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1. Introduction

Of concern is proposing a numerical scheme based on a high-order finite difference/Legendre-
Galerkin spectral method for solving the coupled Gross¢Pitaevskii equations in the dimensionless form
with time and space fractional derivatives:

i C
0 Dβ

t ψ =

[
−

1
2
∂α

∂ |x|α
+ V(x) + δ + β11 |ψ|

2 + β12 |ϕ|
2
]
ψ + λϕ, x ∈ Ω, t ∈ I, (1.1a)

i C
0 Dβ

t ϕ =

[
−

1
2
∂α

∂ |x|α
+ V(x) + β21 |ψ|

2 + β22 |ϕ|
2
]
ϕ + λψ, x ∈ Ω, t ∈ I, (1.1b)

with the initial conditions
ψ(x, 0) = ψ0(x), ϕ(x, 0) = ϕ0(x), x ∈ Ω, (1.1c)

and the homogeneous boundary conditions

ψ(a, t) = ψ(b, t) = ϕ(a, t) = ϕ(b, t) = 0, t ∈ I, (1.1d)

such that Ω = (a, b) ⊂ R and I = (0,T ] ⊂ R. The parameters δ, β11, β12, β21, β22 and λ are constants to
be given and ϕ0(x) and ψ0(x) are given smooth functions.

The temporal fractional derivative is defined in Caputo sense [26], which means

C
0 Dβ

tΨ(x, t) :=


1

Γ(1 − β)

∫ t

0
(t − s)−β

∂Ψ(x, s)
∂s

ds, 0 < β < 1,

∂Ψ(x, t)
∂t

, β = 1.
(1.2)

The spatial fractional operator of Riesz type of order α with respect to a ≤ x ≤ b [26], namely

∂αΨ

∂|x|α
= cα

(
aDα

xΨ(x, t) + xDα
bΨ(x, t)

)
, cα =

−1
2 cos πα

2

, 1 < α < 2,

where aDα
xΨ(x, t) and xDα

bΨ(x, t) are the left- and right-Riemann–Liouville derivatives of order α with
respect to x ∈ (a, b), and are defined as

aDα
xΨ(x, t) =

1
Γ(n − α)

∂n

∂xn

∫ x

a
(x − τ)n−1−αΨ(τ, t)dτ, (1.3)

and

xDα
bΨ(x, t) =

(−1)n

Γ(n − α)
∂n

∂xn

∫ b

x
(τ − x)n−1−αΨ(τ, t)dτ. (1.4)

Bose and Einstein predicted theoretically Bose-Einstein condensations (BEC) which were detected
experimentally by Anderson et al. in 1995 [4]. The link between the spin angular momentum of the
electron spin and the orbital angular momentum was performed by the spin-orbit (SO) coupling such
as Rasha type and Dresselhaus type. The SO coupling had been extensively discussed experimentally.
Bosons and fermions SO coupling was achieved by Jacob et al. in 2008 [20]. A non-dimensionalization
and dimension reduction were applied in [12, 40]. Then, a two-component BEC with an internal atomic
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Josephson junction (or an external driving field) can be well modeled by coupled Gross-Pitaevskii
equations in dimensionless form.

Lately, Laskin extended the Feynman path integral approach over the more general Lvy-like
quantum paths and derived a fractional Schrödinger equation, which modifies the integer equation
by invoking the fractional Laplacian. It has been proposed to study BEC of which the particles obey
a non-Gaussian distribution law [10, 31, 32], where fractional Schrödinger was named as fractional
Gross¢Pitaevskii Equation (FGPE) and BEC as fractional BEC.

Due to the nonlocality of fractional differential operators, the numerical solutions of the fractional
models are more complicated than the classical models. There are several analytical methods to
solve fractional differential equations. However, analytical methods do not work well on most of
the fractional differential equations, e.g. with nonlinearities or linear equations with time-dependent
coefficients. From the numerical implementation point of view, the time-dependent Gross¢Pitaevskii
equation describing the dynamics of rotating Bose-Einstein condensates and its discretization with
the finite element method were considered in [19]. The approach in [14] exerted some efforts to
propose a finite-difference method based on weighted-shifted Grünwald differences for solving the
multi-dimensional Gross¢Pitaevskii equation, which considers fractional derivatives of the Riesz type
in space, a generalized potential function and angular momentum rotation. An analysis based on a
compact finite difference scheme was proposed in [33] for the integer-order coupled Gross¢Pitaevskii
equations in one space dimension. That scheme can conserve the total mass and energy at the
discrete level. In [21], a sine pseudo-spectral/difference scheme that preserves the discrete mass
and energy was produced and analyzed for the integer-order coupled Gross¢Pitaevskii equations with
Dirichlet boundary conditions in several spatial dimensions. The approach in [23] was devoted to
analyzing the convergence of explicit finite difference schemes for computing the integer-order coupled
Gross¢Pitaevskii equations in high space dimensions.

The combination of the efficiency of finite difference quotients based interpolation formulas of L1
or L2-1σ [3] and Galerkin Legendre spectral method is widely used to solve numerically different kinds
of fractional order differential problems. For fractional diffusion problems, we refer to [13, 36]. For
the distributed-order weakly singular integral-partial differential model, we refer to [1]. For nonlinear
fractional Schrödinger equations with Riesz space-and Caputo time-fractional derivatives, we refer to
[35]. For a coupled system of time and space fractional diffusion equations, we refer to [17]. The
propagation of solitons through a new type of quantum couplers called time-space fractional quantum
couplers was presented in [18]. Concerning the Gross¢Pitaevskii equation arising in Bose-Einstein
Condensation [25] as a generalization of the nonlinear fractional Schrödinger equations, numerous
extensions to relevant physical situations are now clarified [6, 5, 8] (multi-components, nonlocal
nonlinear interactions, etc.). For the fractional case, the situation is more complicated and still needs
to be analyzed deeply. Serna-Reyes et al. [27] introduced and theoretically analyzed various numerical
techniques for approximating the solutions of a fractional extension of a double condensate system
that extends the well-known Gross¢Pitaevskii equation to the fractional scenario with two interacting
condensates. Antoine et al. [7] proposed numerical schemes for time or space fractional nonlinear
Schrödinger equations with some applications in Bose-Einstein condensation. Ainsworth and Mao [2]
established the well-posedness of the fractional partial differential equation which arises by considering
the gradient flow associated with a fractional Gross¢Pitaevskii free energy functional and some basic
properties of the solution. Zhang et al. [39] studied the ground and first excited states of the fractional
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Bose¢Einstein condensates which are modeled by the fractional Gross¢Pitaevskii equation. They
used the weighted shifted Grünwald¢Letnikov difference method to discretize the Gross¢Pitaevskii
equation. Liang et al. [22] introduced efficient local extrapolation of the exponential operator splitting
scheme to solve the multi-dimensional space-fractional nonlinear Schrödinger equations including the
space-fractional Gross-Pitaevskii equation, which is used to model optical solitons in graded-index
fibers.

In this paper, our goal is to numerically solve (1.1a)-(1.1b) by implementing a combined high-order
numerical approach. This approach is based on the Alikhanov high-order interpolation scheme to be
used to approximate the time Caupto fractional derivatives side by side to a Galerkin-type formulation
base on Legendre orthogonal polynomials basis to approximate Riesz space fractional derivatives. We
used the recently introduced discrete fractional Grönwall inequalities [24] in discrete energy estimates
to prove the unconditional convergence of the proposed scheme.

2. Numerical scheme

We fix the following notations.

• (·, ·)0,Ω denotes the inner product on the space L2(Ω) with the L2-norm ∥ · ∥0,Ω and the maximum
norm ∥·∥∞.
• C∞0 (Ω) denotes the space of non-singular functions with compact support in Ω.
• Hr(Ω) and Hr

0(Ω) are Sobolev spaces with the norm ∥ · ∥Hr and semi-norm |·|Hr .
• PN(Ω) is the space of polynomials on Ω of degree less than or equal to N.
• The approximation space V0

N is defined as

V0
N = PN(Ω) ∩ H1

0(Ω).

• IN is the interpolation operator of Legendre-Gauss-Lobatto type, IN : C(Ω̄)→ VN ,

Ψ(xk) = INΨ(xk) ∈ PN , k = 0, 1, . . . ,N.

We also define function spaces [11] which will be used in the construction of the numerical scheme.

Definition 1 (Fractional Sobolev space). The fractional Sobolev space Hη(Ω) for η > 0, is defined as

Hη(Ω) =
{
Ψ ∈ L2(Ω) : |ω|η F (Ψ̃) ∈ L2(R)

}
,

endowed with the semi-norm and norm respectively as

| Ψ |Hη(Ω)= ∥ | ω |
η F (Ψ̃)∥0,R, ∥Ψ∥Hη(Ω) =

(
| Ψ |2Hη(Ω) +∥Ψ∥

2
0,Ω

)1/2
,

such that Hη
0(Ω) is the closure of C∞0 (Ω) with respect to ∥ · ∥Hη(Ω). Also, F (Ψ̃) is the Fourier

transformation of the function Ψ̃ and the zero extension of Ψ outside Ω denoted by Ψ̃ .

Lemma 1 (Adjoint property). By choosing 1 < η < 2, then ∀Ψ ∈ Hη
0(Ω) and ν ∈ Hη/2

0 (Ω), we deduce(
aDη

xΨ, ν
)

0,Ω =
(

aDη/2
x Ψ, xDη/2

b ν
)

0,Ω
,

(
xDη

bΨ, ν
)

0,Ω
=

(
xDη/2

b Ψ, aDη/2
x ν

)
0,Ω
.
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Discretization

The temporal domain I is partitioned by t j = jτ, j = 0, 1, . . . ,M with τ = T/M. Denote t j+σ =

( j + σ)τ = σt j+1 + (1 − σ)t j, for j = 0, 1, . . . ,M − 1. We take Ψ j+σ = Ψ j+σ(·) = Ψ(·, t j+σ).

Definition 2. Let 0 < β < 1 and σ = 1 − β

2 . Then we define

a(β,σ)
s =

{
σ1−β, s = 0,
(s + σ)1−β − (s − 1 + σ)1−β, s ≥ 1,

(2.1)

b(β,σ)
s =

1
2 − β

[
(s + σ)2−β − (s − 1 + σ)2−β

]
−

1
2

[
(s + σ)1−β + (s − 1 + σ)1−β

]
, s ≥ 1, (2.2)

and

C( j,β,σ)
s =


a(β,σ)

0 , s = j = 0,
a(β,σ)

0 + b(β,σ)
1 , s = 0, j ≥ 1,

a(β,σ)
s + b(β,σ)

s+1 − b(β,σ)
s , 1 ≤ s ≤ j − 1,

a(β,σ)
j − b(β,σ)

j , 1 ≤ s = j.

(2.3)

Lemma 2 (see [3]). L2-1σ interpolation formula is given as follows. Assume that Ψ(t) ∈ C3[0, t j+1],
0 ≤ j ≤ M − 1, is formulated as

0Dβ
t j+σ
Ψ =

τ−β

Γ(2 − β)

j∑
r=0

C( j,β,σ)
j−r δtΨ

r + O(τ3−β), 0 < β < 1, (2.4)

where δtΨ
r = Ψr+1 − Ψr.

It can be also given as follows

0Dβ
t j+σ
Ψ =

τ−β

Γ(2 − β)

j∑
r=0

d( j,β,σ)
r Ψr + O(τ3−β), (2.5)

where d(0,β,σ)
1 = −d(0,β,σ)

0 = σ1−β ∀ j = 0, and ∀ j ≥ 1,

d( j,β,σ)
s =


−C( j,β,σ)

j , s = 0,
C( j,β,σ)

j−s+1 −C( j,β,σ)
j−s , 1 ≤ s ≤ j,

C( j,β,σ)
0 , s = j + 1.

(2.6)

Accordingly, L2-1σ Alikhanov formula at the node t j+σ is defined as

0Dβ
τΨ

j+σ =
τ−β

Γ(2 − β)

j+1∑
r=0

d( j,β,σ)
r Ψr, 0 < β < 1. (2.7)

Lemma 3. Taylor’s theorem can be used directly to obtain that identity

Ψ(·, t j+σ) = σΨ(·, t j+1) + (1 − σ)Ψ(·, t j) + O(τ2). (2.8)
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Initiating by L2-1σ formula (2.7) to discretize the time Caputo fractional derivative of (1.1a), leads
to

i 0Dβ
τψ

j+σ+
1
2
∂αψ j+σ

∂ |x|α
−V(x)ψ j+σ−δψ j+σ−β11

∣∣∣ψ j+σ
∣∣∣2 ψ j+σ−β12

∣∣∣ϕ j+σ
∣∣∣2 ψ j+σ−λϕ j+σ = 0, x ∈ Ω, (2.9a)

i 0Dβ
τϕ

j+σ +
1
2
∂αϕ j+σ

∂ |x|α
− V(x)ϕ j+σ − β21

∣∣∣ψ j+σ
∣∣∣2 ϕ j+σ − β22

∣∣∣ϕ j+σ
∣∣∣2 ϕ j+σ − λψ j+σ = 0, x ∈ Ω. (2.9b)

Define the following parameters

ξ
(β,σ)
j =

i d( j,β,σ)
j+1

τβΓ(2 − β)


−1

, d̃( j,β,σ)
s = i

ξ
(β,σ)
j d( j,β,σ)

s

τβΓ(2 − β)
, 0 ≤ s ≤ j.

Then (2.9) has that equivalent form:

ψ j+1 +
σ

2
ξ

(β,σ)
j

∂αψ j+1

∂ |x|α
=
σ − 1

2
ξ

(β,σ)
j

∂αψ j

∂ |x|α
−

j∑
i=0

d̃( j,β,σ)
j ψi + λσξ

(β,σ)
j ϕ j+1 + λ(1 − σ)ξ(β,σ)

j ϕ j

+ σξ
(β,σ)
j

(
V(x) + δ + β11

∣∣∣ψ j+1
∣∣∣2 + β12

∣∣∣ϕ j+1
∣∣∣2)ψ j+1

+ (1 − σ)ξ(β,σ)
j

(
V(x) + δ + β11

∣∣∣ψ j
∣∣∣2 ψ j + β12

∣∣∣ϕ j
∣∣∣2)ψ j,

(2.10a)

ϕ j+1 +
σ

2
ξ

(β,σ)
j

∂αϕ j+1

∂ |x|α
=
σ − 1

2
ξ

(β,σ)
j

∂αϕ j

∂ |x|α
−

j∑
i=0

d̃( j,β,σ)
j ϕi + λσξ

(β,σ)
j ψ j+1 + λ(1 − σ)ξ(β,σ)

j ψ j

+ σξ
(β,σ)
j

(
V(x) + β21

∣∣∣ψ j+1
∣∣∣2 + β22

∣∣∣ϕ j+1
∣∣∣2) ϕ j+1

+ (1 − σ)ξ(β,σ)
j

(
V(x) + β21

∣∣∣ψ j
∣∣∣2 ψ j + β22

∣∣∣ϕ j
∣∣∣2) ϕ j.

(2.10b)

then, the full discrete scheme is to find ψ j+1
N , ϕ

j+1
N ∈ V0

N , j ≥ 0, ∀ν ∈ V0
N such that

(
ψ j+1, v

)
+ σ

2 ξ
(β,σ)
j

(
∂αψ j+1

∂|x|α , v
)
= σ−1

2 ξ
(β,σ)
j

(
∂αψ j

∂|x|α , v
)
−

j∑
i=0

d̃( j,β,σ)
j

(
ψi, v

)
+ λσξ

(β,σ)
j

(
ϕ j+1, v

)
+λ(1 − σ)ξ(β,σ)

j

(
ϕ j, v

)
+ σξ

(β,σ)
j

(
IN

(
V(x) + δ + β11

∣∣∣ψ j+1
∣∣∣2 + β12

∣∣∣ϕ j+1
∣∣∣2)ψ j+1, v

)
+(1 − σ)ξ(β,σ)

j

(
IN

(
V(x) + δ + β11

∣∣∣ψ j
∣∣∣2 ψ j + β12

∣∣∣ϕ j
∣∣∣2)ψ j, v

)
,(

ϕ j+1, v
)
+ σ

2 ξ
(β,σ)
j

(
∂αϕ j+1

∂|x|α , v
)
= σ−1

2 ξ
(β,σ)
j

(
∂αϕ j

∂|x|α , v
)
−

j∑
i=0

d̃( j,β,σ)
j

(
ϕi, v

)
+ λσξ

(β,σ)
j

(
ψ j+1, v

)
+

λ(1 − σ)ξ(β,σ)
j

(
ψ j, v

)
+ σξ

(β,σ)
j

(
IN

(
V(x) + β21

∣∣∣ψ j+1
∣∣∣2 + β22

∣∣∣ϕ j+1
∣∣∣2) ϕ j+1, v

)
+(1 − σ)ξ(β,σ)

j

(
IN

(
V(x) + β21

∣∣∣ψ j
∣∣∣2 ψ j + β22

∣∣∣ϕ j
∣∣∣2) ϕ j, v

)
,

ψ0
N = PNψ0, ϕ0

N = PNϕ0,

(2.11)

where PN is a projection operator.
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3. Iterative algorithm implementation

Jacobi polynomials Jα,βi (x) by the aid of Via the hypergeometric function can be (for α, β > −1 and
x ∈ (−1, 1)) as [29]:

Jα,βi (x) =
(α + 1)i

i! 2F1

(
−i, α + β + i + 1;α + 1;

1 − x
2

)
, x ∈ (−1, 1), i ∈ N, (3.1)

such that the notation (·)i represents the symbol of Pochhammer. Then, the equivalent three-term
recurrence relation can be yielded

Jα,β0 (x) = 1,

Jα,β1 (x) =
1
2

(α + β + 2)x +
1
2

(α − β),

Jα,βi+1(x) =
(
âα,βi x − b̂α,βi

)
Jα,βi (x) − ĉα,βi Jα,βi−1(x), i ≥ 1,

(3.2)

where

âα,βi =
(2i + β + α + 1)(2i + β + α + 2)

2(i + 1)(i + β + α + 1)
,

b̂α,βi =
(2i + β + α + 1)(β2 − α2)

2(i + 1)(i + β + α + 1)(2i + β + α)
,

ĉα,βi =
(2i + β + α + 2)(i + α)(i + β)

(i + 1)(i + β + α + 1)(2i + β + α)
.

(3.3)

The Legendre polynomial Li(x) is a special case of the Jacobi polynomia. This means

Li(x) = J0,0
i (x) = 2F1

(
−i, i + 1; 1;

1 − x
2

)
. (3.4)

The weight function which makes the orthogonality of Jacobi polynomials valid is given as ωα,β(x) =
(1 − x)α(1 + x)β, i.e., ∫ 1

−1
Jα,βi (x)Jα,βj (x)ωα,β(x)dx = γα,βi δi j, (3.5)

where δi j is the Dirac Delta symbol, and

γ
α,β
i =

2(α+β+1)Γ(i + β + 1)Γ(i + α + 1)
i!(2i + α + β + 1)Γ(i + α + β + 1)

. (3.6)

Lemma 4 (see for example [34]). For α > 0, one has

−1Dα
x̂ Lr(x̂) =

Γ(r + 1)
Γ(r − α + 1)

(1 + x̂)−αJα,−αr (x̂), x̂ ∈ [−1, 1],

x̂Dα
1 Lr(x̂) =

Γ(r + 1)
Γ(r − α + 1)

(1 − x̂)−αJ−α,αr (x̂), x̂ ∈ [−1, 1].
(3.7)
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We introduce the following rescale functions:

∧ : [a, b]→ [−1, 1] : x 7→
2x − (a + b)

b − a

∧−1 : [−1, 1]→ [a, b] : t 7→
(b − a)t + a + b

2
and we write ∧(x) as x̂. The basis functions selected for the spatial discretization are given by [37, 28]:

φn(x) = Ln(x̂) − Ln+2(x̂) =
2n + 3

2(n + 1)
(1 − x̂2)J1,1

n (x̂), x ∈ [a, b]. (3.8)

The function space V0
N can be specified as follows:

V0
N = span {φn(x), n = 0, 1, . . . ,N − 2} . (3.9)

The approximate solutions ψ j+1
N and ϕ j+1

N may be expressed as

ψ
j+1
N (x) =

N−2∑
i=0

ψ̂
j+1
i φi(x), ϕ

j+1
N (x) =

N−2∑
i=0

ϕ̂
j+1
i φi(x), (3.10)

where ψ̂ j+1
i and ϕ̂ j+1

i are the unknown expansion coefficients to be determined. Choosing v = φi, 0 ≤
i ≤ N − 2. Then, the matrix representation of the Alikhanov L2-1σ Legendre-Galerkin spectral scheme
has the following representation:[

M̂ +
σ cα

2
ξ

(β,σ)
j

(
S + S T

)]
Ψ j+1 = R j

1 + σH j+1
1 ,[

M̂ +
σ cα

2
ξ

(β,σ)
j

(
S + S T

)]
Φ j+1 = R j

2 + σH j+1
2 ,

(3.11)

where

Ψ j = (ψ̂ j
0, ψ̂

j
1, . . . , ψ̂

j
N−2)T , Φ j = (ϕ̂ j

0, ϕ̂
j
1, . . . , ϕ̂

j
N−2)T , (3.12)

si j =

∫
Ω

aD
α
2
x φi(x)xD

α
2
b φ j(x)dx, S =

(
si j

)N−2

i, j=0
, (3.13)

mi j =

∫
Ω

φi(x)φ j(x)dx, M̂ =
(
mi j

)N−2

i, j=0
, (3.14)

h j
1,i = ξ

(β,σ)
j

∫
Ω

φi(x)
[
λ ϕ

j
N + IN

(
V(x) + δ + β11

∣∣∣ψ j
N

∣∣∣2 ψ j
N + β12

∣∣∣ϕ j
N

∣∣∣2)ψ j
N

]
dx (3.15)

h j
2,i = ξ

(β,σ)
j

∫
Ω

φi(x)
[
λψ

j
N + IN

(
V(x) + β21

∣∣∣ψ j
N

∣∣∣2 ψ j
N + β22

∣∣∣ϕ j
N

∣∣∣2) ϕ j
N

]
dx (3.16)

H j
1 = (h j

1,0, h
j
1,1, . . . , h

j
1,N−2)T , H j

2 = (h j
2,0, h

j
2,1, . . . , h

j
2,N−2)T , (3.17)

R j
1 =

(σ − 1)cα
2

ξ
(β,σ)
j

(
S + S T

)
Ψ j + (1 − σ)H j

1 − K j
1 (3.18)

R j
2 =

(σ − 1)cα
2

ξ
(β,σ)
j

(
S + S T

)
Φ j + (1 − σ)H j

2 − K j
2 (3.19)

K j
1 =

j∑
i=0

d̃( j,β,σ)
i M̂Ψi, K j

2 =

j∑
i=0

d̃( j,β,σ)
i M̂Φi. (3.20)
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Lemma 5 (see [37, 29]). The elements of the stiffness matrix S are given by

si j = a j
i − a j+2

i − a j
i+2 + a j+2

i+2 , (3.21)

where

a j
i =

∫
Ω

aD
α
2
x Li(x̂)xD

α
2
b L j(x̂)dx

=

(
b − a

2

)1−α
Γ(i + 1)Γ( j + 1)

Γ(i − α
2 + 1)Γ( j − α

2 + 1)

N∑
r=0

ϖ
− α2 ,−

α
2

r J
α
2 ,−

α
2

i

(
x−

α
2 ,−

α
2

r

)
J−

α
2 ,

α
2

j

(
x−

α
2 ,−

α
2

r

)
,

(3.22)

and
{
x−

α
2 ,−

α
2

r , ϖ
− α2 ,−

α
2

r

}N

r=0
are Jacobi-Gauss points and their weights with respect to the weight function

ω−
α
2 ,−

α
2 . The mass matrix M̂ is symmetric and its nonzero elements are given as

mi j = m ji =


b−a
2 j+1 +

b−a
2 j+5 , i = j,

− b−a
2 j+5 , i = j + 2.

(3.23)

Monitoring H j+1,r
q = H j+1

q (ψ j+1,r
N , ϕ

j+1,r
N ), q = 1, 2, r ≥ 0. Then, the linear system (3.11) can be solved

by the following iteration algorithm 1:

Algorithm 1 Iterative algorithm for problem (1.1).

Set Ψ j+1,0 = Ψ j, ψ
j+1,0
N =

N−2∑
i=0

ψ̂
j+1,0
i φi(x), Φ j+1,0 = Φ j, ϕ

j+1,0
N =

N−2∑
i=0

ϕ̂
j+1,0
i φi(x)

for r = 0 : K do

Solve


[
M̂ + σ cα

2 ξ
(β,σ)
j

(
S + S T

)]
Ψ j+1 = R j

1 + σH j+1,r
1 ,[

M̂ + σ cα
2 ξ

(β,σ)
j

(
S + S T

)]
Φ j+1 = R j

2 + σH j+1,r
2 ,

to get Ψn,r+1 and Φn,r+1;

Compute ψn,r+1
N =

N−2∑
j=0
ψ̂n,r+1

j φ j(x) and ϕn,r+1
N =

N−2∑
j=0
ϕ̂n,r+1

j φ j(x)

if
∥∥∥ψn,r+1

N − ψn,r
N

∥∥∥ ≤ ϵ & ∥∥∥ϕn,r+1
N − ϕn,r

N

∥∥∥ ≤ ϵ then
break

end
end
Set Ψn = Ψn,r+1 and Φn = Φn,r+1.

4. Convergence analysis

We fix C to be a generic positive constant which may differ from one inequality to another and is
independent of τ, N, and n. Firstly, the following lemma is devoted to introducing the property of the
projector operator PN .
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Lemma 6 (see [38]). ∀Ψ ∈ H
α
2

0 (Ω) ∩ H s(Ω), there exists PN such that:

∥Ψ − PNΨ∥ ≤ CN−s∥Ψ∥s, α ,
3
2
, (4.1)

∥Ψ − PNΨ∥ ≤ CNϵ−s∥Ψ∥s, α =
3
2
, 0 < ϵ <

1
2
, (4.2)

where ϵ and s are real numbers satisfying s > α
2 .

The interpolation operator IN achieves the following property:

Lemma 7 (see [29]). Suppose that Ψ ∈ H s(Ω) (s ≥ 1). Then,

∥Ψ − INΨ∥l ≤ CN l−s∥Ψ∥s, 0 ≤ l ≤ 1,

and the constant C > 0 is independent of N.

Lemma 8 (see [30]). For any complex functions Ψ,Φ, ψ and ϕ, we have

||Ψ|2Φ − |ψ|2ϕ| ≤ (max{|Φ|, |Ψ|, |ϕ|, |ψ|})2 (2|Ψ − ψ| + |Φ − ϕ|) .

Lemma 9 (see [3]). Assume the existence of an absolute continuous function Ψ(t) in [0,T ]. Then,

Ψ(t) 0Dβ
tΨ(t) ≥

1
20Dβ

tΨ
2(t).

Lemma 10 (Grönwall inequality [26, 9]). Let Ψ(t) ≥ 0 be a non-negative function which is locally
integrable on [0,+∞] such that 0Dβ

tΨ(t) ≤ λΨ(t)+b. Then, we haveΨ(t) ≤ Ψ0Eβ(λtβ)+bt βEβ,1+β(λtβ),
where the Mittag-Leffler function Eβ(z) and the generalized Mittag-Leffler function Eβ1,β2(z) are defined
by

Eβ(z) =
∞∑

k=0

zk

Γ(1 + βk)
, Eβ1,β2(z) =

∞∑
k=0

zk

Γ(β2 + β1k)
, β1, β2 > 0, z ∈ C.

Lemma 11 (see [26, 9]). For 0 < β1 < 2, and β2 ∈ R, we assume that there exists µ such that
πβ1/2 < µ < min(π, πβ2). Then, also there exists a constant C = C(β1, β2, µ) such that |Eβ1,β2(z)| ≤ C

1+|z| ,

for µ ≤ |arg(z)| ≤ π. In addition, if β1 ∈ (0, 1), then we have the following properties

Eβ1(t) = Eβ1,1(t) > 0,
d
dt

Eβ1,β1(t) > 0.

By fixing the following notation, and if we denote

A(ψ,Ψ) = cα
[(

aDα/2
x ψ, xDα/2

b Ψ
)
+

(
xDα/2

b ψ, aDα/2
x Ψ

)]
, (4.3)

then for 1 < α ≤ 2, the semi-norm and the norm are defined by

|Ψ|α/2 =
√

A(Ψ,Ψ), ∥Ψ∥α/2 = (∥Ψ∥2 + |Ψ|2α/2)
1
2 , (4.4)

and for any u, v ∈ Hα/2
0 (Ω). Then, there exist positive constants C1, C2 such that

A(ψ,Ψ) ≤ C1∥ψ∥α/2∥Ψ∥α/2, A(ψ, ψ) ≥ C2∥ψ∥
2
α/2. (4.5)

The orthogonal projection operator PN : H
α
2

0 (Ω)→ V0
N satisfies

A(ψ − PNψ,Ψ) = 0, ∀Ψ ∈ V0
N . (4.6)
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Lemma 12 (see [3]). LetΨ(t) be any function defined onΩ and 0 < α < 1. IfΨ(σ) = σΨ j+1+ (1−σ)Ψ j

then
Ψ(σ)

0Dα
t j+σ
Ψ(t) ≥

1
2 0Dα

j+σΨ
2(t). (4.7)

Lemma 13 (L2-1σ discrete fractional form of Grönwall inequality [24, 15]). Suppose that the non-
negative sequences {ω j, g j| j = 0, 1, 2, ...} satisfy 0Dβ

τω
j+σ ≤ λ1ω

j+1 + λ2ω
j + g j. Then, there exists of a

positive constant τ∗ such that

ω j+1 ≤ 2

ω0 +
tβj

Γ(1 + β)
max

0≤ j0≤n
g j0

 Eβ(2λtβj ), (4.8)

whenever τ ≤ (τ∗)β = 1/(2Γ(2 − β)λ1) and

λ = λ1 +
λ2

c(β,σ)
0 − c(β,σ)

1

. (4.9)

4.1. Semi-discrete form convergence analysis

Theorem 1. Let {0 < β < 1, 1 < α < 2, s ≥ 1}. Assume that the solutions {ψ, ϕ} and {ψN , ϕN} of
(1.1) and (2.9), respectively, are bounded. Thus, satisfying {ψ, ϕ} ∈ H1(I; H

α
2

0 (Λ) ∩ H s(Λ)), such that
the external potential function V = V(x) satisfies V ∈ C(Ω). Then, we get

∥ψN − ψ∥ + ∥ϕN − ϕ∥ ≤ CN−s, α ,
3
2
,

∥ψN − ψ∥ + ∥ϕN − ϕ∥ ≤ CNµ−s, α =
3
2
, 0 < µ <

1
2
.

Proof. The variational formulation is derived by taking the inner product of (1.1a) with v1,

i( C
0 Dβ

t ψ, v1) +
1
2

(
∂αψ

∂|x|α
, v1

)
− (V + δ)(ψ, v1) − β11

(
|ψ|2ψ, v1

)
− β12

(
|ϕ|2ψ, v1

)
− λ (ϕ, v1) = 0, (4.10)

Let e = ψ − ψN , ζe = ψ − PNψ and ηe = PNψ − ψN . Then, we get e = ζe + ηe. Also, let E = ϕ − ϕN ,

ζE = ϕ − PNϕ and ηE = PNϕ − ϕN . Hence, we get E = ζE + ηE. Now, making use of Lemma 6 and in
the case of α , 3

2 , then the following two estimates are obtained:

∥e∥ ≤ ∥ζe∥ + ∥ηe∥ ≤ CN−s∥ψ∥s + ∥ηe∥, (4.11)

∥E∥ ≤ ∥ζE∥ + ∥ηE∥ ≤ CN−s∥ϕ∥s + ∥ηE∥. (4.12)

Subtracting (4.10) from (2.11), then we get

i( C
0 Dβ

t e, v1) +
1
2

( ∂αe
∂|x|α

, v1

)
− (V + δ)(e, v1) − β11

(
IN |ψN |

2ψN − |ψ|
2ψ, v1

)
− β12

(
IN |ϕN |

2ψN − |ϕ|
2ψ, v1

)
− λ (E, v1) = 0. (4.13)
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22777

The orthogonality of PN , yields

(aDα
x e, v1) = (ζ, xDα

bv1) + (aDα/2
x ηe, xDα/2

b v1) = (aDα/2
x ηe, xDα/2

b v1). (4.14)

Taking the inner product of (4.13) with ηe and noting (4.6), and choosing the imaginary part of the
resulting equation, we get

( C
0 Dβ

t ηe, ηe) + ( C
0 Dβ

t ζe, ηe) + Im
[
β11

(
IN |ψN |

2ψN − |ψ|
2ψ, ηe

)]
+ Im

[
β12

(
IN |ϕN |

2ψN − |ϕ|
2ψ, ηe

)]
+ λIm

[
(ζE + ηE, ηe)

]
= 0. (4.15)

Similarly, the imaginary part of the error difference equation concerned with (1.1b) and its semi discrete
approximation in (2.11) has the following form

( C
0 Dβ

t ηE, ηE) + ( C
0 Dβ

t ζE, ηE) + Im
[
β21

(
IN |ϕN |

2ϕN − |ϕ|
2ϕ, ηE

)]
+ Im

[
β22

(
IN |ψN |

2ϕN − |ψ|
2ϕ, ηe

)]
+ λIm

[
(ζe + ηe, ηE)

]
= 0. (4.16)

Adding (4.15) and (4.16), and noticing that

Im
[
(ηE, ηe)

]
+ Im

[
(ηe, ηE)

]
= 0

yields(
C
0 Dβ

t (ηe + ηE) , (ηe + ηE)
)
+

(
C
0 Dβ

t (ζe + ζE) , (ηe + ηE)
)

+ Im
[
β11

(
IN |ψN |

2ψN − |ψ|
2ψ, ηe

)]
+ Im

[
β12

(
IN |ϕN |

2ψN − |ϕ|
2ψ, ηe

)]
+ Im

[
β21

(
IN |ϕN |

2ϕN − |ϕ|
2ϕ, ηE

)]
+ Im

[
β22

(
IN |ψN |

2ϕN − |ψ|
2ϕ, ηe

)]
+ λIm

[
((ζe + ζE), (ηe + ηE))

]
= 0. (4.17)

Define
BN = Im

[
β11

(
|ψN |

2ψN − |ψ|
2ψ, ηe

)]
+ Im

[
β12

(
|ϕN |

2ψN − |ϕ|
2ψ, ηe

)]
,

DN = Im
[
β21

(
|ϕN |

2ϕN − |ϕ|
2ϕ, ηE

)]
+ Im

[
β22

(
|ψN |

2ϕN − |ψ|
2ϕ, ηe

)]
,

then assuming the boundness of the exact solutions {ψ, ϕ} and the approximate solutions {ψN , ϕN} for
the system (1.1a)-(1.1d) and invoking Lemma 8 give

|BN | ≤ |β11| (2 max{|ψN |, |ψ|})2 (3|ψN − ψ|) + |β12| (max{|ψN |, |ϕN |, |ψ|, |ϕ|})2 (2|ϕN − ϕ| + |ψN − ψ|)

≤ c3 (|ϕN − ϕ| + |ψN − ψ|) ≤ c4
(
|ηe| + |ηE | +CN−s (|ψ|s + |ϕ|s)

)
. (4.18)

Similar analysis leads to

|DN | ≤ c5 (|ϕN − ϕ| + |ψN − ψ|) ≤ c5
(
|ηe| + |ηE | +CN−s (|ψ|s + |ϕ|s)

)
. (4.19)

Define G(ε) = |ε|2ε, and making use of Cauchy-Schwarz inequality, we deduce

(ING(εN) −G(ε), ηe) ≤
1
2
∥ING(εN) −G(ε)∥2 +

1
2
∥ηe∥

2,
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(ING(εN) −G(ε), ηE) ≤
1
2
∥ING(εN) −G(ε)∥2 +

1
2
∥ηE∥

2,(
IN |ϕN |

2ψN − |ϕ|
2ψ, ηe

)
≤

1
2
∥IN(|ϕN |

2ψN) − |ϕ|2ψ∥2 +
1
2
∥ηe∥

2,(
IN |ψN |

2ϕN − |ψ|
2ϕ, ηE

)
≤

1
2
∥IN(|ψN |

2ϕN) − |ψ|2ϕ∥2 +
1
2
∥ηE∥

2,

λIm
[
((ζe + ζE), (ηe + ηE))

]
≤
|λ|

2
(∥ηe∥ + ∥ηE∥)2 +C

|λ|

2
N−2s (∥ψ∥s + ∥ϕ∥s)2 ,

(
C
0 Dβ

t (ζe + ζE) , (ηe + ηE)
)
≤

1
2

(∥ηe∥ + ∥ηE∥)2 +C
1
2

N−2s
(
∥ C

0 Dβ
t ψ∥s + ∥

C
0 Dβ

t ϕ∥s
)2
.

By Lemma 7, we have

∥ING(εN) −G(ε)∥ ≤ ∥IN(G(εN) −G(ε))∥ + ∥ING(ε) −G(ε)∥ ≤ C∥G(εN) −G(ε)∥ +CN−s∥ε∥s.

Also,
∥IN(|ϕN |

2ψN) − |ϕ|2ψ∥ ≤ C∥|ϕN |
2ψN − |ϕ|

2ψ∥ +CN−s∥ϕ∥2s∥ψ∥s,

∥IN(|ψN |
2ϕN) − |ψ|2ϕ∥ ≤ C∥|ψN |

2ϕN − |ψ|
2ϕ∥ +CN−s∥ψ∥2s∥ϕ∥s,

accordingly and after some rather manipulations and invoking Lemma 9, we finally get

C
0 Dβ

t (∥ηe∥ + ∥ηE∥)2
≤ c6

(
N−2s + (∥ηe∥ + ∥ηE∥)2

)
. (4.20)

An implementation of Lemmas 10 and 11, yields that (∥ηe∥ + ∥ηE∥)2
≤ c7N−2s. The other inequality

can be achieved in a similar fashion if α = 3
2 and 0 < µ < 1

2 . □

4.2. Full-discrete form convergence analysis

Theorem 2 (Convergence of the uniform L2-1σ – Galerkin spectral scheme). Let {ψ, ϕ} and {ψn
N , ϕ

n
N}

be solutions of (1.1) and (2.9), respectively, with the condition that the external potential function
V = V(x) satisfies V ∈ C(Ω) and suppose that the unique solution {ψ, ϕ} ∈ L∞([0,T ; H

α
2

0 (Ω) ∩ H s(Ω))
is sufficiently regular in temporal and spatial directions, bounded and ∂βψ

∂tβ ,
∂βϕ

∂tβ ∈ L∞([0,T ; H
α
2

0 (Ω) ∩
H s(Ω)). Then, a positive constant τ∗ is existed such that when 0 < τ ≤ τ∗ , the Galerkin spectral
scheme (2.9a)–(2.9b) admits a unique solution {ψn

N , ϕ
n
N} satisfying

∥ψn
N − ψ(x, tn)∥ + ∥ϕn

N − ϕ(x, tn)∥ ≤ C
(
τ2 + N−s

)
, if α , 3

2 , (4.21)

∥ψn
N − ψ(x, tn)∥ + ∥ϕn

N − ϕ(x, tn)∥ ≤ C
(
τ2 + Nµ−s

)
, if α = 3

2 and 0 < µ <
1
2
. (4.22)

where C is a positive constant that has no dependence on n, τ and N.

Proof. The next variational formula is derived by taking the inner product of (1.1a) with v1,

i( C
0 Dβ

t ψ
j+σ, v1) +

1
2

(
∂αψ j+σ

∂|x|α
, v1

)
− (V + δ)(ψ j+σ, v1) − β11

(
|ψ j+σ|2ψ j+σ, v1

)
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− β12

(
|ϕ j+σ|2ψ j+σ, v1

)
− λ (ϕ j+σ, v1) = 0, (4.23)

Let e = ψ−ψN , ζe = ψ−PNψ and ηe = PNψ−ψN , then we get e j+σ = ζ
j+σ
e + η

j+σ
e . Also, let E = ϕ−ϕN ,

ζE = ϕ − PNϕ and ηE = PNϕ − ϕN , then we get E j+σ = ζ
j+σ
E + η

j+σ
E . Using Lemma 6, in case of α , 3

2 ,

we get
∥e j+σ∥ ≤ ∥ζ j+σ

e ∥ + ∥η
j+σ
e ∥ ≤ CN−s∥ψ j+σ∥s + ∥η

j+σ
e ∥, (4.24)

∥E j+σ∥ ≤ ∥ζ
j+σ
E ∥ + ∥η

j+σ
E ∥ ≤ CN−s∥ϕ j+σ∥s + ∥η

j+σ
E ∥. (4.25)

Subtracting (4.23) from (2.11 ), then we obtain

i( C
0 Dβ

t e j+σ, v1) +
1
2

(∂αe j+σ

∂|x|α
, v1

)
− (V + δ)(e j+σ, v1) − β11

(
IN |ψ

j+σ
N |

2ψ
j+σ
N − |ψ j+σ|2ψ j+σ, v1

)
− β12

(
IN |ϕ

j+σ
N |

2ψ
j+σ
N − |ϕ j+σ|2ψ j+σ, v1

)
− λ (E j+σ, v1) = (O(τ2), v1). (4.26)

The orthogonality of the operator PN , enables one to write

(aDα
x e j+σ, v1) = (ζ j+σ, xDα

bv1) + (aDα/2
x η j+σ

e , xDα/2
b v1) = (aDα/2

x η j+σ
e , xDα/2

b v1). (4.27)

Taking the inner product of (4.26) with η j+σ
e and noting (4.6) and choosing the imaginary part of the

resulting equation, we get

( C
0 Dβ

t η
j+σ
e , η j+σ

e ) + ( C
0 Dβ

t ζ
j+σ
e , η j+σ

e ) + Im
[
β11

(
IN |ψ

j+σ
N |

2ψ
j+σ
N − |ψ j+σ|2ψ j+σ, η j+σ

e

)]
+ Im

[
β12

(
IN |ϕ

j+σ
N |

2ψ
j+σ
N − |ϕ j+σ|2ψ j+σ, η j+σ

e

)]
+ λIm

[
(ζ j+σ

E + η
j+σ
E , η j+σ

e )
]
= (O(τ2), η j+σ

e ). (4.28)

Similarly, the imaginary part of the error difference equation related with (1.1b) and its fully discrete
approximation in (2.11) has the following form

( C
0 Dβ

t η
j+σ
E , η

j+σ
E ) + ( C

0 Dβ
t ζ

j+σ
E , η

j+σ
E ) + Im

[
β21

(
IN |ϕ

j+σ
N |

2ϕ
j+σ
N − |ϕ j+σ|2ϕ j+σ, η

j+σ
E

)]
+ Im

[
β22

(
IN |ψ

j+σ
N |

2ϕ
j+σ
N − |ψ j+σ|2ϕ j+σ, η j+σ

e

)]
+ λIm

[
(ζ j+σ

e + η j+σ
e , η

j+σ
E )

]
= (O(τ2), η j+σ

E ). (4.29)

Adding (4.28) and (4.29), and noticing that

Im
[
(η j+σ

E , η j+σ
e )

]
+ Im

[
(η j+σ

e , η
j+σ
E )

]
= 0,

gives(
C
0 Dβ

t

(
η j+σ

e + η
j+σ
E

)
,
(
η j+σ

e + η
j+σ
E

))
+

(
C
0 Dβ

t

(
ζ j+σ

e + ζ
j+σ
E

)
,
(
η j+σ

e + η
j+σ
E

))
+ Im

[
β11

(
IN |ψN |

2ψN − |ψ|
2ψ, ηe

)]
+ Im

[
β12

(
IN |ϕ

j+σ
N |

2ψ
j+σ
N − |ϕ j+σ|2ψ j+σ, η j+σ

e

)]
+ Im

[
β21

(
IN |ϕ

j+σ
N |

2ϕ
j+σ
N − |ϕ j+σ|2ϕ j+σ, η

j+σ
E

)]
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+ Im
[
β22

(
IN |ψ

j+σ
N |

2ϕ
j+σ
N − |ψ j+σ|2ϕ j+σ, η j+σ

e

)]
+ λIm

[(
(ζ j+σ

e + ζ
j+σ
E ), (η j+σ

e + η
j+σ
E )

)]
= (O(τ2), η j+σ

e + η
j+σ
E ).

(4.30)

Proceeding as in the proof of Theorem 1, we finally get

C
0 Dβ

t

(
∥η j+σ

e ∥ + ∥η
j+σ
E ∥

)2
≤ c8

(
(N−s + τ2)2 +

(
∥η j+σ

e ∥ + ∥η
j+σ
E ∥

)2
)
, (4.31)

Applying the L2-1σ discrete fractional form of Grönwall inequality in Lemma 13, the final result (4.21)
is achieved directly. Similarly, we can get the result (4.22) when α = 3

2 . This completes the proof of
the theorem. □

The stability analysis can be proved similarly following [16].

5. Numerical experiments

Example 1. Consider the following fractional order Gross–Pitaevskii coupled system:

i C
0 Dβ

t ψ =

[
−

1
2
∂α

∂ |x|α
+

x2

2
+ 1 + |ψ|2 + |ϕ|2

]
ψ + ϕ + f1, x ∈ Ω, t ∈ I, (5.1a)

i C
0 Dβ

t ϕ =

[
−

1
2
∂α

∂ |x|α
+

x2

2
+ |ψ|2 + |ϕ|2

]
ϕ + ψ + f2, x ∈ Ω, t ∈ I, (5.1b)

with homogeneous boundaries

ψ(a, t) = ψ(b, t) = ϕ(a, t) = ϕ(b, t) = 0, t ∈ I, (5.1c)

f1(x, t) and f2(x, t) can be deduced by considering the exact solutions

ψ(x, t) = t3/2x2(1 − x)2, ϕ(x, t) = t5/2x2(1 − x)2.

By specifying, α = β+1 = 1.2, 1.5, 1.8 and N = 100 for ϕ and ψ, respectively. It can be shown from
Tables 1 and 2, that the resulting L2-errors and the corresponding temporal convergence orders support
the theoretical results with convergence order close to 2 in case of the smoothness of the solution. A
spectral accuracy of convergence is also shown in Figures 1 and 2 by specifying M = 1600 for different
α and β.

Table 1. L2-errors and convergence order of ϕ versus M for example 1.

M
α = β + 1 = 1.2 α = β + 1 = 1.5 α = β + 1 = 1.8
Error Order Error Order Error Order CPU time (s)

100 1.434 × 10−6 −− 1.296 × 10−6 −− 1.976 × 10−6 −− 33.578
200 2.705 × 10−7 2.406 3.246 × 10−7 1.997 4.965 × 10−7 1.992 60.126
400 5.715 × 10−8 2.242 8.134 × 10−8 1.997 1.248 × 10−7 1.992 123.78
800 1.522 × 10−8 1.909 2.051 × 10−8 1.987 3.181 × 10−8 1.972 256.954

1600 4.921 × 10−9 1.628 5.538 × 10−9 1.889 9.411 × 10−9 1.757 703.658
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Table 2. L2-errors and convergence order of ψ versus M for example 1.

M
α = β + 1 = 1.2 α = β + 1 = 1.5 α = β + 1 = 1.8
Error Order Error Order Error Order CPU time (s)

100 2.936 × 10−6 −− 1.531 × 10−6 −− 1.977 × 10−6 −− 33.578
200 5.405 × 10−7 2.442 4.096 × 10−7 1.902 5.398 × 10−7 1.873 60.126
400 1.482 × 10−7 1.866 1.080 × 10−7 1.922 1.509 × 10−7 1.838 123.78
800 4.855 × 10−8 1.612 2.842 × 10−8 1.927 4.987 × 10−8 1.598 256.954

1600 1.578 × 10−8 1.621 7.527 × 10−9 1.917 1.724 × 10−8 1.532 703.658
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● α=β+1 = 1.2

Figure 1. Spatial order of convergence for ϕ at M = 1600.
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Figure 2. Spatial convergence order of ψ at M = 1600.

Example 2. Consider the following Gross¢Pitaevskii system
i C

0 Dβ
t ψ +

1
2

∂α

∂|x|αψ +
[
|ψ|2 + |ϕ|2

]
ψ + ϕ = 0,

i C
0 Dβ

t ϕ +
1
2

∂α

∂|x|αϕ +
[
|ϕ|2 + |ψ|2

]
ϕ + ψ = 0,

(5.2)

with the initial conditions

ψ(x, 0) = sech (x + 5) e3ix,

ϕ(x, 0) = sech (x − 5) e−3ix.
(5.3)

The fractality effects in time with respect to 0 < β ≤ 1 and in space with respect to 1 < α ≤ 2 affect
directly the shapes and stability of the soliton solutions. This can clearly reflected in the numerical
solutions given in Figures 3, 4, 5, 6 and 7. The performance of the solutions is represented in the
following manner as can be observed from the different experiments. When α , 2 and β , 1, the
collision is not elastic and so an influence on the shape of solutions is observed. It can be also observed
that the decrease in α values could make the shape of solitons changes faster. As observed in Figures 5,
6, 7 and 8, we conclude that different decay properties in the time direction coming from distinct
selections of the fractional-order parameters β. These characteristics can be used in physics to tunable
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the sharpness of the space-time fractional Gross¢Pitaevskii equations by changing the space fractional
order α and the time fractional order β without changing the nonlinearity and dispersion effects.

Figure 3. Solutions of model (5.2) for α = 1.99 and β = 0.99.

Figure 4. Solutions of model (5.2) for α = 1.6 and β = 0.99.

AIMS Mathematics Volume 8, Issue 10, 22766–22788.
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Figure 5. Solutions of model (5.2) for α = 1.99 and β = 0.95.

Figure 6. Solutions of model (5.2) for α = 1.99 and β = 0.6.

Figure 7. Solutions of model (5.2) for α = 1.6 and β = 0.6.
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Figure 8. Solutions of model (5.2) for α = 1.3 and β = 0.3.

6. Conclusions

A high order (second temporal order and a spatial spectral accuracy) convergent numerical approach
has been investigated for solving a system of fractional order coupled Gross Pitavskii equations.
An algorithmic implementation of the scheme is given to simplify its numerical implementation. A
theoretical analysis of the scheme shows unconditional convergence towards the true solution. This is
also proven by giving some numerical experiments.
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