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Keywords: Galerkin-Legendre spectral method; L2-1, scheme; time-space fractional coupled
Gross¢Pitaevskii equation; convergence analysis
Mathematics Subject Classification: 78M22, 65M06, 34K37



http://www.aimspress.com/journal/Math
http://dx.doi.org/ 10.3934/math.20231160

22767

1. Introduction

Of concern is proposing a numerical scheme based on a high-order finite difference/Legendre-
Galerkin spectral method for solving the coupled Gross¢Pitaevskii equations in the dimensionless form
with time and space fractional derivatives:

1 @
oCDf'ﬁ=[ 26(?| + V() + 6+ Bl + B¢l v+ 19, x€Q, 1€l (1.1a)
CDPp = L Ho+ Ay, xeQ rel (1.1b)
0™t 2 a |x|(l ’ ’ ’ ‘
with the initial conditions
Y(x,0) = Yo(x), ¢(x,0) = ¢o(x), x € Q, (1.1c)
and the homogeneous boundary conditions
Y(a,t) = y(b,1) = ¢la,1) = ¢(b,1) = 0, t € 1, (1.1d)

such that Q = (a,b) c R and I = (0, T] C R. The parameters 6, B11, 812, 821, S22 and A are constants to
be given and ¢((x) and ¢(x) are given smooth functions.
The temporal fractional derivative is defined in Caputo sense [26], which means

f(r _ gy ®9 0<B<1,
0 ds (1.2)

B=1.

CDPW(x,1) = 551}(; :;3))

ot

The spatial fractional operator of Riesz type of order @ with respect to a < x < b [26], namely

v
lxle

-1
2cos & ”"

Ca (DTP(x, D) + DEW(X, 1)), ca = . l<a<y,

where ,DYW(x, 1) and D}'W(x, 1) are the left- and right-Riemann-Liouville derivatives of order a with
respect to x € (a, b), and are defined as

DR¥ 1) = 7o _a) o f (x — )" (, 1), (1.3)
and
a ( 1)n n—1-a
Dy¥(x, 1) = T —a) ox f (t—x) Y(r, t)dr. (1.4)

Bose and Einstein predicted theoretically Bose-Einstein condensations (BEC) which were detected
experimentally by Anderson et al. in 1995 [4]. The link between the spin angular momentum of the
electron spin and the orbital angular momentum was performed by the spin-orbit (SO) coupling such
as Rasha type and Dresselhaus type. The SO coupling had been extensively discussed experimentally.
Bosons and fermions SO coupling was achieved by Jacob et al. in 2008 [20]. A non-dimensionalization
and dimension reduction were applied in [12, 40]. Then, a two-component BEC with an internal atomic
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Josephson junction (or an external driving field) can be well modeled by coupled Gross-Pitaevskii
equations in dimensionless form.

Lately, Laskin extended the Feynman path integral approach over the more general Lvy-like
quantum paths and derived a fractional Schrédinger equation, which modifies the integer equation
by invoking the fractional Laplacian. It has been proposed to study BEC of which the particles obey
a non-Gaussian distribution law [10, 31, 32], where fractional Schrodinger was named as fractional
Gross¢Pitaevskii Equation (FGPE) and BEC as fractional BEC.

Due to the nonlocality of fractional differential operators, the numerical solutions of the fractional
models are more complicated than the classical models. There are several analytical methods to
solve fractional differential equations. However, analytical methods do not work well on most of
the fractional differential equations, e.g. with nonlinearities or linear equations with time-dependent
coeflicients. From the numerical implementation point of view, the time-dependent Gross¢Pitaevskii
equation describing the dynamics of rotating Bose-Einstein condensates and its discretization with
the finite element method were considered in [19]. The approach in [14] exerted some efforts to
propose a finite-difference method based on weighted-shifted Griinwald differences for solving the
multi-dimensional Gross¢Pitaevskii equation, which considers fractional derivatives of the Riesz type
in space, a generalized potential function and angular momentum rotation. An analysis based on a
compact finite difference scheme was proposed in [33] for the integer-order coupled Gross¢Pitaevskii
equations in one space dimension. That scheme can conserve the total mass and energy at the
discrete level. In [21], a sine pseudo-spectral/difference scheme that preserves the discrete mass
and energy was produced and analyzed for the integer-order coupled Gross¢Pitaevskii equations with
Dirichlet boundary conditions in several spatial dimensions. The approach in [23] was devoted to
analyzing the convergence of explicit finite difference schemes for computing the integer-order coupled
Gross¢Pitaevskii equations in high space dimensions.

The combination of the efficiency of finite difference quotients based interpolation formulas of L1
or L2-1, [3] and Galerkin Legendre spectral method is widely used to solve numerically different kinds
of fractional order differential problems. For fractional diffusion problems, we refer to [13, 36]. For
the distributed-order weakly singular integral-partial differential model, we refer to [1]. For nonlinear
fractional Schrodinger equations with Riesz space-and Caputo time-fractional derivatives, we refer to
[35]. For a coupled system of time and space fractional diffusion equations, we refer to [17]. The
propagation of solitons through a new type of quantum couplers called time-space fractional quantum
couplers was presented in [18]. Concerning the Gross¢Pitaevskii equation arising in Bose-Einstein
Condensation [25] as a generalization of the nonlinear fractional Schrédinger equations, numerous
extensions to relevant physical situations are now clarified [6, 5, 8] (multi-components, nonlocal
nonlinear interactions, etc.). For the fractional case, the situation is more complicated and still needs
to be analyzed deeply. Serna-Reyes et al. [27] introduced and theoretically analyzed various numerical
techniques for approximating the solutions of a fractional extension of a double condensate system
that extends the well-known Gross¢Pitaevskii equation to the fractional scenario with two interacting
condensates. Antoine et al. [7] proposed numerical schemes for time or space fractional nonlinear
Schrodinger equations with some applications in Bose-Einstein condensation. Ainsworth and Mao [2]
established the well-posedness of the fractional partial differential equation which arises by considering
the gradient flow associated with a fractional Gross¢Pitaevskii free energy functional and some basic
properties of the solution. Zhang et al. [39] studied the ground and first excited states of the fractional
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Bose¢Einstein condensates which are modeled by the fractional Gross¢Pitaevskii equation. They
used the weighted shifted Griinwald¢Letnikov difference method to discretize the Gross¢Pitaevskii
equation. Liang et al. [22] introduced efficient local extrapolation of the exponential operator splitting
scheme to solve the multi-dimensional space-fractional nonlinear Schrédinger equations including the
space-fractional Gross-Pitaevskii equation, which is used to model optical solitons in graded-index
fibers.

In this paper, our goal is to numerically solve (1.1a)-(1.1b) by implementing a combined high-order
numerical approach. This approach is based on the Alikhanov high-order interpolation scheme to be
used to approximate the time Caupto fractional derivatives side by side to a Galerkin-type formulation
base on Legendre orthogonal polynomials basis to approximate Riesz space fractional derivatives. We
used the recently introduced discrete fractional Gronwall inequalities [24] in discrete energy estimates
to prove the unconditional convergence of the proposed scheme.

2. Numerical scheme

We fix the following notations.

¢ (-, ")o.o denotes the inner product on the space L*(Q) with the L*-norm || - llo.o and the maximum
norm ||-||o.

C; (Q) denotes the space of non-singular functions with compact support in Q.

H"(€) and H{(£2) are Sobolev spaces with the norm || - |5~ and semi-norm |-[-.

Py(€2) is the space of polynomials on  of degree less than or equal to N.

The approximation space Vy is defined as

VY = Py(Q) N HY(Q).

I is the interpolation operator of Legendre-Gauss-Lobatto type, Iy : C(Q) — Vy,

Y(xp) = IWW(x) € Py, k=0,1,...,N.
We also define function spaces [11] which will be used in the construction of the numerical scheme.
Definition 1 (Fractional Sobolev space). The fractional Sobolev space H"(Q) for n > 0, is defined as
H'(Q) = {¥ € LX(Q) : o' F(P) € L’(R)},

endowed with the semi-norm and norm respectively as

- 12
2 2
|V =1l |0 " F(Pllor,  IPllang) = (| ¥ i) +||T”0,Q) ’

such that Hg(Q) is the closure of Cy(Q) with respect to || - |lgnq). Also, F (P) is the Fourier
transformation of the function P and the zero extension of ¥ outside Q denoted by ¥ .

Lemma 1 (Adjoint property). By choosing 1 < 1 < 2, then V¥ € H!(Q) and v € H]"*(Q), we deduce

WD, Vo0 = (DI, D)) o (D]W,Y), = (D). DY), .
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Discretization

The temporal domain [ is partitioned by t; = jr, j = 0, 1,...,M with T = T/M. Denote t;,, =
(+o)r=ctip+(A =0, for j=0, 1,...,M — 1. We take ¥/ = P*7(-) = V(- 140).

Definition 2. LetO0 << lando =1 - 'g Then we define

l—ﬂ — O
B = §=U,
s { (s+0')1 B_(s-1+0)B s>1, 2.1

1 1
W7 =55 (40P == 1400F| = Z[s+ )P+ (- 1+0)F|. 521 @22
and
a(ﬂ"r) s=j=0,
(,30) (,BtT) .

, + b s=0,j>1

(JB.o) _ 0 s s
G = (ﬁcr)+b(ﬁfr) pEO. 1<s< o1, (2.3)

j
Lemma 2 (see [3]). L2-1, interpolation formula is given as follows. Assume that P(t) € C3[0, tiv1l,
0<j< M -1, is formulated as

(JB-0) r 3-8
oD W= r(z 52 Zc S +00P),  0<p<l, (2.4)

where 6" = P! — ¢,

It can be also given as follows

J
- (B.ogr 3-p
oDf W XPE ;d, ¥+ 0P, (2.5)

where d**7 = —d{#7" = ' PV j=0,and ¥ j > 1,

~CH0, s =0,
dij,,B,O') _ C(/_/;*fl) CE:/_,f,(r)’ 1<s<j (2.6)
C(JBG') s = j+ 1.

Accordingly, L2-1, Alikhanov formula at the node ¢, is defined as

-8 j+l

DAY = Al S 1. 2.7
DR = o D Z <p< 2.7)
Lemma 3. Taylor’s theorem can be used directly to obtain that identity

(s tj40) = VG 1j0) + (1= )P, 1) + OT). (2.8)

AIMS Mathematics Volume 8, Issue 10, 22766-22788.



22771

Initiating by L2-1, formula (2.7) to discretize the time Caputo fractional derivative of (1.1a), leads
to

aw}ﬂr
2 0"

D45 e =V U =0 i B o7 T w97 = 0. xe Q. (2.92)

. 1 0%+ . . . : . .
iODf(PH(T + 5 a(lila _ V(x)(PH‘T — Bos |l//j+0'|2 ¢j+a — B |¢]+0‘|2 ¢]+(r _ /w/Ha =0, xeQ. (2.9b)

Define the following parameters

4B -1 (ﬁo')d(JﬁU')
g(_ﬁ,a) _|; Jj+l i d(JBcr> - lf— 0<s<.
T2 - B) 2 -p)’

Then (2.9) has that equivalent form:

i Nos 00{w/+1 -1 loa aal//j J S.B.0) i T) 47 o) 4
w e ZE PG =< e _Zoldyﬁ’ W A0+ AL - g
+ € (Ve +5+ puu 1 + e )y (210
(=P (Ve + 5+ B il v+ i o' ) o,
@ £ ] o4 J
1, T 0" o= 1 50 0" B 4i Byt 4 (] — VB
R T T e T T ;dj ¢ + AP+ 21 - ey
R \CORY R sy s Ve (2.100)

+ (1= g (V) + o [0 07 + e | ) 8.

then, the full discrete scheme is to find ¥/, j\f = VY, j >0, Yy € VY such that

(0791) + 5607 (500) = S0 () = 5,097 (0) + a0 (077

+A(1 - EP (@, )+a§$°‘>(1N(V<x)+5+ﬁu|wf“| +Bralo* )y, v)

+(1 = el (1 (Ve + 5.+ B iy + |9 i),

(97.9) 5607 (5r0) = 607 (580) = S50 (00) + a0l 7 (71 ) 31D
A0 = EE (y,v) + ot >(1N(V(x>+ﬁ21 |wf“| + B0 ) 4741, )

+(1 = P (1 (Vo + B [0 07 + 2 |07 41 0).
WS = Py, % = Pyéo,

where Py is a projection operator.
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3. Iterative algorithm implementation

Jacobi polynomials J;”ﬂ(x) by the aid of Via the hypergeometric function can be (for @, § > —1 and
x e (-1,1))as [29]:

J9(x) = (a + 1)1

1
F —za+ﬁ+z+1a+1Tx,xe(—l,l),ieN, 3.1

such that the notation (-); represents the symbol of Pochhammer. Then, the equivalent three-term
recurrence relation can be yielded

TP =1,
TP (x) = %(a +B8+2)x+ l(a -B), (3.2)

(xﬁ(x) (Aaﬂ (tﬁ) wﬁ( ) Aw,ﬁjl(éf(x), P> 1,

z+1 i

where

rap Qi+B+a+D2i+B+a+?2)
ST i+ D+ Brar )
rap . Qi+Bra+ DB -ad)

= 33
20+ Di+B+a+ DRi+B+a) 3-3)
e QRi+p+a+2)i+a)i+p)
¢V = .
! (+DE+B+a+1D2i+B+a)
The Legendre polynomial L;(x) is a special case of the Jacobi polynomia. This means
0,0 .. l—x
Li(x)=J"(x) =2F |-i,i+ 1;1; > ) (3.4)

The weight function which makes the orthogonality of Jacobi polynomials valid is given as w*?(x) =
(1 = x)%(1 + x), ie.,

1
fl J?’B(X)J;’ﬁ(x)w”’ﬁ(x)dx = yf’ﬁéij, (3.5)

where 6;; is the Dirac Delta symbol, and

ep  29POLGE+B+ DI+ a+ 1)

o _ . 3.6
Y T NQiva+Br DG+a+B+1) (3.6)
Lemma 4 (see for example [34]). For a > 0, one has
T(r+1
DAL = D gy, RelL,
I'r—a+1) 3.7)
DIL(®) = D1 o), tel-L1] |
ST —a s Y W AR
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We introduce the following rescale functions:

2x — b
Alab] - [1,1]: x> 22— @*h)
b—-a
b-—ay+a+b
A =1 1] = fab] s e & “)2 =
and we write A(x) as X. The basis functions selected for the spatial discretization are given by [37, 28]:
2n+3
a2 = L) = Lyo(®) = 2———(1 = DUL(@),  x€a,b]. (3.8)
2(n+1)
The function space V§ can be specified as follows:
Ve =span{@,(x), n=0,1,...,N—2}. (3.9)

The approximate solutions ;{/j;;r "and ¢{\f : may be expressed as
N-2 N-2
+1 5 jl +1 A j+1
Fo =Y 0", e @ =) 6 e, (3.10)
i=0 i=0
where tﬁ{“ and &{“ are the unknown expansion coefficients to be determined. Choosing v = ¢;, 0 <

i < N —2. Then, the matrix representation of the Alikhanov L2-1,. Legendre-Galerkin spectral scheme
has the following representation:

[M S (s ¢ ST)] W= Ry o] 3.11)
[+ T5eep (s w7) 0t = R on,
where
Wo= L), O =@l BT (3.12)
@ 4 N-2
s = [ Dlewneman s = () (.13)
o :
~ N-2
my = fg i), (x)dx, M = (my), - .14
. - . 12 i12 i
h, = & f i) [A¢}V+1N(V<x>+6+ﬁnlw{vl vy +Brz |6y )w{v] dx (315
Q
. - ; 2 2\
ty = &0 [co[av v (Ve + o Wif ol + 52 ol ) 6] (3.16)
Q
H = ]y W) HD = Gy ) (317
i -1 « o j j j
R = %g;ﬁ’ (S +ST)W + (1 - o)H] - K] (3.18)
i - Do g0 j ] ]
R = %gﬁg’ (S +S8T)@ + (1 - )H; - K; (3.19)
J J
K| = > d¥omy, Kj= > dP7nae (3.20)
i=0 i=0
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Lemma 5 (see [37, 29]). The elements of the stiffness matrix S are given by

sij=a]—al” —al, +all, (3.21)
where
al = f D:Li(%),D: Li(2)dx
Q
- . . N (3.22)
_ (b—a) LG+ DIG+ 1) o 7 () (S
2 FGi-5+DIG-5+1) p— i J
_a _2 g _a N
and { Y wm, 2} are Jacobi-Gauss points and their weights with respect to the weight function
r=0

a

w™27%. The mass matrix M is symmetric and its nonzero elements are given as

b—a b—a

2741 T a5 LT
mi; =mj = , (323)
—a .
~3s i=j+2.

Monitoring H’Jrl "= H’Jrl(t,//frl ’ z;f)’Jr1 "), q = 1,2, r > 0. Then, the linear system (3.11) can be solved
by the following iteration algorithm 1:

Algorithm 1 Iterative algorithm for problem (1.1).

Set W/t10 = V’M—ZWMMMWM @f“—zwmmm

forr=0:Kdo

I+ 2205 57 = o
Solve

i1+ 5585 1 57) 00 = G o,
to get ¥*"*! and (D” CARE

Compute wnr+1 — Z wnr+l‘pj(x) and ¢nr+l — Z ¢nr+1()0j(x)

if | wzr-#l _ wnNr ¢;zvr+1 ¢nNr
| break

end

end

Set V" = ¥+ and @" = @™+,

<e€ then

Se&|

4. Convergence analysis
We fix C to be a generic positive constant which may differ from one inequality to another and is
independent of 7, N, and n. Firstly, the following lemma is devoted to introducing the property of the

projector operator Py.
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Lemma 6 (see [38]). YV € H(;% () N H*(Q), there exists Py such that:

¥ — Pyl < CNTI¥Ily, a# 5, (4.1)

NSNS}

1
, 0O<e<—, 4.2)

IV - Pyl < CN°II¥]ls, @ = 5

[\O)ON}

where € and s are real numbers satisfying s > 9.
The interpolation operator Iy achieves the following property:

Lemma 7 (see [29]). Suppose that ¥ € H*(Q) (s > 1). Then,
¥ — IyPll, < CN™|I9)l,, 0<I<1,
and the constant C > 0 is independent of N.
Lemma 8 (see [30]). For any complex functions ¥, ®,y and ¢, we have
PO — [y P¢l < (max{|®], V], |g, [41)* MY — ] + |[© - ¢]) .

Lemma 9 (see [3]). Assume the existence of an absolute continuous function Y(t) in [0, T]. Then,
1
¥(t) o DPY(1) > Eon\Iﬂ(t).

Lemma 10 (Gronwall inequality [26, 9]). Let \Y(¢) > 0 be a non-negative function which is locally
integrable on [0, +co] such that (DP¥(t) < AP(£)+b. Then, we have ¥(t) < YoEg(Af°) + bt PEg, .5(AFP),
where the Mittag-Leffler function Eg(z) and the generalized Mittag-Leffler function Eg, g,(z) are defined
by

k

= Z = z
Ep(z) = ; T+ 80" Eg 4,(2) = ; TG i B0 Bi, p»>0, zeC.

Lemma 11 (see [26, 9]). For 0 < B, < 2, and B, € R, we assume that there exists u such that

nf1/2 < u < min(m, nf,). Then, also there exists a constant C = C(B, B2, 1) such that |Eg, g,(2)| < flzl’
for u < larg(z)| < n. In addition, if B, € (0, 1), then we have the following properties
Ep (1) = Eg, 1(2) > 0, %Eﬂlﬁl (t) > 0.
By fixing the following notation, and if we denote
AW, P) = co|(DY 0. DY) + (D), DY), (4.3)
then for 1 < @ < 2, the semi-norm and the norm are defined by
Plo2 = VACEP),  [1¥llaj2 = (NFIP + 195 )%, (4.4)
and for any u, v € Hg/ 2(Q). Then, there exist positive constants C, C, such that
AW, Y) < CrlivllaallPllajas AG,¥) 2 CllIL - (4.5)
The orthogonal projection operator Py : Ho% (Q) — V, satisfies
AW — Py, ¥) =0, VY¥e V. (4.6)
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Lemma 12 (see [3]). Let V(¢) be any function defined on Q and 0 < a < 1. If ¥ = oV +(1 —0)¥/
then

1
YO oD W) > > oD%, V2 (). 4.7)
Lemma 13 (L2-1, discrete fractional form of Gronwall inequality [24, 15]). Suppose that the non-
negative sequences {w’, g'|j = 0,1,2, ...} satisfy oDEw’™ < 110" + Lw’ + g/. Then, there exists of a
positive constant T* such that

<20+ =1 io| Eg228 4.8
! <2 w F(1+ﬁ)0r2j?§ng p(2417), (4.8)

whenever T < (") = 1/2I'(2 - B)A,) and

A2

A=A+ —2
C(()ﬂ,O') _ C(lﬂ,O')

(4.9)

4.1. Semi-discrete form convergence analysis

Theorem 1. Let {0 < B < 1, 1 < a < 2, s > 1}. Assume that the solutions {, ¢} and {¢n, P} of
(1.1) and (2.9), respectively, are bounded. Thus, satisfying (¢, ¢} € H'(I; Hg (A) N H(N)), such that
the external potential function V = V(x) satisfies V € C(Q). Then, we get

oy =¥l + 1oy — ol <CN™°,  a #

b

W N W

s 1
o =il +ligny = Gl < CNTZ, - a= 2, O<p <.

Proof. The variational formulation is derived by taking the inner product of (1.1a) with vy,

1 (04
(D0 V) + 5 (%,vl) = (V+8)v1) = B (wlPy. vi)

= Bra (6w, vi) = A (6, v1) = 0, (4.10)

Lete =y — Yy, = ¢ — Pyy and n, = Py — Y. Then, we get e = {, + 1.. Also, let E = ¢ — ¢y,
{g = ¢ — Py¢ and g = Py¢ — ¢n. Hence, we get E = {g + ng. Now, making use of Lemma 6 and in
the case of @ # %, then the following two estimates are obtained:

llell < IZell + [l < CN~*Ilylls + lImell, (4.11)

IEll < [IZell + lInell < CN”*l1@lls + lImell. (4.12)
Subtracting (4.10) from (2.11), then we get

1 aaf
i(§ D e v1) + 5 (ﬁ,w) = (V+6)(e, V1) = Bur (Inlw Py — Py, vi)
— Bra ( InlgnPn — gl vi) = A (E, v1) = 0. (4.13)

AIMS Mathematics Volume 8, Issue 10, 22766-22788.



22777

The orthogonality of Py, yields
(Dle,vi) = (£, Dvy) + (D0, :DY*v1) = (D1, 1Dy w). (4.14)

Taking the inner product of (4.13) with 7, and noting (4.6), and choosing the imaginary part of the
resulting equation, we get

(§Dfneme) + (§D[Zeime) + Im |Bry (InlaPyy — WPy, e )|
+ Im[Bra (InlenPwy — l@Pwn. )| + AIm (e + ne.n)] = 0. (4.15)

Similarly, the imaginary part of the error difference equation concerned with (1.1b) and its semi discrete
approximation in (2.11) has the following form

(oCDfUE’ ne) + (oCfoE, ne) +1Im [ 21 (IN|¢’N|2¢N - |¢|2¢’ UE)]
+ Im [ (InlonPen — WPg,ne) | + AUm (L +nesnp)] = 0. (4.16)

Adding (4.15) and (4.16), and noticing that

Im (g, me)] + Im (., mE)] = 0
yields
(OCDZB (ne + nE) ’ (ne + 77E)) + (()CDf ({e + {E) , (T]e + nE))

+ Im [ (InlonPyw = WPy, ne)| + Im B ( InlowlPun — loPw.ne)|

+ Im|Bar (Inlonl’ow — 166, nE)| + Im [ B ( InlrnPen =y, . )|
+ Um [((Ge + £p), (e + ne))] = 0. (4.17)

Define
By = Im |Bur (Wnluy — WPy, n.)| + Im|Bra (16nPun — l6Pw.ne)|

Dy = Im B (1gnPn — 6P m) | + Im |Bos (1nPw — P, )|

then assuming the boundness of the exact solutions {1, ¢} and the approximate solutions {¥y, ¢y} for
the system (1.1a)-(1.1d) and invoking Lemma 8 give

1Byl < 1Bl 2max{lgnl, 11 Gy = ) + Bral (max{lynl, Igwl, W1, 161D? lgn = ¢l + by — ¥1)
< e3¢y — @l + v — YD) < ca(Inel + Inel + CN™* (W + 14],)) - (4.18)

Similar analysis leads to

1Onl < s (py — @l + Wy — YD) < cs (Inel + Inel + CN7> (Wl + 1415)) - (4.19)

Define G(g) = |¢|*e, and making use of Cauchy-Schwarz inequality, we deduce
1 2 1 2
(InG(en) — G(&), 1) < EHING(gN) -Gl + Ellnell ;
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1 1
(InGlew) — G(e). ) < SlING(en) = G’ + §||UE||2,

1 1
(Ivlonlun 10w ne) < SMn(enPun) = 1BPYIP + Sl

p—

1
(IvlnPey = WPg.me) < S Pon) = WERIE + S el

| 2
Il + limell)* + C5N 2 gl + 1)

A
Alm [((ge + gE)a (ne + nE))] < |_2|

1 1
(607 e+ 26 1 + 1) < 5 Qlnell + Inel)® + C N (G DYls + | SDégl) .

By Lemma 7, we have
NG (en) — G(&)ll < lIN(G(en) — G(e)Il + [lInG(e) — G(e)l| < ClIG(ey) — G(&)l| + CN”*|lell;.

Also,
v (pnlPw) — 817wl < ClilgnlPwn — 18wl + CN~*lIgI 11wl

Iy (WnlPon) — [WPoll < ClilwwPoy — [Pl + CN P 14ll;,

accordingly and after some rather manipulations and invoking Lemma 9, we finally get

§ D7 (el + Imell)” < c6 (N7 + (lmell + lImell)?) - (4.20)

An implementation of Lemmas 10 and 11, yields that (||n.|| + ||77;5||)2 < ¢7N725. The other inequality
can be achieved in a similar fashion if @ = % and 0 < u < % |

4.2. Full-discrete form convergence analysis

Theorem 2 (Convergence of the uniform L2-1, — Galerkin spectral scheme). Let {s, ¢} and (Y}, ¢}
be solutions of (1.1) and (2.9), respectively, with the condition that the external potential function
V = V(x) satisfies V € C(Q) and suppose that the unique solution {¥, ¢} € L™ ([0, T; HO% Q)N H*(Q))
is sufficiently regular in temporal and spatial directions, bounded and %, % e L>([0,T; Ho% Q)N
H*(Q)). Then, a positive constant T* is existed such that when 0 < v < 1, the Galerkin spectral

scheme (2.9a)—(2.9b) admits a unique solution {{/},, ¢} satisfying

Iy = v a)ll + gy = ¢ )l < C (P +N7), ifa# 4, (4.21)

1
Wy = el + 1% - ¢Crt)ll < C (2 + M), ifa=3and0<p <. 4.22)

where C is a positive constant that has no dependence on n, T and N.

Proof. The next variational formula is derived by taking the inner product of (1.1a) with vy,

ISP vy) + % (

aal//jﬂr

el vl) = (V40 v) = Bu (WP v
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=B (167 Py, v1) = A (@7, v1) = 0, (4.23)

Lete = y— iy, Lo = — Py and 17, = Pty — iy, then we get /% = 7777 + /77 Also, let E = ¢ — ¢y,
{p = ¢ — Py¢ and np = Pyg — ¢y, then we get E/* = (17 + it Usmg Lemma 6, in case of a # 2,
we get
lle” N < 1171+ MmNl < CN* I N5 + I, (4.24)
IEZN <1121+ 1l < CN 1171l + i . (4.25)

Subtracting (4.23) from (2.11 ), then we obtain

d%e i +02,, JtO j+o j+0
i(§D]e/*,vi) + 5 ( a1 = (VO w0 = Bun (I P = 0P v
—Blz(1N|¢““| U =167 P v ) = L(EP,v) = (0(), v). (4.26)

The orthogonality of the operator Py, enables one to write

(D%, vy) = ({7, DEvy) + (DYl DY vy = (DI, DY) (4.27)

]+0'

Taking the inner product of (4.26) with 7,
resulting equation, we get

and noting (4.6) and choosing the imaginary part of the

(SO ™) + (§DI mi ) + Im |Buy (Inlwry T Pury” = w7 Py )|
" Im[ " ( IN|¢/+0-| w/+0‘ |¢j+a|2w1+a’ 77é+0’)]
+ Am |+ 0| = 0@, w0, (428)

Similarly, the imaginary part of the error difference equation related with (1.1b) and its fully discrete
approximation in (2.11) has the following form

(SO ) + (SDPE ) + Im By (Inlgy " Py = |97 g™, 7 )|

E
+Im (B ( I3 POy = Wi P i)
+ AIm (I + 0l )| = 0@, i), (4.29)

Adding (4.28) and (4.29), and noticing that

Im| (7 i) | + Im |G n )] = 0,

) ) (508 (6 ) )
+ Im[Bur (P — 1020,
+1Im [ﬁlz(INWW V167 Ww’néw)]
& Im[B (I} Pof” = 1679/ )|
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+ dm By (Il "ol — 17 P )|
+ Am [(({g“’ + ), e )] = (0, 7" + ).
(4.30)

Proceeding as in the proof of Theorem 1, we finally get
j i+ |2 —s i+0 o\ 2
§DF (Il + 1) < cs ((N S+ (Il + ) ) (4.31)

Applying the L2-1, discrete fractional form of Gronwall inequality in Lemma 13, the final result (4.21)
is achieved directly. Similarly, we can get the result (4.22) when o = % This completes the proof of
the theorem. O

The stability analysis can be proved similarly following [16].
5. Numerical experiments

Example 1. Consider the following fractional order Gross—Pitaevskii coupled system:

1 14 2

igofwz[_iaw+%+1+|¢|2+|¢|2 v+o+fi, xeQ, rel, (5.1a)
iSDP¢ = 1 +x—2+|;b|2+|¢|2¢+1//+f xeQ, rel (5.1b)
0T 20 T 2 > ’ ’ '
with homogeneous boundaries
wla,t) = y(b,1) = ¢p(a,t) = p(b,1) = 0, t € 1, (5.1¢)

fi(x,1) and f>(x, 1) can be deduced by considering the exact solutions
w(x, 1) = 281 = x)?,  p(x, 1) = Px*(1 - x)%

By specifying, @ = f+1 =1.2,1.5, 1.8 and N = 100 for ¢ and ¢, respectively. It can be shown from
Tables 1 and 2, that the resulting L>-errors and the corresponding temporal convergence orders support
the theoretical results with convergence order close to 2 in case of the smoothness of the solution. A
spectral accuracy of convergence is also shown in Figures 1 and 2 by specifying M = 1600 for different
a and S.

Table 1. L*-errors and convergence order of ¢ versus M for example 1.

M a=B+1=1.2 a=B+1=1.5 a=B+1=1.38
Error Order Error Order Error Order CPU time (s)
100 1434x10°% —— [1296x10° —— |1976x10°% —— 33.578

200 2.705x 1077 2.406 | 3.246 x 107 1.997 | 4.965x 1077 1.992 60.126
400 5.715x 1078 2242 [ 8.134x 1078 1.997 | 1.248 x 1077 1.992 123.78
800 1.522x 107 1.909 | 2.051 x 10" 1.987 | 3.181 x 10™® 1.972 256.954
1600 4.921x 107 1.628 | 5.538 x 107 1.889 | 9.411 x 10™° 1.757 703.658
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Table 2. L2-errors and convergence order of i versus M for example 1.

M a=F+1=1.2 a=B+1=1.5 a=F+1=18
Error Order Error Order Error Order CPU time (s)
100 2936x10°% —— [1531x10°® —— |[1977x10°% —— 33.578

200 5.405x 1077 2.442 | 4.096x 1077 1.902 | 5.398 x 1077 1.873 60.126
400 1.482x 1077 1.866 | 1.080 x 107 1.922 | 1.509 x 1077 1.838 123.78
800 4.855x107% 1.612 | 2.842x 107 1.927 | 4.987x10% 1.598 256.954
1600 1.578 x 107 1.621 | 7.527x 107 1.917 | 1.724 x 108 1.532 703.658

) ‘ ]
: ea=pr1=12|
-5 ]
| —=s—Qq=f+1=15
~ | ——a=p1=18 |
3 -6 :
§ L i
T j
8 7 ]
_8 L i
C | | | | | 1
20 40 60 80 100

N

Figure 1. Spatial order of convergence for ¢ at M = 1600.
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Figure 2. Spatial convergence order of ¢ at M = 1600.

Example 2. Consider the following Gross¢Pitaevskii system

iSO+ S Emu + [lWF + 9P |y + ¢ =0,
(5.2)
iSDig+ L0+ [I6F + Wl ¢ + v =0,

with the initial conditions

W(x,0) = sech (x + 5) ™™,

#(x,0) = sech (x — 5)e™>™. (5.3)

The fractality effects in time with respect to 0 < 8 < 1 and in space with respect to 1 < a < 2 affect
directly the shapes and stability of the soliton solutions. This can clearly reflected in the numerical
solutions given in Figures 3, 4, 5, 6 and 7. The performance of the solutions is represented in the
following manner as can be observed from the different experiments. When @ # 2 and 8 # 1, the
collision is not elastic and so an influence on the shape of solutions is observed. It can be also observed
that the decrease in « values could make the shape of solitons changes faster. As observed in Figures 5,
6, 7 and 8, we conclude that different decay properties in the time direction coming from distinct
selections of the fractional-order parameters 5. These characteristics can be used in physics to tunable
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the sharpness of the space-time fractional Gross¢Pitaevskii equations by changing the space fractional
order a and the time fractional order S without changing the nonlinearity and dispersion effects.

a=1.99, 8=0.99

Figure 3. Solutions of model (5.2) for @ = 1.99 and 8 = 0.99.

a=1.6, =0.99

101 -

ylI¢l
05

Figure 4. Solutions of model (5.2) for @« = 1.6 and 8 = 0.99.
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a=1.99, p=0.95

Figure 5. Solutions of model (5.2) for @ = 1.99 and g = 0.95.

a=1.99, p=0.6

20 0.0

Figure 6. Solutions of model (5.2) for @ = 1.99 and 5 = 0.6.

a=1.6, =0.6

Figure 7. Solutions of model (5.2) for @ = 1.6 and 8 = 0.6.
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a=1.3, p=0.3

20 0.0

Figure 8. Solutions of model (5.2) for @« = 1.3 and g = 0.3.

6. Conclusions

A high order (second temporal order and a spatial spectral accuracy) convergent numerical approach
has been investigated for solving a system of fractional order coupled Gross Pitavskii equations.
An algorithmic implementation of the scheme is given to simplify its numerical implementation. A
theoretical analysis of the scheme shows unconditional convergence towards the true solution. This is
also proven by giving some numerical experiments.
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