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Abstract: This work is devoted to present the Legendre space-time spectral method for two-
dimensional (2D) Sobolev equations. Considering the asymmetry of the first-order differential
operator, the Legendre-tau-Galerkin method is employed in time discretization and its multi-interval
form is also investigated. In the theoretical analysis, rigorous proof of the stability and L2(Σ)-error
estimates is given for the fully discrete schemes in both single-interval and multi-interval forms.
Being different from the general Legendre-Galerkin method, we specifically take the Fourier-like basis
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both time and space and that the multi-interval form can achieve improved numerical results compared
with the single interval form.
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1. Introduction

The Sobolev equation plays an important role in partial differential equations (PDEs) because of
its significant physical background, such as consolidation of clay [1], thermodynamics [2] and flow of
fluids through fissured rock [3].

In this article, a Legendre-tau-Galerkin method in time and its multi-interval form will be considered
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for the following 2D Sobolev equations:
∂tu(x, y, t) − ε∂t∆u(x, y, t) − µ∆u(x, y, t) + γu(x, y, t) = f (x, y, t), (x, y, t) ∈ Σ := Ω × I,

u(x, y,−1) = u0(x, y), (x, y) ∈ Ω̄,
u(x, y, t) = 0, (x, y, t) ∈ ∂Ω × I,

(1.1)

where coefficients µ, ε, γ are known positive parameters. Though the the time interval is normally
(0,T] and T > 0, we set the interval as I = (−1, 1] and the spatial domain is Ω = (−1, 1) × (−1, 1). We
consider the time interval I = (−1, 1] just to simplify the presentation of the theoretical analysis and
the algorithm implementation process.

Because of the great difficulty in obtaining analytical solutions of PDEs, various numerical
methods [4–7] have been proposed to approximate the exact solutions. For the Sobolev equations,
there have been many studies investigating the numerical solutions. In [8–10], some finite volume
element methods were presented in space to solve the two-dimensional Sobolev equations combined
with the finite difference schemes in time. The continuous interior penalty finite element method,
space-time continuous Galerkin method and finite difference streamline diffusion method were applied
in [11–13] for solving Sobolev equations with convection-dominated term, respectively. In [14],
discontinuous Galerkin scheme in space and Crank-Nicolson scheme in time were considered for
approaching the exact solutions of generalized Sobolev equations. In [15], Shi and Sun studied an
H1-Galerkin mixed finite element method for solving Sobolev equations and presented the existence,
uniqueness and superconvergence results of the discrete scheme. In [16, 17], a block-centered finite
difference scheme and a time discontinuous Galerkin space-time finite element scheme for nonlinear
Sobolev equations were established respectively, and stability and global convergence of the schemes
were strictly proved. In [18], the Legendre spectral element method in space combined with the Crank-
Nicolson finite difference technique in time were considered. In [19], the nonlinear periodic Sobolev
equations were investigated by the Fourier spectral method.

As is well known, the spectral method is distinguished from other numerical methods by its
exponential convergence, and when the spectral method is applied to time-dependent partial differential
equations in both space and time (namely, space-time spectral method [20–25]), the mismatched
accuracy caused by the spectral discretization in space and the finite difference method in time can
be solved successfully. In [26], we constructed a space-time Legendre spectral scheme for the linear
multi-dimensional Sobolev equations for the first time and the exponential convergence was obtained
in both space and time. The main purpose of this paper is to study the multi-interval form of the
Legendre space-time fully discrete scheme of two-dimensional Sobolev equations by dividing the
time interval. It is worth noting that compared with the single interval method, the multi-interval
spectral method [27–29] can adopt parallel computation, reduce the scale of the problem effectively
and improve the flexibility of the algorithm. Considering the asymmetry of the first order differential
operator, the fully discrete scheme is constructed by applying a Legendre-tau-Galerkin method in time
based on the Legendre Galerkin method in space. In addition, we still apply the Fourier-like basis
functions [30] in space to diagonalize the stiffmatrix and the mass matrix simultaneously, which greatly
saves the computing time and memory.

The organization of this article is as follows. In Section 2, we first provide some related notations,
then establish the single interval Legendre space-time spectral fully discrete scheme of Eq (1.1) and
give the stability analysis and L2(Σ)-error estimates. In Section 3, we divide the time interval and
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develop the multi-interval Legendre space-time spectral fully discrete scheme of the equations, and
then strictly prove the L2(Σ)-error estimates. In Section 4, by using Fourier-like basis functions in
space and selecting appropriate basis functions in time, we present the implementation of the multi-
interval fully discrete scheme. In Section 5, numerical tests are included to access the efficiency and
accuracy of the method. Finally, some conclusions are made in Section 6.

2. Theoretical analysis of single interval Legendre spectral method in time

Throughout the paper, the Sobolev spaces in spatial directions are the standard notations used,
namely,

∥v(x, y)∥r,Ω = (
∑
|ϵ |≤r

∥Dϵv(x, y)∥2Ω)
1
2 , ∀v(x, y) ∈ Hr(Ω), (2.1)

where ϵ = (ϵ1, ϵ2) (ϵi ≥ 0 are integers and |ϵ | = ϵ1 + ϵ2), Dϵv(x, y) = ∂|ϵ |v
∂xϵ1∂yϵ2 and ∥ · ∥r,Ω is denoted by

∥ · ∥Ω when r = 0.
The temporal direction involves a weighted Sobolev space L2

ωα,β
(I) endowed with the norm and

product

∥v(t)∥2I,ωα,β = (v(t), v(t))I,ωα,β =

∫
I
v2ωα,βdt, ∀v(t) ∈ L2

ωα,β
(I), (2.2)

where the weight function isωα,β(t) = (1−t)α(1+t)β. If α = β = 0, the norm ∥·∥I and inner product (·, ·)I

are denoted in the space L2(I).
Furthermore, the weighted space-time Sobolev space L2

ωα,β
(I; Hr(Ω)) is endowed with the norm

∥v(x, y, t)∥L2
ωα,β

(I;Hr(Ω)) = (
∫

I
∥v(x, y, t)∥2r,Ωωα,βdt)

1
2 , ∀v(x, y, t) ∈ L2

ωα,β
(I; Hr(Ω)), (2.3)

if r = 0, the norm ∥ · ∥L2
ωα,β

(I;Hr(Ω)) is denoted by ∥ · ∥L2
ωα,β

(I;L2(Ω)); if α = β = 0, the norm ∥ · ∥L2
ωα,β

(I;Hr(Ω)) is
denoted by ∥·∥L2(I;Hr(Ω)); if r = 0 and α = β = 0, the norm ∥·∥L2

ωα,β
(I;Hr(Ω)) is denoted by ∥·∥L2(I;L2(Ω)) = ∥·∥Σ.

Let Pι be a space of polynomials of degree ≤ ι on [−1, 1] and L = (M,N), where M and N are a pair
of given positive integers. In order to develop the single interval Legendre spectral method in time, we
define

V0
N = {v ∈ PN : v(±1) = 0}, V0

N = V0
N ⊗ V0

N ,

VM = {v ∈ PM : v(1) = 0}.
(2.4)

Then applying the Green’s formula, we obtain the following single interval Legendre space-time
fully discrete scheme of (1.1): Find uL ∈ V0

N ⊗ PM(I) satisfying(∂tuL, v)Σ + ε(∂t∇uL,∇v)Σ + µ(∇uL,∇v)Σ + γ(uL, v)Σ = ( f , v)Σ, ∀v ∈ V0
N ⊗ VM,

uL(x, y,−1) = P1
Nu0(x, y),

(2.5)

where P1
N denote the spatial projection operator and its definition will be given below.
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2.1. Stability analysis

Firstly, we introduce the definition of spatial projection operator and the corresponding lemma.
Next, we present the existence, uniqueness and stability conclusion for the solution of (2.5).

Definition 2.1. [31] Denote H1
0(Ω) = {v ∈ H1(Ω) : v|∂Ω = 0}, then the orthogonal projection in

space P1
N : H1

0(Ω)→ V0
N is given by(

∇(P1
Nu − u),∇v

)
Ω = 0, ∀v ∈ V0

N . (2.6)

Lemma 2.1. [31] If v ∈ H1
0(Ω) ∩ Hr(Ω) and r ≥ 1, we have

N∥P1
Nv − v∥Ω + ∥∇(P1

Nv − v)∥Ω ≤ CN1−r∥v∥r,Ω. (2.7)

Theorem 2.1. Assume that u0(x, y) ∈ H1
0(Ω)∩Hr(Ω) (r ≥ 1) and f ∈ L2(Σ), then the scheme (2.5) has

a unique solution uL satisfying

∥∂t∇uL∥Σ,ω1,0 + ∥∇uL∥Σ + ∥uL∥Σ ≤ C(∥u0∥1,Ω + ∥ f ∥Σ). (2.8)

Proof. Taking v = (1−t)∂tuL(∈ V0
N⊗VM) and using the integration by parts, we can get for the left-hand

side of (2.5) (
∂tuL, (1 − t)∂tuL

)
Σ = ∥∂tuL∥

2
Σ,ω1,0

, (2.9)

ε
(
∂t∇uL,∇(1 − t)∂tuL

)
Σ = ε

(
∂t∇uL, (1 − t)∂t∇uL

)
Σ = ε∥∂t∇uL∥

2
Σ,ω1,0

, (2.10)

γ(uL, (1 − t)∂tuL)Σ = −2γ∥uL(−1)∥2Ω − γ
(
uL, (1 − t)∂tuL

)
Σ + γ(uL, uL)Σ, (2.11)

namely,

γ(uL, (1 − t)∂tuL)Σ = −γ∥uL(−1)∥2Ω +
γ

2
∥uL∥

2
Σ, (2.12)

similarly,

µ
(
∇uL,∇(1 − t)∂tuL

)
Σ = −µ∥∇uL(−1)∥2Ω +

µ

2
∥∇uL∥

2
Σ. (2.13)

Additionally, by the Cauchy-Schwarz inequality and Young’s inequality, the right-hand side of (2.5)
can be estimated as (

f , (1 − t)∂tuL
)
Σ ≤ ∥ f ∥Σ∥(1 − t)∂tuL∥Σ ≤

1
2
∥ f ∥2Σ + ∥∂tuL∥

2
Σ,ω1,0

. (2.14)

Collecting (2.9)–(2.14) leads to

∥∂tuL∥
2
Σ,ω1,0
+ ε∥∂t∇uL∥

2
Σ,ω1,0
+
µ

2
∥∇uL∥

2
Σ +

γ

2
∥uL∥

2
Σ

≤γ∥uL(−1)∥2Ω + µ∥∇uL(−1)∥2Ω +
1
2
∥ f ∥2Σ + ∥∂tuL∥

2
Σ,ω1,0

,
(2.15)
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namely,

∥∂t∇uL∥Σ,ω1,0 + ∥∇uL∥Σ + ∥uL∥Σ ≤C
(
∥uL(−1)∥Ω + ∥∇uL(−1)∥Ω + ∥ f ∥Σ

)
. (2.16)

For initial conditions uL(−1) and ∇uL(−1) in (2.16), according to Lemma 2.1, we can easily get the
following estimate:

∥uL(−1)∥Ω + ∥∇uL(−1)∥Ω = ∥P1
Nu0∥Ω + ∥∇P

1
Nu0∥Ω

≤ ∥P1
Nu0 − u0∥Ω + ∥u0∥Ω + ∥∇(P1

Nu0 − u0)∥Ω + ∥∇u0∥Ω

≤ CN−r∥u0∥r,Ω + ∥u0∥Ω +CN1−r∥u0∥r,Ω + ∥∇u0∥Ω

≤ C∥u0∥r,Ω.

(2.17)

Thus, combining estimations (2.16) and (2.17), we immediately attain the stability conclusion.

Remark 2.1. From stability conclusion, there exists a zero solution if f = 0 and u0 = 0. In other
words, we can easily obtain the existence and uniqueness of uL.

2.2. Error analysis

The purpose of this section is to show an L2(Σ)-error estimate of the single interval Legendre space-
time spectral method by applying the dual technique. Now, we first introduce following definition and
lemma of the time projection operator which will be covered later..

Definition 2.2. [28] The orthogonal projection in time ΠM : H1(I)→ PM(I) is given by

(ΠMu − u, v)I = 0, ∀v ∈ VM, (2.18)

and ΠMu(−1) = u(−1).

Lemma 2.2. [28] (a) If u ∈ Hσ(I) and σ ≥ 1, then

∥ΠMu − u∥I,ωl,−1 ≤ CM
1
4 (1−l)−σ∥∂σt u∥I,ωσ−1,σ−1 , l = 0, 1. (2.19)

(b) If u ∈ Hσ(I) and σ ≥ 2, then

∥ΠMu − u∥I,ω0,−1 ≤ CM
1
8−σ∥∂σt u∥I,ωσ−2,σ−2 . (2.20)

Let U = P1
NΠMu. Now we decompose the error into: uL − u = (uL − U) + (U − u) and denote ũ =

uL − U. So according to (2.5) we have

(∂tũ, v)Σ + ε(∂t∇ũ,∇v)Σ + µ(∇ũ,∇v)Σ + γ(ũ, v)Σ
=
(
∂t(u − U), v

)
Σ + ε
(
∂t∇(u − U),∇v

)
Σ + µ

(
∇(u − U),∇v

)
Σ + γ(u − U, v)Σ, ∀v ∈ V0

N ⊗ VM.
(2.21)

According to the Definitions 2.1 and 2.2, for the right-hand side terms of (2.21) we get

ε
(
∂t∇(u − U),∇v

)
Σ = ε

(
∂t∇(u −ΠMu),∇v

)
Σ + ε
(
∂t∇(ΠMu − P1

NΠMu),∇v
)
Σ

= ε
(
∂t∇(u −ΠMu),∇v

)
Σ,

(2.22)
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µ
(
∇(u − U),∇v

)
Σ = µ

(
∇(u − P1

Nu),∇v
)
Σ + µ

(
∇(P1

Nu − P1
NΠMu),∇v

)
Σ

= 0,
(2.23)

γ(u − U, v)Σ = γ(u − P1
Nu, v)Σ + γ(P1

Nu − P1
NΠMu, v)Σ

= γ(u − P1
Nu, v)Σ.

(2.24)

Then (2.21) can be simplified as follows:

(∂tũ, v)Σ + ε(∂t∇ũ,∇v)Σ + µ(∇ũ,∇v)Σ + γ(ũ, v)Σ
=
(
∂t(u − U), v

)
Σ + ε
(
∂t∇(I −ΠM)u,∇v

)
Σ + γ

(
(I − P1

N)u, v
)
Σ.

(2.25)

According to the definition of ũ and ΠM, we note

ũ(x, y,−1) = uL(x, y,−1) − P1
NΠMu(x, y,−1) = P1

Nu0(x, y) − P1
Nu(x, y,−1) = 0. (2.26)

Now, we give the L2(Σ)-error estimates of the single interval Legendre space-time spectral scheme.

Theorem 2.2. Suppose uL and u are the solutions of the scheme (2.5) and problem (1.1), respectively.
If u0 ∈ Hr(Ω) ∩ H1

0(Ω) and u ∈ Hσ(I; Hr(Ω) ∩ H1
0(Ω)) for integers r ≥ 1, then:

(a) For σ ≥ 1,

∥u − uL∥Σ ≤C
{
N−r(∥u∥L2(I;Hr(Ω)) + ∥u − u0∥L2

ω0,−1 (I;Hr(Ω))
)

+ M
1
4−σ
(
∥∂σt u∥L2

ωσ−1,σ−1 (I;L2(Ω)) + N−r∥∂σt u∥L2
ωσ−1,σ−1 (I;Hr(Ω)) + ∥∂

σ
t u∥L2

ωσ−1,σ−1 (I;L2(Ω))
)}
.

(2.27)

(b) For σ ≥ 2,

∥u − uL∥Σ ≤C
{
N−r(∥u∥L2(I;Hr(Ω)) + ∥u − u0∥L2

ω0,−1 (I;Hr(Ω))
)

+ M
1
8−σ
(
∥∂σt u∥L2

ωσ−2,σ−2 (I;L2(Ω)) + N−r∥∂σt u∥L2
ωσ−2,σ−2 (I;Hr(Ω)) + ∥∂

σ
t u∥L2

ωσ−2,σ−2 (I;L2(Ω))
)}
.

(2.28)

Proof. In order to use the dual technique to attain the L2(Σ)-error estimates, denote H′(I) = {v ∈
H1(I) : v(−1) = 0}. Then for Eq (2.25) we can write its dual equation: For a given g ∈ V0

N ⊗ PM(I),
obtain ug ∈ V0

N ⊗ VM such that

(∂te, ug)Σ + ε(∂t∇e,∇ug)Σ + µ(∇e,∇ug)Σ + γ(e, ug)Σ = (g, e)Σ, ∀e ∈ V0
N ⊗ (PM(I) ∩ H′(I)). (2.29)

Firstly, we present the existence and uniqueness of ug. Assuming g = 0 and taking e =
∂−1

t [ω−1,0ug] �
∫ t

−1
1

1−sugds in (2.29), then we have

(∂te, ug)Σ = (∂t∂
−1
t [ω−1,0ug], ug)Σ = (ω−1,0ug, ug)Σ = ∥ug∥

2
Σ,ω−1,0

, (2.30)

ε(∂t∇e,∇ug)Σ = ε(∂t∇∂
−1
t [ω−1,0ug],∇ug)Σ = ε(∂t∂

−1
t [ω−1,0∇ug],∇ug)Σ

= ε(ω−1,0∇ug,∇ug)Σ = ε∥∇ug∥
2
Σ,ω−1,0

,
(2.31)
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µ(∇e,∇ug)Σ = µ(∂−1
t [ω−1,0∇ug],∇ug)Σ = µ

(
φ, (1 − t)φt

)
Σ

= µ

∫
Ω

(
(1 − t)φ2|1−1 −

∫
I
φ∂t
(
(1 − t)φ

)
dt
)
dxdy

= −µ
(
φ, ∂t
(
(1 − t)φ

))
Σ

= −µ
(
φ, (1 − t)φt)

)
Σ + µ(φ, φ)Σ,

(2.32)

namely,

µ(∇e,∇ug)Σ =
µ

2
∥∂−1

t [ω−1,0∇ug]∥2Σ, (2.33)

where φ = ∂−1
t [ω0,−1∇ug] and similarly

γ(∂−1
t [ω−1,0ug], ug)Σ =

γ

2
∥∂−1

t [ω−1,0ug]∥2Σ. (2.34)

Collecting (2.30)–(2.34), we have

∥ug∥
2
Σ,ω−1,0

+ ε∥∇ug∥
2
Σ,ω−1,0

+
µ

2
∥∂−1

t [ω−1,0∇ug]∥2Σ +
γ

2
∥∂−1

t [ω−1,0ug]∥2Σ = 0. (2.35)

Then ug = 0.
Now, in order to derive the estimate of ũ, we first consider the estimates of ug, ∂tug, ∂t∇ug.
Taking e = −(1 + t)∂tug in (2.29), we can get

(∂te, ug)Σ = −
(
∂t((1 + t)∂tug), ug

)
Σ

=

∫
Ω

(
− (1 + t)ug∂tug

)
|1−1dxdy +

(
(1 + t)∂tug, ∂tug

)
Σ = ∥∂tug∥

2
Σ,ω0,1

,
(2.36)

ε(∂t∇e,∇ug)Σ = −ε
(
∂t((1 + t)∂t∇ug),∇ug

)
Σ = ε∥∂t∇ug∥

2
Σ,ω0,1

, (2.37)

γ(e, ug)Σ = −γ
(
(1 + t)∂tug, ug

)
Σ = γ(ug, ug)Σ + γ

(
ug, (1 + t)∂tug

)
Σ =

γ

2
∥ug∥

2
Σ, (2.38)

µ(∇e,∇ug)Σ = −µ
(
(1 + t)∂t∇ug,∇ug

)
Σ =

µ

2
∥∇ug∥

2
Σ. (2.39)

Collecting (2.36)–(2.39), we can obtain

∥∂tug∥
2
Σ,ω0,1
+ ε∥∂t∇ug∥

2
Σ,ω0,1
+
γ

2
∥ug∥

2
Σ +

µ

2
∥∇ug∥

2
Σ

=(g, e)Σ = −
(
g, (1 + t)∂tug

)
Σ ≤ ∥g∥Σ∥∂tug∥Σ,ω0,2 ≤

√
2∥g∥Σ∥∂tug∥Σ,ω0,1 .

(2.40)

Then we get

∥∂tug∥Σ,ω0,1 ≤
√

2∥g∥Σ,

∥∂t∇ug∥Σ,ω0,1 ≤

√
2
ε
∥g∥Σ,

∥ug∥Σ ≤
2
√
γ
∥g∥Σ.

(2.41)
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Next, based on the above estimates we deduce the estimate of ũ. When g = ũ, e = ũ in (2.29) and
utilizing integration by parts, we can see

∥ũ∥2Σ =(g, ũ)Σ = (∂tũ, ug)Σ + ε(∂t∇ũ,∇ug)Σ + µ(∇ũ,∇ug)Σ + γ(ũ, ug)Σ
=
(
∂t(I − P1

NΠM)u, ug
)
Σ + ε
(
∂t∇(I −ΠM)u,∇ug

)
Σ + γ

(
(I − P1

N)u, ug
)
Σ

= −
(
(I − P1

NΠM)(u − u0), ∂tug
)
Σ − ε
(
(I −ΠM)∇u, ∂t∇ug

)
Σ + γ

(
(I − P1

N)u, ug
)
Σ

≤∥(I − P1
NΠM)(u − u0)∥Σ,ω0,−1∥∂tug∥Σ,ω0,1 + ε∥(I −ΠM)∇u∥Σ,ω0,−1∥∂t∇ug∥Σ,ω0,1

+ γ∥(I − P1
N)u∥Σ∥ug∥Σ.

(2.42)

Then we get

∥ũ∥Σ ≤C
(
∥(I − P1

NΠM)(u − u0)∥Σ,ω0,−1 + ∥(I −ΠM)∇u∥Σ,ω0,−1 + ∥(I − P
1
N)u∥Σ

)
≤C
(
∥(I − P1

N)(u − u0)∥Σ,ω0,−1 + ∥(I −ΠM)u∥Σ,ω0,−1

+ ∥(I − P1
N)(I −ΠM)u∥Σ,ω0,−1 + ∥(I −ΠM)∇u∥Σ,ω0,−1 + ∥(I − P

1
N)u∥Σ

)
.

(2.43)

Finally, according to the triangle inequality, we deduce

∥u − uL∥Σ ≤∥u − U∥Σ + ∥ũ∥Σ ≤ ∥u − P1
NΠMu∥Σ + ∥ũ∥Σ

≤C
(
∥(I − P1

N)u∥Σ + ∥(I −ΠM)u∥Σ,ω0,−1 + ∥(I − P
1
N)(I −ΠM)u∥Σ,ω0,−1

+ ∥(I − P1
N)(u − u0)∥Σ,ω0,−1 + ∥(I −ΠM)∇u∥Σ,ω0,−1

)
.

(2.44)

Then, by Lemmas 2.1 and 2.2, we directly derive the final L2(Σ)-error estimates.

3. Theoretical analysis of multi-interval Legendre spectral method in time

In order to construct the multi-interval form of the Legendre space-time spectral fully discrete
scheme, we take a1 = −1, aK+1 = 1, ak < ak+1 and denote Ik = (ak, ak+1], ck = ak+1 − ak, dk = ck/2,

namely, I =
K⋃

k=1
Ik, where K is a known positive integer.

Denote

∥v(t)∥2I,ωα,β =
∑

Ik

∥vk(t)∥2Ik ,ω̃α,β
, ∀v(t) ∈ L2

ωα,β
(I), (3.1)

where vk(t) = v(t)|Ik , ω̃α,β =
(1−t)α

dαk
(2 − 1−t

dk
)β (t ∈ Ik) and the definition of ∥vk(t)∥2Ik ,ω̃α,β

is presented in
Section 2.

Moreover, let Σk = Ω × Ik and denote

∥v(x, y, t)∥2L2
ωα,β

(I;Hr(Ω)) =
∑

Ik

∥vk(x, y, t)∥2L2
ω̃α,β

(Ik;Hr(Ω)), ∀v(x, y, t) ∈ L2
ωα,β

(I; Hr(Ω)), (3.2)

where vk(t) = v(t)|Σk and the definition of ∥vk(x, y, t)∥L2
ω̃α,β

(Ik;Hr(Ω)) is presented in Section 2.
Let M = (M1, · · · ,MK) and L = (N,M). Define the space of trial and test functions in time

XM
K = Y M

K ∩ H1(I), Y M
K = {ν : ν|Ik ∈ PMk(Ik), 1 ≤ k ≤ K},

X̃M
K = {ν : ν = (1 − t)q(t), q(t) ∈ Y M−1

K },
(3.3)
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where PMk(Ik) is a space of polynomials of degree ≤ Mk on time span Ik and M−1 = (M1−1, · · · ,MK−

1).
Then applying the Green’s formula, we can write the multi-interval Legendre space-time spectral

fully discrete scheme of (1.1) as: Find uK
L ∈ V0

N ⊗ XM
K satisfying(∂tuK

L , v)Σ + ε(∂t∇uK
L ,∇v)Σ + µ(∇uK

L ,∇v)Σ + γ(uK
L , v)Σ = ( f , v)Σ, ∀v ∈ V0

N ⊗ X̃M
K ,

uK
L (x, y,−1) = P1

Nu0(x, y).
(3.4)

The stability analysis of (3.4) is similar to the single interval method, so we only provide the error
analysis of the scheme. Firstly, we introduce the following definition and lemma of the multi-interval
projection operator in time.

Definition 3.1. [28] The orthogonal projection in time ΠM : H1(I)→ XM
K is given by(

∂t(ΠMu − u), v
)

I = 0, ∀v ∈ X̃M
K , (3.5)

with ΠMu(−1) = u(−1).

Lemma 3.1. [28] If u ∈ Hσ(I) and σ ≥ 1, M̄ = min
1≤k≤K

Mk, we have

∥∂l
t(ΠMu − u)∥I,ωl,l−1 ≤ CM̄l−1

K∑
k=1

(d−1
k Mk)1−σ∥∂σt uk∥Ik , l = 0, 1, (3.6)

where uk = u|Ik .

Denote UK = P
1
NΠMu. Now, we decompose the error into: u − uK

L = (u − UK) + (UK − uK
L ) and

denote ũK = UK−uK
L . We note ũK(x, y,−1) = 0. Then according to the scheme (3.4), ∀v ∈ V0

N⊗ X̃M
K , we

have

(∂tũK , v)Σ + ε(∂t∇ũK ,∇v)Σ + µ(∇ũK ,∇v)Σ + γ(ũK , v)Σ
=
(
∂t(UK − u), v

)
Σ + ε
(
∂t∇(UK − u),∇v

)
Σ + µ

(
∇(UK − u),∇v

)
Σ + γ(UK − u, v)Σ.

(3.7)

By using the Definitions 2.1 and 3.1, we can see for some terms of the formula (3.7)(
∂t(P1

NΠMu − u), v
)
Σ =
(
∂t(P1

NΠMu − P1
Nu), v

)
Σ +
(
∂t(P1

N − I)u, v
)
Σ =
(
∂t(P1

N − I)u, v
)
Σ, (3.8)

ε
(
∂t∇(P1

NΠMu − u),∇v
)
Σ = ε

(
∂t(ΠM∇P

1
Nu − ∇P1

Nu),∇v
)
Σ + ε
(
∇(P1

N∂tu − ∂tu,∇v
)
Σ = 0, (3.9)

µ
(
∇(P1

NΠMu − u),∇v
)
Σ = µ

(
∇(ΠMP

1
Nu −ΠMu),∇v

)
Σ + µ

(
∇(ΠM − I)u,∇v

)
Σ

= µ
(
∇(ΠM − I)u,∇v

)
Σ.

(3.10)

Then (3.7) can be simplified as follows:

(∂tũK , v)Σ + ε(∂t∇ũK ,∇v)Σ + µ(∇ũK ,∇v)Σ + γ(ũK , v)Σ
=
(
∂t(P1

N − I)u, v
)
Σ + µ

(
∇(ΠM − I)u,∇v

)
Σ + γ

(
(P1

NΠM − I)u, v
)
Σ, ∀v ∈ V0

N ⊗ X̃M
K .

(3.11)

Now, we give the L2(Σ)-error estimate of the multi-interval Legendre space-time spectral scheme.
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Theorem 3.1. Suppose u and uK
L are the solutions of the problem (1.1) and scheme (3.4), respectively.

If u ∈ Hσ(I; Hr(Ω) ∩ H1
0(Ω)) for integers r, σ ≥ 1, then

∥u − uK
L ∥Σ ≤ C

{
N−r
(
∥ut∥L2(I;Hr(Ω)) + ∥u∥L2(I;Hr(Ω))

)
+ M̄−1

K∑
k=1

(d−1
k Mk)1−σ

(
∥∂σt ∇uk∥L2(Ik;L2(Ω))

+ ∥∂σt uk∥L2(Ik;L2(Ω)) + N−r∥∂σt uk∥L2(Ik;Hr(Ω))

)}
,

(3.12)

where uk = u|Σk .
If dk = d,Mk = M, we have

∥u − uK
L ∥Σ ≤ C

{
N−r
(
∥ut∥L2(I;Hr(Ω)) + ∥u∥L2(I;Hr(Ω))

)
+ dM−σ

(
∥∂σt ∇u∥L2(I;L2(Ω)) + ∥∂

σ
t u∥L2(I;L2(Ω)) + N−r∥∂σt u∥L2(I;Hr(Ω))

)}
.

(3.13)

Proof. Similar to the analysis of the L2(Σ)-error estimate of the single interval scheme, we also take
the dual technique to give the proof. Considering the dual equation of (3.11), for a given g ∈ V0

N ⊗ XM
K ,

we obtain ug ∈ V0
N ⊗ X̃M

K such that

(∂tw, ug)Σ + ε(∂t∇w,∇ug)Σ + µ(∇w,∇ug)Σ + γ(w, ug)Σ = (g,w)Σ, ∀w ∈ V0
N ⊗ (Y M

K ∩ H′(I)). (3.14)

The existence and uniqueness of ug can be easily attained, so we focus on using the dual equation (3.14)
to present the L2(Σ)-error estimate.

In order to derive the estimate of ũ, we take g = ũK and w = ũK in Eq (3.14),

∥ũK∥
2
Σ =(g, ũK)Σ = (∂tũK , ug)Σ + ε(∂t∇ũK ,∇ug)Σ + µ(∇ũK ,∇ug)Σ + γ(ũK , ug)Σ
=
(
∂t(P1

N − I)u, ug
)
Σ + µ

(
∇(ΠM − I)u,∇ug

)
Σ + γ

(
(P1

NΠM − I)u, ug
)
Σ

≤∥(P1
N − I)ut∥Σ,ω1,0∥ug∥Σ,ω−1,0 + µ∥(ΠM − I)∇u∥Σ,ω1,0∥∇ug∥Σ,ω−1,0

+ γ∥(P1
NΠM − I)u∥Σ,ω1,0∥ug∥Σ,ω−1,0 .

(3.15)

Now, to deduce the estimates of of ug and ∇ug, taking w =
∫ t

−1
1

1−sugds � ∂−1
t [ω−1,0ug] in Eq (3.14),

∥ug∥
2
Σ,ω−1,0

+ ε∥∇ug∥
2
Σ,ω−1,0

+
µ

2
∥∂−1

t [ω−1,0∇ug]∥2Σ +
γ

2
∥∂−1

t [ω−1,0ug]∥2Σ

=(g, ∂−1
t [ω−1,0ug])Σ ≤ ∥g∥Σ∥∂−1

t [ω−1,0ug]∥Σ,
(3.16)

then we get

∥∂−1
t [ω−1,0ug]∥Σ ≤

2
γ
∥g∥Σ,

∥ug∥Σ,ω−1,0 ≤

√
2
γ
∥g∥Σ,

∥∇ug∥Σ,ω−1,0 ≤

√
2
γε
∥g∥Σ.

(3.17)
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Taking estimates (3.17) into inequality (3.15) have

∥ũK∥
2
Σ ≤ C

(
∥(I − P1

N)ut∥Σ,ω1,0∥g∥Σ + ∥(ΠM − I)∇u∥Σ,ω1,0∥g∥Σ + ∥(ΠMP
1
N − I)u∥Σ,ω1,0∥g∥Σ

)
, (3.18)

namely, error estimate of ũK is that

∥ũK∥Σ ≤ C
(
∥(I − P1

N)ut∥Σ,ω1,0 + ∥(ΠM − I)∇u∥Σ,ω1,0 + ∥(ΠMP
1
N − I)u∥Σ,ω1,0

)
≤ C
(
∥(I − P1

N)ut∥Σ + ∥(ΠM − I)∇u∥Σ + ∥(ΠMP
1
N − I)u∥Σ

)
.

(3.19)

Finally, according to the triangle inequality, we deduce

∥u − uK
L ∥Σ ≤∥u − UK∥Σ + ∥ũK∥Σ

≤C
(
∥(P1

N − I)ut∥Σ + ∥(ΠM − I)∇u∥Σ,ω0,−1 + ∥(ΠMP
1
N − I)u∥Σ

)
≤C
(
∥(P1

N − I)ut∥Σ + ∥(ΠM − I)∇u∥Σ,ω0,−1

+ ∥(P1
N − I)u∥Σ + ∥(ΠM − I)∇u∥Σ,ω0,−1 + ∥(P

1
N − I)(ΠM − I)∇u∥Σ,ω0,−1

)
.

(3.20)

4. Implementation

In this section, we present the detailed implementation of the multi-interval case by taking Fourier-
like basis functions in space and the appropriate basis functions in time. Regarding the single interval
case, please see [26] for more information.

Let

XMk
k = {ν : ν = (1 − t)q(t), q(t) ∈ PMk−1(Ik), t ∈ Ik}

u(k)(x, y, t) := uK
L (x, y, t)|Σk , f (k)(x, y, t) := f (x, y, t)|Σk , 1 ≤ k ≤ K.

(4.1)

Then, according to the scheme (3.4), we can see for each k (1 ≤ k ≤ K), we find u(k) ∈ V0
N⊗PMk(Ik) such

that (∂tu(k), v(k))Σk + ε(∂t∇u(k),∇v(k))Σk + µ(∇u(k),∇v(k))Σk + γ(u(k), v(k))Σk = ( f (k), v(k))Σk ,

u(k)(x, y, ak) = u(k−1)(x, y, ak), ∀v(k) ∈ V0
N ⊗ XMk

k ,
(4.2)

where u(0)(x, y, a1) = P1
Nu0(x, y).

Furthermore, let
u(k)(x, y, t) = w(k)(x, y, t) + u(k−1)(x, y, ak),

then the scheme (4.2) can be converted into: Find w(k) ∈ V0
N ⊗ PMk(Ik) such that

(∂tw(k), v(k))Σk + ε(∂t∇w(k),∇v(k))Σk + µ(∇w(k),∇v(k))Σk + γ(w(k), v(k))Σk

=( f (k), v(k))Σk − µ(∇u(k−1)(ak),∇v(k))Σk − γ(u(k−1)(ak), v(k))Σk , ∀v(k) ∈ V0
N ⊗ XMk

k ,

w(k)(x, y, ak) = 0.

(4.3)

In order to the operability of the scheme (4.3), we try to separate it into two parts: Find w(k)
q ∈ V0

N ⊗

PMk(Ik) (q = 1, 2) such that
(∂tw

(k)
1 , v

(k))Σk + ε(∂t∇w(k)
1 ,∇v(k))Σk + µ(∇w(k)

1 ,∇v(k))Σk + γ(w(k)
1 , v

(k))Σk

=( f (k), v(k))Σk − µ(∇P1
Nu0,∇v(k))Σk − γ(P1

Nu0, v(k))Σk , ∀v(k) ∈ V0
N ⊗ XMk

k ,

w(k)
1 (x, y, ak) = 0,

(4.4)
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(∂tw

(k)
2 , v

(k))Σk + ε(∂t∇w(k)
2 ,∇v(k))Σk + µ(∇w(k)

2 ,∇v(k))Σk + γ(w(k)
2 , v

(k))Σk

=µ(∇u(k−1)(ak),∇v(k))Σk + γ(u(k−1)(ak), v(k))Σk − µ(∇P1
Nu0,∇v(k))Σk − γ(P1

Nu0, v(k))Σk ,

w(k)
2 (x, y, ak) = 0, ∀v(k) ∈ V0

N ⊗ XMk
k ,

(4.5)

The solution of the scheme (4.3) is obtained by

w(k)(x, y, t) = w(k)
1 (x, y, t) − w(k)

2 (x, y, t). (4.6)

The choice of basis functions ϕn(x) and ϕs(y) (0 ≤ n, s ≤ N − 2) can refer [26]. Regarding the
temporal local trail functions ψk

m(t) and test functions ψ̃k
m(t) (0 ≤ m ≤ Mk − 1), please see [28]. Let

w(k)(x, y, t) =
Mk−1∑
m=0

N−2∑
n,s=0

w(k)
m,n,sϕn(x)ϕs(y)ψk

m(t), W (k) = (w(k)
m,n,s)Mk×(N−1)2 ,

w(k)
q (x, y, t) =

Mk−1∑
m=0

N−2∑
n,s=0

w(k)
q,m,n,sϕn(x)ϕs(y)ψk

m(t), W (k) = (w(k)
q,m,n,s)Mk×(N−1)2 , q = 1, 2,

(4.7)

and v(k)(x, y, t) = ϕn′(x)ϕs′(y)ψ̃(k)
m′ (t), where n′, s′ = 0, 1, · · · ,N − 2 and m′ = 0, 1, · · · ,Mk − 1, we can

see that W (k) = W (k)
1 −W (k)

2 .
Denote the sets of LGL points and weights in spatial directions by {xñ, ϖñ}

N+1
ñ=0 and {ys̃, ϖs̃}

N+1
s̃=0 , and

denote the set of LGL points in time span Ik by {tm̃, ϖ̇m̃}
Mk+1
m̃=0 . Define

Ψ̃(k) = (ψ̃(k)
m (tm̃))Mk×(Mk+2), F (k) = (fm̃,ñ,s̃)(Mk+2)×(N+2)2 ,

fm̃,ñ,s̃ =
bk

2
( f (k)(xñ, ys̃, tm̃) + µ∆P1

Nu0(xñ, ys̃) − γP1
Nu0(xñ, ys̃)).

(4.8)

Then, we can get the matrix form of the scheme (4.4) as follows:

(C(k) + γD(k))W (k)
1
[
Diag(λn) ⊗ Diag(λs)

]
+ (εC(k) + µD(k))W (k)

1
[
IN−1 ⊗ Diag(λn) + Diag(λs) ⊗ IN−1

]
=Ψ̃(k)Diag(ϖ̇m̃)F (k)[(ΦxDiag(ϖñ))T ⊗ (ΦyDiag(ϖs̃))T ],

(4.9)

where matrices Diag(λn), Diag(λs), IN−1, Φx and Φy in spatial directions are given in [26], and
matrices C(k) and D(k) (1 ≤ k ≤ K) in temporal direction are given in [28]. Then, by the properties of
matrix multiplication in [32], Eq (4.9) can be formulated as

A(k)vec(W (k)
1 ) = vec

(
Ψ̃(k)Diag(ϖ̇m̃)F (k)[(ΦxDiag(ϖñ))T ⊗ (ΦyDiag(ϖs̃))T ]), (4.10)

where

A(k) =Diag(λn) ⊗ Diag(λs) ⊗ (C(k) + γD(k))
+
[
IN−1 ⊗ Diag(λs) + Diag(λn) ⊗ IN−1

]
⊗ (εC(k) + µD(k)).

(4.11)

Now, we try to get the matrix form of scheme (4.5). According to the processing means in [28],
similarly, we have

u(k−1)(x, y, ak) =
N−2∑
n,s=0

ρ(k)
n,sϕn(x)ϕs(y) + u(0)(x, y, a1), ρ(k)

n,s = 2
k−1∑
l=1

Ml−1∑
m=0

w(l)
m,n,s. (4.12)
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Then

µ(∇u(k−1)(ak),∇v(k))Σk + γ(u(k−1)(ak), v(k))Σk − µ(∇P1
Nu0,∇v(k))Σk − γ(P1

Nu0, v(k))Σk

=ρ(k)
n,s(µ(λn + λs) + γλnλs)σ(k)

m ,
(4.13)

where {λn}
N−2
n=0 are corresponding eigenvalues of mass matrices and {σ(k)

m }
Mk−1
m=0 can refer to (4.33) in [28].

Denote λn,s = µ(λn + λs) + γλnλs, then according to the values of {σ(k)
m }

Mk−1
m=0 we can get the matrix form

of scheme (4.5) as follows:

(C(k) + γD(k))W (k)
2
[
Diag(λn) ⊗ Diag(λs)

]
+ (εC(k) + µD(k))W (k)

2
[
IN−1 ⊗ Diag(λs) + Diag(λn) ⊗ IN−1

]
=F(k),

(4.14)

where

F(k) = (η(k)
0 , η

(k)
1 , 0, · · · , 0)T , η(k)

i = (σ(k)
i ρ

(k)
n,sλn,s)1×(N−1)2 , i = 0, 1. (4.15)

The Eq (4.14) above can also be converted to a form similar to Eq (4.10).
In summary, the algorithm can be implemented as follows:
(1) For each k ≥ 1, compute W (k)

1 by (4.9).
(2) Obviously, W (1) = W (1)

1 . For each k ≥ 2, assume that W (k−1) have been obtained, then W (k)
2 is

obtained by (4.14) easily.
(3) W (k) = W (k)

1 −W (k)
2 for each k ≥ 2.

5. Numerical experiments

We mainly devote this section to demonstrate the accuracy and efficiency of the multi-interval
Legendre space-time spectral method by utilizing numerical examples for the 2D Sobolev equations.
Regarding the numerical results of the single interval Legendre space-time spectral methods for the
multi-dimensional Sobolev equations, one can refer [26].
Example 5.1. We consider the 2D Sobolev equations (1.1) on the time interval I = (0, 2] with the
following exact solution:

u(x, y, t) = e
1

t+0.2
(

sin πx sin πy + (1 − x2)(1 − y2)
)
. (5.1)

In this example, the two-interval Legendre space-time spectral method is applied to attain the
numerical solution uL. We divide the time interval I = (0, 2] into I1 = (0, 0.3] and I2 = (0.3, 2],
namely, a1 = 0, a2 = 0.3 and a3 = 2. Under the premise of setting constants ε = µ = γ = 1, we
compare the images of numerical solutions uL and exact solutions u at different times in Figures 1
and 2. From these figures we can deduce that the image of the numerical solutions very well simulate
the image of the exact solutions.

To show the spectral accuracy of the proposed method, we plot the maximum point-wise errors and
L2(Σ)-errors using semi-log coordinates in Figure 3. The numerical results indicate that the proposed
method obtained the exponential convergence in both time and space.
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In Tables 1 and 2, we show L2(Σ)-errors in space and time, respectively, mainly to compare the
numerical effects of the proposed method applying the Fourier-like basis functions and the traditional
basis functions. We can then observe that multi-interval method taking Fourier-like basis functions
attain better efficiency.

In Table 3, we compare the temporal L2(Σ)-errors obtained by using the single-interval Legendre
spectral method and the two-interval Legendre spectral method for the same N and ε = µ = γ = 1.
One can find that the two-interval method show a great improvement in accuracy compared with the
single-interval method.
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Figure 1. (Left) The exact solution u at time t = 0.3. (Right) The numerical solution uL by
two-interval Legendre spectral method at time t = 0.3 for (M1,M2) = (40, 40) and N = 50.
Take ε = µ = γ = 1.
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Figure 2. (Left) The exact solution u at time t = 2. (Right) The numerical solution uL by
two-interval Legendre spectral method at time t = 2 for (M1,M2) = (60, 60) and N = 70.
Take ε = µ = γ = 1.
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Figure 3. Spectral accuracy. (Left) Temporal errors by taking N = 15. (Right) Spatial errors
by taking (M1,M2) = (35, 35). Take ε = µ = γ = 1.

Table 1. Spatial errors. Take (M1,M2) = (40, 40) and ε = µ = γ = 1.

Fourier-like basis Standard basis
N

∥uL − u∥ CPU(s) ∥uL − u∥ CPU(s)
Order

12 1.4243E-05 0.3309 1.4243E-05 9.7683
14 1.7056E-07 0.3463 1.7056E-07 26.4171 N−28.71

16 1.5700E-09 0.3552 1.5700E-09 55.0611 N−35.11

18 1.1462E-11 0.3734 1.1462E-11 122.2270 N−41.77

20 3.0801E-13 0.3892 3.0801E-13 237.8722 N−34.32

Table 2. Temporal errors. Take N = 20 and ε = µ = γ = 1.

Fourier-like basis Standard basis
M = (M1,M2)

∥uL − u∥ CPU(s) ∥uL − u∥ CPU(s)
Order

(10,10) 8.3000E-03 0.3431 8.3000E-03 4.6588
(15,15) 6.2018E-05 0.3495 6.2018E-05 13.9264 M−12.08

(20,20) 7.0981E-07 0.3579 7.0981E-07 30.4591 M−15.54

(25,25) 8.9560E-09 0.3621 8.9560E-09 61.2795 M−19.59

(30,30) 1.0813E-10 0.3785 1.0813E-10 94.7840 M−24.22

(35,35) 1.2687E-12 0.3862 1.2687E-12 150.8296 M−28.84
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Table 3. Temporal errors. Take ε = µ = γ = 1.

Single interval method Two-interval method
N

M ∥uL − u∥ Order M = (M1,M2) ∥uL − u∥ Order

20 20 2.3710E-01 (10,10) 8.3000E-03
20 30 3.4000E-03 M−10.47 (15,15) 6.2018E-05 M−12.08

20 40 3.9093E-05 M−15.52 (20,20) 7.0981E-07 M−15.54

20 50 3.8171E-07 M−20.74 (25,25) 8.9560E-09 M−19.59

20 60 3.2869E-09 M−26.08 (30,30) 1.0813E-10 M−24.23

20 70 2.5627E-11 M−31.49 (35,35) 1.2687E-12 M−28.84

Example 5.2. In this example we consider the 2D Sobolev equations (1.1) on time interval I = (0, 2]
with the unknown exact solution. The source term is f = 0 and the initial condition is taken as

u0(x, y) =

(1 − x2) sin(πy), (x, y) ∈ [−1, 0] × [−1, 1],
(1 − y2) sin(πx), (x, y) ∈ (0, 1] × [−1, 1].

(5.2)

We also consider the two-interval Legendre space-time spectral method in time. We divide the time
interval I = (0, 2] into I1 = (0, 1.3] and I2 = (1.3, 2], namely, a1 = 0, a2 = 1.3 and a3 = 2. In Figure 4,
we depict the numerical solutions uL(x, y, t) at t = 1.3 and t = 2 with (M1,M2) = (30, 30), N = 60 and
ε = µ = γ = 1.

For the unknown of the exact solution, there is no uniform standard to compare the efficiency of the
single interval Legendre space-time spectral method with the two-interval method. Thus in Figure 5 by
taking the numerical solutions obtained under (M1,M2) = (30, 30) and N = 60 as a reference, we plot
the temporal and spatial errors of the proposed method with ε = µ = γ = 1. One can clearly observe
that two-interval Legendre space-time spectral method possess the spectral accuracy both in time and
space.

-1

1

-0.5

1

u
L(x

,y
,1

.3
)

numerical solution u
L
(x,y,t) at t=1.3

0

y

0

x

0

-1 -1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

1

-1

1

-0.5

u
L(x

,y
,2

)

numerical solution u
L
(x,y,t) at t=2

y

0

0

x

0

-1 -1

-1

-0.8

-0.6

-0.4

-0.2

0

Figure 4. The numerical solutions uL by two-interval Legendre space-time spectral method
at (Left) t = 1.3 and (Right) t = 2 for (M1,M2) = (30, 30) and N = 60. Take ε = µ = γ = 1.
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Figure 5. Spectral accuracy. (Left) Temporal errors by taking N = 60. (Right) Spatial errors
by taking (M1,M2) = (30, 30). Take ε = µ = γ = 1.

Example 5.3. This example is devoted to exploring the 2D Sobolev equations (1.1) on time interval I =
(0, 1] with the exact solution, which is not regular enough and unknown in advance. The source term
is f = 0 and the initial condition is taken as, see Figure 6,

u0(x, y) =

max[0, 0.3 − 0.5(|x + 0.1| + |y + 0.1|)] + 0.5,
√

(x − 0.5)2 + (y − 0.5)2 < 0.2,
max[0, 0.3 − 0.5(|x + 0.1| + |y + 0.1|)], otherwise.

(5.3)

We divide the time interval I = (0, 1] into I1 = (0, 0.7] and I2 = (0.7, 1] to consider the two-interval
Legendre space-time spectral method. In Figure 7, we depict the numerical solutions uL(x, y, t) derived
by the proposed method at t = 0.7 and t = 1 with (M1,M2) = (30, 30), N = 60 and ε = µ = γ = 1.

In Figure 8, by taking the numerical solutions obtained under (M1,M2) = (30, 30) and N = 60 as a
reference, we present the temporal and spatial errors with ε = µ = γ = 1. One can clearly observe that
our method possess spectral accuracy both in time and space.

Figure 6. Initial function u0(x, y).
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Figure 7. The numerical solutions uL by two-interval Legendre space-time spectral method
at (Left) t = 0.7 and (Right) t = 1 for (M1,M2) = (30, 30) and N = 60. Take ε = µ = γ = 1.
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Figure 8. Spectral accuracy. (Left) Temporal errors by taking N = 60. (Right) Spatial errors
by taking (M1,M2) = (30, 30). Take ε = µ = γ = 1.

6. Discussion and conclusions

As previously seen, the spectral method is commonly used to formulate the numerical scheme in
space combined with the finite difference method in time, but in most cases, the infinite accuracy in
space and finite accuracy in time leads to a unbalanced scheme. In order to avoid this problem, in this
paper we use the Legendre-Galerkin method in space and the Legendre-tau-Galerkin method in time
to study two-dimensional Sobolev equations. We have succeeded in obtaining spectral convergence in
both time and space. In particular, the multi-interval form of the proposed method is also considered.
In the theoretical analysis, we not only prove the stability of the single and multi-interval numerical
scheme, but also give strict proof of the L2(Σ)-error estimates by using the dual technique, where
a better error estimate is obtained for the single interval form and the optimal error estimate is
obtained for multi-interval form. Compared with the single interval method, the multi-interval spectral
method succeeds in reducing the scale of problems, adopting the parallel computers and improving the
flexibility of algorithm. Another highlight of this paper is that the Fourier-like basis functions, different
from the traditional basis functions, are adopted for the Legendre spectral method in space. Since the
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mass matrix obtained by Fourier-like basis functions is a diagonal matrix, the computing time and
memory can be effectively reduced in the implementation of the algorithm. Numerical experiments
show that our method can attain the spectral accuracy both in time and space, and the multi-interval
method in time is more efficient than the single one.

In a future study, we will extend our method to the numerical solutions of the nonlinear Sobolev
equation by using appropriate technique to deal with the nonlinear terms effectively.
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