ψψN, ζe=ψPNψ and ηe=PNψψN, then we get ej+σ=ζj+σe+ηj+σe. Also, let E=ϕϕN, ζE=ϕPNϕ and ηE=PNϕϕN, then we get Ej+σ=ζj+σE+ηj+σE. Using Lemma 1, in case of α32, we get

    ej+σζj+σe+ηj+σeCNsψj+σs+ηj+σe, (4.24)
    Ej+σζj+σE+ηj+σECNsϕj+σs+ηj+σE. (4.25)

    Subtracting (4.23) from (2.11), then we obtain

    i(C0Dβtej+σ,v1)+12(αej+σ|x|α,v1)(V+δ)(ej+σ,v1)β11(IN|ψj+σN|2ψj+σN|ψj+σ|2ψj+σ,v1)β12(IN|ϕj+σN|2ψj+σN|ϕj+σ|2ψj+σ,v1)λ(Ej+σ,v1)=(O(τ2),v1). (4.26)

    The orthogonality of the operator PN, enables one to write

    (aDαxej+σ,v1)=(ζj+σ,xDαbv1)+(aDα/2xηj+σe,xDα/2bv1)=(aDα/2xηj+σe,xDα/2bv1). (4.27)

    Taking the inner product of (4.26) with ηj+σe and noting (4.6) and choosing the imaginary part of the resulting equation, we get

    (C0Dβtηj+σe,ηj+σe)+(C0Dβtζj+σe,ηj+σe)+Im[β11(IN|ψj+σN|2ψj+σN|ψj+σ|2ψj+σ,ηj+σe)]+Im[β12(IN|ϕj+σN|2ψj+σN|ϕj+σ|2ψj+σ,ηj+σe)]+λIm[(ζj+σE+ηj+σE,ηj+σe)]=(O(τ2),ηj+σe). (4.28)

    Similarly, the imaginary part of the error difference equation related with (1.1b) and its fully discrete approximation in (2.11) has the following form

    (C0Dβtηj+σE,ηj+σE)+(C0Dβtζj+σE,ηj+σE)+Im[β21(IN|ϕj+σN|2ϕj+σN|ϕj+σ|2ϕj+σ,ηj+σE)]+Im[β22(IN|ψj+σN|2ϕj+σN|ψj+σ|2ϕj+σ,ηj+σe)]+λIm[(ζj+σe+ηj+σe,ηj+σE)]=(O(τ2),ηj+σE). (4.29)

    Adding (4.28) and (4.29), and noticing that

    Im[(ηj+σE,ηj+σe)]+Im[(ηj+σe,ηj+σE)]=0,

    gives

    (C0Dβt(ηj+σe+ηj+σE),(ηj+σe+ηj+σE))+(C0Dβt(ζj+σe+ζj+σE),(ηj+σe+ηj+σE))+Im[β11(IN|ψN|2ψN|ψ|2ψ,ηe)]+Im[β12(IN|ϕj+σN|2ψj+σN|ϕj+σ|2ψj+σ,ηj+σe)]+Im[β21(IN|ϕj+σN|2ϕj+σN|ϕj+σ|2ϕj+σ,ηj+σE)]+Im[β22(IN|ψj+σN|2ϕj+σN|ψj+σ|2ϕj+σ,ηj+σe)]+λIm[((ζj+σe+ζj+σE),(ηj+σe+ηj+σE))]=(O(τ2),ηj+σe+ηj+σE). (4.30)

    Proceeding as in the proof of Theorem 1, we finally get

    C0Dβt(ηj+σe+ηj+σE)2c8((Ns+τ2)2+(ηj+σe+ηj+σE)2), (4.31)

    Applying the L2-1σ discrete fractional form of Grönwall inequality in Lemma 13, the final result (4.21) is achieved directly. Similarly, we can get the result (4.22) when α=32. This completes the proof of the theorem.

    The stability analysis can be proved similarly following [16].

    Example 1. Consider the following fractional order Gross–Pitaevskii coupled system:

    iC0Dβtψ=[12α|x|α+x22+1+|ψ|2+|ϕ|2]ψ+ϕ+f1,xΩ, tI, (5.1a)
    iC0Dβtϕ=[12α|x|α+x22+|ψ|2+|ϕ|2]ϕ+ψ+f2,xΩ, tI, (5.1b)

    with homogeneous boundaries

    ψ(a,t)=ψ(b,t)=ϕ(a,t)=ϕ(b,t)=0, tI, (5.1c)

    f1(x,t) and f2(x,t) can be deduced by considering the exact solutions

    ψ(x,t)=t3/2x2(1x)2,ϕ(x,t)=t5/2x2(1x)2.

    By specifying, α=β+1=1.2, 1.5, 1.8 and N=100 for ϕ and ψ, respectively. It can be shown from Tables 1 and 2, that the resulting L2-errors and the corresponding temporal convergence orders support the theoretical results with convergence order close to 2 in case of the smoothness of the solution. A spectral accuracy of convergence is also shown in Figures 1 and 2 by specifying M=1600 for different α and β.

    Table 1.  L2-errors and convergence order of ϕ versus M for example 1.
    M α=β+1=1.2 α=β+1=1.5 α=β+1=1.8
    Error Order Error Order Error Order CPU time (s)
    100 1.434×106 1.296×106 1.976×106 33.578
    200 2.705×107 2.406 3.246×107 1.997 4.965×107 1.992 60.126
    400 5.715×108 2.242 8.134×108 1.997 1.248×107 1.992 123.78
    800 1.522×108 1.909 2.051×108 1.987 3.181×108 1.972 256.954
    1600 4.921×109 1.628 5.538×109 1.889 9.411×109 1.757 703.658

     | Show Table
    DownLoad: CSV
    Table 2.  L2-errors and convergence order of ψ versus M for example 1.
    M α=β+1=1.2 α=β+1=1.5 α=β+1=1.8
    Error Order Error Order Error Order CPU time (s)
    100 2.936×106 1.531×106 1.977×106 33.578
    200 5.405×107 2.442 4.096×107 1.902 5.398×107 1.873 60.126
    400 1.482×107 1.866 1.080×107 1.922 1.509×107 1.838 123.78
    800 4.855×108 1.612 2.842×108 1.927 4.987×108 1.598 256.954
    1600 1.578×108 1.621 7.527×109 1.917 1.724×108 1.532 703.658

     | Show Table
    DownLoad: CSV
    Figure 1.  Spatial order of convergence for ϕ at M=1600.
    Figure 2.  Spatial convergence order of ψ at M=1600.

    Example 2. Consider the following Gross¢Pitaevskii system

    {iC0Dβtψ+12α|x|αψ+[|ψ|2+|ϕ|2]ψ+ϕ=0,iC0Dβtϕ+12α|x|αϕ+[|ϕ|2+|ψ|2]ϕ+ψ=0, (5.2)

    with the initial conditions

    ψ(x,0)=sech(x+5)e3ix,ϕ(x,0)=sech(x5)e3ix. (5.3)

    The fractality effects in time with respect to 0<β1 and in space with respect to 1<α2 affect directly the shapes and stability of the soliton solutions. This can clearly reflected in the numerical solutions given in Figures 3, 4, 5, 6 and 7. The performance of the solutions is represented in the following manner as can be observed from the different experiments. When α2 and β1, the collision is not elastic and so an influence on the shape of solutions is observed. It can be also observed that the decrease in α values could make the shape of solitons changes faster. As observed in Figures 5, 6, 7 and 8, we conclude that different decay properties in the time direction coming from distinct selections of the fractional-order parameters β. These characteristics can be used in physics to tunable the sharpness of the space-time fractional Gross¢Pitaevskii equations by changing the space fractional order α and the time fractional order β without changing the nonlinearity and dispersion effects.

    Figure 3.  Solutions of model (5.2) for α=1.99 and β=0.99.
    Figure 4.  Solutions of model (5.2) for α=1.6 and β=0.99.
    Figure 5.  Solutions of model (5.2) for α=1.99 and β=0.95.
    Figure 6.  Solutions of model (5.2) for α=1.99 and β=0.6.
    Figure 7.  Solutions of model (5.2) for α=1.6 and β=0.6.
    Figure 8.  Solutions of model (5.2) for α=1.3 and β=0.3.

    A high order (second temporal order and a spatial spectral accuracy) convergent numerical approach has been investigated for solving a system of fractional order coupled Gross Pitavskii equations. An algorithmic implementation of the scheme is given to simplify its numerical implementation. A theoretical analysis of the scheme shows unconditional convergence towards the true solution. This is also proven by giving some numerical experiments.

    The authors declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    M. A. Zaky and A. Aldraiweesh extend their appreciation to the Distinguished Scientist Fellowship Program (DSFP) at King Saud University (Saudi Arabia).



    [1] M. Abbaszadeh, M. Dehghan, Y Zhou, Crank–nicolson/galerkin spectral method for solving two-dimensional time-space distributed-order weakly singular integro-partial differential equation, J. Comput. Appl. Math., 374 (2020), 112739.
    [2] M. Ainsworth, Z. Mao, Analysis and approximation of gradient flows associated with a fractional order gross–pitaevskii free energy, Commun. Appl. Math. Comput., 1 (2019), 5–19. https://doi.org/10.1007/s42967-019-0008-9 doi: 10.1007/s42967-019-0008-9
    [3] A. A. Alikhanov, A new difference scheme for the time fractional diffusion equation. J. Comput. Phys., 280 (2015), 424–438. https://doi.org/10.1016/j.jcp.2014.09.031 doi: 10.1016/j.jcp.2014.09.031
    [4] M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, E. A. Cornell, Observation of Bose-Einstein condensation in a dilute atomic vapor, Science, 269 (1995), 198–201. https://doi.org/10.1126/science.269.5221.198 doi: 10.1126/science.269.5221.198
    [5] X. Antoine, W. Bao, C. Besse, Computational methods for the dynamics of the nonlinear schrödinger/gross–pitaevskii equations, Comput. Phys. Commun., 184 (2013), 2621–2633. https://doi.org/10.1016/j.cpc.2013.07.012 doi: 10.1016/j.cpc.2013.07.012
    [6] X. Antoine, R. Duboscq, Modeling and computation of bose-einstein condensates: Stationary states, nucleation, dynamics, stochasticity, Nonlinear Optical and Atomic Systems: at the Interface of Physics and Mathematics, 2015, 49–145. https://doi.org/10.1016/j.endm.2015.06.022 doi: 10.1016/j.endm.2015.06.022
    [7] X. Antoine, Q. Tang, J, Zhang, On the numerical solution and dynamical laws of nonlinear fractional schrödinger/gross–pitaevskii equations, Int. J. Comput. Math., 95 (2018), 1423–1443. https://doi.org/10.1080/00207160.2018.1437911 doi: 10.1080/00207160.2018.1437911
    [8] W. Bao, Y. Cai, Mathematical theory and numerical methods for bose-einstein condensation, Kinet. Relat. Mod., 6 (2013), 1.
    [9] B. Cheng, Z. Guo, D. Wang, Dissipativity of semilinear time fractional subdiffusion equations and numerical approximations, Appl. Math. Lett., 86 (2018), 276–283. https://doi.org/10.1016/j.aml.2018.07.006 doi: 10.1016/j.aml.2018.07.006
    [10] H. Ertik, H. Şirin, D. Demirhan, F. Büyükkiliç, Fractional mathematical investigation of Bose–Einstein condensation in dilute 87 Rb, 23 Na and 7 Li atomic gases, Int. J. Mod. Phys. B, 26 (2012), 1250096. https://doi.org/10.1142/S0217984912500960 doi: 10.1142/S0217984912500960
    [11] V. J. Ervin, J. P. Roop, Variational solution of fractional advection dispersion equations on bounded domains in Rd, Numer. Meth. Part. D. E., 23 (2007), 256–281. https://doi.org/10.1002/num.20169 doi: 10.1002/num.20169
    [12] A. Griffin, D. W. Snoke, S. Stringari, Bose-einstein condensation. Cambridge University Press, 1996.
    [13] R. M. Hafez, M. A. Zaky, A. S. Hendy, A novel spectral Galerkin/Petrov–Galerkin algorithm for the multi-dimensional space–time fractional advection–diffusion–reaction equations with nonsmooth solutions, Math. Comput. Simulat., 190 (2021), 678–690. https://doi.org/10.1016/j.matcom.2021.06.004,2021 doi: 10.1016/j.matcom.2021.06.004,2021
    [14] A. S. Hendy, J. E. Macías-Díaz, A Conservative Scheme with Optimal Error Estimates for a Multidimensional Space–Fractional Gross–Pitaevskii Equation, Int. J. Appl. Math. Comput. Sci., 29 (2019), 713–723. https://doi.org/10.2478/amcs-2019-0053 doi: 10.2478/amcs-2019-0053
    [15] A. S. Hendy, J. E. Macías-Díaz, A discrete grönwall inequality and energy estimates in the analysis of a discrete model for a nonlinear time-fractional heat equation, Mathematics, 8 (2020), 1539.
    [16] A. S. Hendy, M. A. Zaky, Global consistency analysis of l1-galerkin spectral schemes for coupled nonlinear space-time fractional schrödinger equations, Appl. Numer. Math., 156 (2020), 276–302. https://doi.org/10.1016/j.apnum.2020.05.002 doi: 10.1016/j.apnum.2020.05.002
    [17] A. S. Hendy, M. A. Zaky, Graded mesh discretization for coupled system of nonlinear multi-term time-space fractional diffusion equations, Eng. Comput., 38 (2022), 1351–1363.
    [18] A. S. Hendy, M. A. Zaky, R. M. Hafez, R. H. De Staelen, The impact of memory effect on space fractional strong quantum couplers with tunable decay behavior and its numerical simulation, Sci. Rep., 2021, Article number: 10275. https://doi.org/10.1038/s41598-021-89701-7
    [19] P. Henning, A. Målqvist, The Finite Element Method for the Time-Dependent Gross–Pitaevskii Equation with Angular Momentum Rotation, SIAM J. Numer. Anal., 55 (2017), 923–952. https://doi.org/10.1137/15M1009172 doi: 10.1137/15M1009172
    [20] A. Jacob, P. G Juzeliūnas, L. Santos, Landau levels of cold atoms in non-Abelian gauge fields, New J. Phys., 10 (2008), 045022. https://doi.org/10.1088/1367-2630/10/4/045022 doi: 10.1088/1367-2630/10/4/045022
    [21] X. Li, L. Zhang, A conservative sine pseudo-spectral-difference method for multi-dimensional coupled Gross–Pitaevskii equations, Adv. Comput. Math., 46 (2020), 1–30.
    [22] X. Liang, A. Q. M. Khaliq, H. Bhatt, K. M. Furati, The locally extrapolated exponential splitting scheme for multi-dimensional nonlinear space-fractional schrödinger equations, Numer. Algorithms, 76 (2017), 939–958. https://doi.org/10.1007/s11075-017-0291-3 doi: 10.1007/s11075-017-0291-3
    [23] F. Liao, L. Zhang, Optimal error estimates of explicit finite difference schemes for the coupled Gross–Pitaevskii equations, Int. J. Comput. Math., 95 (2018), 1874–1892. https://doi.org/10.1080/00207160.2017.1343942 doi: 10.1080/00207160.2017.1343942
    [24] H. Liao, W. McLean, J. Zhang, A discrete Grönwall inequality with applications to numerical schemes for subdiffusion problems, SIAM J. Numer. Anal., 57 (2019), 218–237. https://doi.org/10.1137/16M1175742 doi: 10.1137/16M1175742
    [25] L. Pitaevskii, S. Stringari, Bose-Einstein condensation and superfluidity, 164 (2016), Oxford University Press.
    [26] I. Podlubny, Fractional Differential Equations. An Introduction to Fractional Derivatives, Fractional Differential Equations, Some Methods of Their Solution and Some of Their Applications, Mathematics in science and engineering; v. 198. Academic Press, San Diego, 1999.
    [27] A. Serna-Reyes, J. E. Macías-Díaz, A. Gallegos, N. Reguera, Cmmse: analysis and comparison of some numerical methods to solve a nonlinear fractional gross–pitaevskii system, J. Math. Chem., 60 (2022), 1272–1286. https://doi.org/10.1007/s10910-022-01360-9 doi: 10.1007/s10910-022-01360-9
    [28] J. Shen, Efficient spectral-galerkin method I. direct solvers of second-and fourth-order equations using legendre polynomials, SIAM J. Sci. Comput., 15 (1994), 1489–1505. https://doi.org/10.1137/0915089 doi: 10.1137/0915089
    [29] J. Shen, T. Tang, L. Wang, Spectral Methods: Algorithms, Analysis and Applications, 41 (2011), Springer Science & Business Media.
    [30] Z. Sun, D. Zhao, On the L convergence of a difference scheme for coupled nonlinear Schrödinger equations, Comput. Math. Appl., 59 (2010), 3286–3300. https://doi.org/10.1016/j.camwa.2010.03.012 doi: 10.1016/j.camwa.2010.03.012
    [31] N. Uzar, S. Ballikaya, Investigation of classical and fractional Bose–Einstein condensation for harmonic potential, Physica A, 392 (2013), 1733–1741. https://doi.org/10.1016/j.physa.2012.11.039 doi: 10.1016/j.physa.2012.11.039
    [32] N. Uzar, D. Han, E. Aydiner, T. Tufekci, E. Aydıner, Solutions of the Gross-Pitaevskii and time-fractional Gross-Pitaevskii equations for different potentials with Homotopy Perturbation Method, arXiv preprint arXiv: 1203.3352, 2012.
    [33] T. Wang, Optimal point-wise error estimate of a compact difference scheme for the coupled Gross–Pitaevskii equations in one dimension, J. Sci. Comput., 59 (2014), 158–186. https://doi.org/10.1007/s10915-013-9757-1 doi: 10.1007/s10915-013-9757-1
    [34] Y. Wang, F. Liu, L. Mei, V. V. Anh, A novel alternating-direction implicit spectral galerkin method for a multi-term time-space fractional diffusion equation in three dimensions, Numer. Algorithms, 2020.
    [35] M. A. Zaky, A. S. Hendy, Convergence analysis of an L1-continuous Galerkin method for nonlinear time-space fractional Schrödinger equations, Int. J. Comput. Math., 98 (2021), 1420–1437. https://doi.org/10.1080/00207160.2020.1822994 doi: 10.1080/00207160.2020.1822994
    [36] M. A. Zaky, A. S. Hendy, J. E. Macías-Díaz, Semi-implicit galerkin–legendre spectral schemes for nonlinear time-space fractional diffusion–reaction equations with smooth and nonsmooth solutions, J. Sci. Comput., 82 (2020), Article number: 13.
    [37] F. Zeng, F. Liu, C. Li, K. Burrage, I. Turner, V. Anh, A crank–nicolson adi spectral method for a two-dimensional riesz space fractional nonlinear reaction-diffusion equation, SIAM J. Numer. Anal., 52 (2014), 2599–2622. https://doi.org/10.1137/130934192 doi: 10.1137/130934192
    [38] H. Zhang, X. Jiang, C. Wang, W. Fan, Galerkin-legendre spectral schemes for nonlinear space fractional schrödinger equation, Numer. Algorithms, 79 (2018), 337–356.
    [39] R. Zhang, Z. Han, Y. Shao, Z. Wang, Y. Wang, The numerical study for the ground and excited states of fractional bose–einstein condensates, Comput. Math. Appl., 78 (2019), 1548–1561.
    [40] Y. Zhang, W. Bao, H. Li, Dynamics of rotating two-component Bose–Einstein condensates and its efficient computation, Physica D., 234 (2007), 49–69. https://doi.org/10.1016/j.physd.2007.06.026 doi: 10.1016/j.physd.2007.06.026
  • This article has been cited by:

    1. Hamed Ould Sidi, Mahmoud A. Zaky, Rob H. De Staelen, Ahmed S. Hendy, Numerical Reconstruction of a Space-Dependent Reaction Coefficient and Initial Condition for a Multidimensional Wave Equation with Interior Degeneracy, 2023, 11, 2227-7390, 3186, 10.3390/math11143186
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1476) PDF downloads(64) Cited by(1)

Figures and Tables

Figures(8)  /  Tables(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog