Processing math: 28%
Research article Special Issues

Averaging aggregation operators under the environment of q-rung orthopair picture fuzzy soft sets and their applications in MADM problems

  • Received: 31 October 2022 Revised: 04 February 2023 Accepted: 06 February 2023 Published: 10 February 2023
  • MSC : 60L70, 68N17

  • q-Rung orthopair fuzzy soft set handles the uncertainties and vagueness by membership and non-membership degree with attributes, here is no information about the neutral degree so to cover this gap and get a generalized structure, we present hybrid of picture fuzzy set and q-rung orthopair fuzzy soft set and initiate the notion of q-rung orthopair picture fuzzy soft set, which is characterized by positive, neutral and negative membership degree with attributes. The main contribution of this article is to investigate the basic operations and some averaging aggregation operators like q-rung orthopair picture fuzzy soft weighted averaging operator and q-rung orthopair picture fuzzy soft order weighted averaging operator under the environment of q-rung orthopair picture fuzzy soft set. Moreover, some fundamental properties and results of these aggregation operators are studied, and based on these proposed operators we presented a stepwise algorithm for MADM by taking the problem related to medical diagnosis under the environment of q-rung orthopair picture fuzzy soft set and finally, for the superiority we presented comparison analysis of proposed operators with existing operators.

    Citation: Sumbal Ali, Asad Ali, Ahmad Bin Azim, Ahmad ALoqaily, Nabil Mlaiki. Averaging aggregation operators under the environment of q-rung orthopair picture fuzzy soft sets and their applications in MADM problems[J]. AIMS Mathematics, 2023, 8(4): 9027-9053. doi: 10.3934/math.2023452

    Related Papers:

    [1] Adel Fahad Alrasheedi, Jungeun Kim, Rukhsana Kausar . q-Rung orthopair fuzzy information aggregation and their application towards material selection. AIMS Mathematics, 2023, 8(8): 18780-18808. doi: 10.3934/math.2023956
    [2] Khadeejah Rasheed Alhindi, Khalid M. K. Alshammari, Huda Ali Aldweby . Classes of analytic functions involving the q-Ruschweyh operator and q-Bernardi operator. AIMS Mathematics, 2024, 9(11): 33301-33313. doi: 10.3934/math.20241589
    [3] Muhammad Amer Latif, Mehmet Kunt, Sever Silvestru Dragomir, İmdat İşcan . Post-quantum trapezoid type inequalities. AIMS Mathematics, 2020, 5(4): 4011-4026. doi: 10.3934/math.2020258
    [4] Zhongbin Zheng, Jinwu Fang, Wentao Cheng, Zhidong Guo, Xiaoling Zhou . Approximation properties of modified (p, q)-Szász-Mirakyan-Kantorovich operators. AIMS Mathematics, 2020, 5(5): 4959-4973. doi: 10.3934/math.2020317
    [5] Jabbar Ahmmad, Tahir Mahmood, Ronnason Chinram, Aiyared Iampan . Some average aggregation operators based on spherical fuzzy soft sets and their applications in multi-criteria decision making. AIMS Mathematics, 2021, 6(7): 7798-7832. doi: 10.3934/math.2021454
    [6] Shuangnian Hu, Rongquan Feng . The number of solutions of cubic diagonal equations over finite fields. AIMS Mathematics, 2023, 8(3): 6375-6388. doi: 10.3934/math.2023322
    [7] Attaullah, Shahzaib Ashraf, Noor Rehman, Asghar Khan, Muhammad Naeem, Choonkil Park . Improved VIKOR methodology based on q-rung orthopair hesitant fuzzy rough aggregation information: application in multi expert decision making. AIMS Mathematics, 2022, 7(5): 9524-9548. doi: 10.3934/math.2022530
    [8] Pinhong Long, Huo Tang, Wenshuai Wang . Functional inequalities for several classes of q-starlike and q-convex type analytic and multivalent functions using a generalized Bernardi integral operator. AIMS Mathematics, 2021, 6(2): 1191-1208. doi: 10.3934/math.2021073
    [9] Muhammad Sabil Ur Rehman, Qazi Zahoor Ahmad, H. M. Srivastava, Nazar Khan, Maslina Darus, Bilal Khan . Applications of higher-order q-derivatives to the subclass of q-starlike functions associated with the Janowski functions. AIMS Mathematics, 2021, 6(2): 1110-1125. doi: 10.3934/math.2021067
    [10] Hongyan Qin, Jianren Long, Mingjin Li . On [p, q]-order of growth of solutions of linear differential equations in the unit disc. AIMS Mathematics, 2021, 6(11): 12878-12893. doi: 10.3934/math.2021743
  • q-Rung orthopair fuzzy soft set handles the uncertainties and vagueness by membership and non-membership degree with attributes, here is no information about the neutral degree so to cover this gap and get a generalized structure, we present hybrid of picture fuzzy set and q-rung orthopair fuzzy soft set and initiate the notion of q-rung orthopair picture fuzzy soft set, which is characterized by positive, neutral and negative membership degree with attributes. The main contribution of this article is to investigate the basic operations and some averaging aggregation operators like q-rung orthopair picture fuzzy soft weighted averaging operator and q-rung orthopair picture fuzzy soft order weighted averaging operator under the environment of q-rung orthopair picture fuzzy soft set. Moreover, some fundamental properties and results of these aggregation operators are studied, and based on these proposed operators we presented a stepwise algorithm for MADM by taking the problem related to medical diagnosis under the environment of q-rung orthopair picture fuzzy soft set and finally, for the superiority we presented comparison analysis of proposed operators with existing operators.



    List of abbreviations
    MD membership degree
    NMD non-membership degree
    FS Fuzzy set
    IFS Intuitionistic fuzzy set
    PyFS Pythagorean fuzzy set
    q-ROFS q-rung orthopair fuzzy set
    q-ROPFSfSs q-rung orthopair picture fuzzy soft sets
    PFS Picture fuzyy set
    AOs Averaging operators
    MADM Multi attribute decision making
    PYFWA Pythagorean fuzzy weighted averaging
    PYFWG Pythagorean fuzzy weighted geometric
    PYFWPA operator Pythagorean fuzzy weighted power averaging operator
    PYFWPG operator Pythagorean fuzzy weighted power geometric operator
    q-ROFWA operators q-rung orthopair fuzzy weighted averaging operators
    q-ROFWG operators q-rung orthopair fuzzy weighted geometric operators
    q-ROPFSfWA operator q-rung orthopair picture fuzzy weighted averaging operator
    q-ROPFSfOWA operator q-rung orthopair picture fuzzy order weighted averaging operator
    WV Weighted vector

    In real-life situation, decision-making (DM) plays a vital role, for the selection of logical choice among several objects we use the process of MD. The foundation of a fuzzy set (FS) was laid by Zadeh [1] in 1965, characterized by member function belong to [0, 1]. This concept was further extended by Zadeh [2] in 1975, and proposed an interval-valued fuzzy (IVF)set characterized by a lower fuzzy set and an upper fuzzy set. In the DM problem parameterized fuzzy operators were introduced by Song et al. [3]. In 1986, Atanassov [29] generalized the theory of FS and initiated intuitionistic fuzzy (IF)set by the affix of non-MF with the restriction (MF)+(NMF)1. Some aggregation operators like generalized AOs by Zhao et al. [4] and generalized geometric AOs by Tan et al. [5,6] under the environment of IFS. In IFS we study the MD and NMD, here we ignore the neutral degree, so to cover these gaps in 2014 Cuong [7] proposed the generalized structure of IFS and FS called picture fuzzy set, which is characterized by three membership degree positive, neutral and negative member degree with the restriction that the sum of this three-membership degree is less and equal than 1. In 1998, Smarandache [25] proposed a neutrosophic set, which is characterized by truth, indeterminacy, and falsehood membership degree, with the condition that the sum of truth, indeterminacy, and falsehood membership degree is less and equal to 3. In a neutrosophic set it is difficult to handle the voting problems when the expert's judgment is of a type like yes, abstinence, no, and rejection, as the sum of the three membership degrees is greater than 1, beside this it cannot be provided the information of voting of non-candidates of the above voting. In the other words, we say that picture fuzzy set is a special case of a neutrosophic set, because every picture fuzzy set can be neutrosophic set but the converse is not true. Some aggregation operators under the environment of picture fuzzy set are aggregation operators for PF set by Garg [8], PFAOs and their application in MADM by Wei [9], PF Einstein AOs by Khan et al. [10], and PF Dombi AOs by Jana et al. [11]. However, during the research, experts faced some issues when they have taken the value of MD is 0.8 and NMD is 0.6, then 0.8+0.6≰1, so here the condition of IFS failed. So, to cover this limitation in 2013 Yager [12] proposed the generalized structure of IFS, which is called the Pythagorean fuzzy set. A Pythagorean fuzzy set is characterized by MD and NMD, with the condition that (MD)2+(NMD)21. Several aggregation operators under the environment of a Pythagorean fuzzy set such as PYFWA, PYFWG, PYFWPA and PYFWPG operators proposed by Yager [13,14]. In 2021, Akrma et al. [38], handle MCGDM problem under the environment of complex Pythagorean fuzzy set by using CPF-VIKOR method. In 2021, Akram et al. [39], proposed two novel modified techniques, namely Pythagorean fuzzy hybrid order of preference by Similarity to an Ideal Solution (PFH-TOPSIS) method and Pythagorean fuzzy hybrid Elimination and Choice Translating Reality I (PPFH-ELECTRE I) method, in order to measure risk ranking in failure modes and effects analysis (FMEA). In 2021, Akram et al. [40], also proposed a novel multi-criteria optimization technique, namely, the complex Pythagorean fuzzy N-soft VIKOR (CPFNS-VIKOR) method that is highly proficient to express a great deal of linguistic imprecision and vagueness inherent in human assessments. In 2022, Akram et al. [41] proposed a new hybrid model with application under the environment of Complex fermatean fuzzy N-soft set to handle uncertainties. In 2016, Yager [20] made a new generalization of IFS and PFS, called q-rung orthopair fuzzy set. q-ROFS is described by MD and NMD with the restriction that (MD)q+(NMD)q1(q1). Different aggregation operators under the environment of q-ROFS are q-ROFWA operators by Liu and Wang [15], q-ROF Bonferroni mean weighted operator by y Liu and Liu [16], q-ROF power Maclaurin averaging operators by Liu et al. [17], q-ROF Dombi AOs by Jana et al. [18], q-ROF Neutrality AOs by Garg and Chen [19], MAGD with q-rung orthopair picture fuzzy information by Akram et al. [37]. In 2018, Joshi et al. [30] introduced the theory of interval-valued q-rung orthopair fuzzy soft set, which deals with the situation, of hesitation of assessment in the intervals. In such type of situation experts provide their grades in the closed subinterval of [0, 1]. The concept of interval-valued q-rung orthopair fuzzy soft set was further modified in various structures see Hayat et al. [31], Yang et al. [32], and Hayat et al. [33]. In 1999, Molodtsov [21] proposed a new structure called soft set which deals with the attribute. The theory of soft set was further merged with different structures and developed a generalized concept like Maji [22,23,34,35,36]. In 2020, Hussain et al. [24] combined the structure of soft set and q-ROF set and proposed a new concept called q-rung orthopair fuzzy soft set, which is characterized by membership degree and non-membership degree with attributes, but here no information about the neutral degree, so to cover this gap we present a hybrid of picture fuzzy set and q-rung orthopair fuzzy soft set to get a generalized structure called q-rung orthopair picture fuzzy soft set, which deal the uncertainty problem with positive, neutral and negative membership degree by affix a parameterization tool.

    The rest of this manuscript is as follows: Section 2, discusses some basic preliminaries. Section 3, presents a hybrid of picture fuzzy set and q-ROF soft set and develop a novel structure q-ROPF soft set, and also discuss their basic operations. In Section 4, we study some aggregation operators like q-ROPF soft weighted averaging operator and q-ROPF soft order weighted averaging operator and their related fundamental properties. In Section 5, we develop a step-wise algorithm for MADM problem. In Subsection 5.1, for application we consider a biological example of common disease "obstructive goiter". In Section 6, we present a comparison analysis of the proposed model with the existing model to show the superiority. In Section 7, provide a conclusion.

    Definition 2.1. [29] An IFS ˜N on a universe Η is expressed by the two-mapping given as

    ˜N={μ,L˜N(μ),G˜N(μ):μϵH}. (1)

    Where L˜N(μ):H[0,1] and G˜N(μ):H[0,1] represent the MD and NMD, with the condition that 0≤(L˜N(μ))+(G˜N(μ))1.

    And the score S (˜N) and accuracy A (˜N) function is represented as

    S(˜N)=L˜N(μ)G˜N(μ),S(˜N)[1,1].(˜N)=L˜N(μ)+G˜N(μ),A(˜N)[0,1].

    Definition 2.2. [12] By PYFS ˜N on a universe of discourse Η is defined as

    ˜N={μ,L˜N(μ),G˜N(μ):μϵH}. (2)

    Where L˜N(μ):H[0,1] and G˜N(μ):H[0,1] represent the MD and NMD, with the condition that

    0(L˜N(μ))2+(G˜N(μ))21

    and the score and accuracy function of Pythagorean fuzzy set is represented as

    S(˜N)=(L˜N(μ))2(G˜N(μ))2,S(˜N)[1,1].A(˜N)=(L˜N(μ))2+(G˜N(μ))2,A(˜N)[0,1].

    Definition 2.3. [20] A q-ROFS ˜N on a universe of discourse Η is defined as

    ˜N={μ,L˜N(μ),G˜N(μ):μϵH}. (3)

    Where L˜N(μ):H[0,1] and G˜N(μ):H[0,1] represent the MD and NMD, with the condition that

    0(L˜N(μ))q+(G˜N(μ))q1(q1)

    and the score and accuracy function of q-ROFS is represented as

    S(˜N)=(L˜N(μ))q(G˜N(μ))q,S(˜N)[1,1]A(˜N)=(L˜N(μ))q+(G˜N(μ))q,A(˜N)[0,1]

    Definition 2.4. [21]Let an Η be a fixed set and € represent the set of parameters and ₵⊆€. Then the pair (,) is said to be soft set over H, where isafunctiondefineas:P(H). P(H) represent the power set of H.

    Definition 2.5. [28] Let (H,) be a soft universe and ₵⊆€. By Pythagorean fuzzy soft set we mean a pair (˜N,) over H, where ˜N is a function given by ˜N:PFS(H) is defined as

    ˜N¨ej(μi)={μi,Lj(μi),Gj(μi):μiϵH}. (4)

    Where Lj(μi) represent the MD and Gj(μi) represent the NMD μiϵH to a set ˜N¨ej(μi), with the condition that

    0(Lj(μi))2+(Gj(μi))21,

    which is simply denoted by ˜N¨ej(μi) = μi,Lj(μi),Gj(μi).

    Definition 2.6. [24] Let (H,) be a soft universe and ₵⊆€. By q-rung orthopair fuzzy soft set we mean a pair (˜N,) over H, where ˜N is a function given by ˜N:qROFS(H) is defined as

    ˜N¨ej(μi)={μi,Lj(μi),Gj(μi):μiϵH}. (5)

    Where Lj(μi) represent the MD and Gj(μi) represent the NMD μiϵH to a set ˜N¨ej(μi), with the condition that

    0(Lj(μi))q+(Gj(μi))q1(q1),

    which is simply denoted by ˜N¨ej(μi) = μi,Lj(μi),Gj(μi) and the degree of indeterminacy of qROPFSfN is defined as π˜N¨eij = q1((Lj(μi))q+(Gj(μi))q).

    Definition 2.7. [7] A picture fuzzy set ˜N on a fixed set Η is displayed as

    ˜N={μ,L˜N(μ),G˜N(μ),Ł˜N(μ):μϵH}. (6)

    Where L˜N(μ),G˜N(μ),Ł˜N(μ):H[0,1] represent the positive MD, neutral MD and negative MD, with the condition that, with the condition that

    0(L˜N(μ))+(G˜N(μ)+(Ł˜N(μ)))1.

    Definition 3.1. Let (H,) be a soft universe and ₵⊆€. By q-rung orthopair picture fuzzy soft set we mean a pair (˜N,) over H, where ˜N is a function given by ˜N:qROPFS(H) is defined as

    ˜N¨ej(μi)={μi,Lj(μi),Gj(μi),Łj(μi):μiϵHandq1} (7)

    where Lj(μi) represent the positive MD and Gj(μi) represent the neutral MD and Łj(μi) denoted negative MD of μiϵH to a set ˜N¨ej(μi), with the condition that

    0(Lj(μi))q+(Gj(μi))q+(Łj(μi))q1(q1)

    which is simply denoted by ˜N¨ej(μi) = μi,Lj(μi),Gj(μi),Łj(μi)q and the degree of indeterminacy of q-ROPFSfN is defined as

    π˜N¨eij=q1((Lj(μi))q+(Gj(μi))q+(Łj(μi))q).

    Basic operations on q-ROPF soft set

    Let ˜N=(L,G,Ł) be any tree q-ROPFSfNs and ˜N¨e1j = (L1j,G1j,Ł1j) (j = 1, 2) and λ, λ₁, λ₂≻0. Then the operations of q-ROPFSfNs are define as

    (1)˜N¨e11˜N¨e11 = (max(L11,L12),min(G11,G12),min(Ł11,Ł12));

    (2)˜N¨e11˜N¨e11 = (min(L11,L12),min(G11,G12),max(Ł11,Ł12));

    (3)˜NC = (Ł,G,L);

    (4)˜N¨e11˜N¨e11 if and only if (L11L12,G11G12,Ł11Ł12);

    (5)˜N¨e11˜N¨e11 = (q(L11)q+(L12)q(L11)q(L12)q,G11G12,Ł11Ł12);

    (6)˜N¨e11˜N¨e11 = (L11L12,q(G11)q+(G12)q(G11)q(G12)q,q(Ł11)q+(Ł12)q(Ł11)q(Ł12)q);

    (7)λ˜N = (q1(1Lq)λ,Gλ,Łλ);

    (8)˜Nλ = (Lλ,q1(1Gq)λ,q1(1Łq)λ).

    Definition 3.2. A score function of qROPFSfN˜N¨eij = (Lij,Gij,Łij) can be define as

    (˜N¨eij)=LqijGqijŁqij+(eLqijGqijŁqijeLqijGqijŁqij+112)πq˜N¨eij (8)

    where q ≥ 1 and S (˜N¨eij)∈ [1, 1].

    Example 3.1. Assume that a person wants to select a car out of five possible alternatives in a market that is U = {t₁, t₂, t₃, t₄, t₅} with the parameters ? = {e1, e2, e3,e4}.

    e1= Price

    e2 = Comfort

    e3= Fuel Efficiency

    e4= Looks.

    Let ˜N¨e11 = (L11,G11,Ł11) and ˜N¨e12 = (L12,G12,Ł12) be two qROPFSfNs. Then

    (ⅰ) S (˜N¨e11) > S (˜N¨e12), ˜N¨e11˜N¨e12

    (ⅱ) S (˜N¨e11) < S (˜N¨e12), ˜N¨e11˜N¨e12

    (ⅲ) S (˜N¨e11) = S (˜N¨e12), then

    (a) π˜N¨e11 > π˜N¨e11,then ˜N¨e11 < ˜N¨e12

    (b) πq˜N¨e11 > πq˜N¨e12, then ˜N¨e11 = ˜N¨e12.

    From "Table 1" we show the result in the form of qROPFSfNs, by evaluated the alternative with rating values.

    Table 1.  Tabular representation of qROPFSfS(L,G,Ł) for q ≥ 3.
    ˉU e1 e2 e3 e4
    t1 (0.6,0.2,0.3) (0.5,0.1,0.4) (0.3,0.1,0.5) (0.5,0.4,0.1)
    t2 (0.5,0.2,0.1) (0.3,0.1,0.2) (0.4,0.2,0.3) (0.4,0.3,0.2)
    t3 (0.6,0.2,0.1) (0.4,0.2,0.3) (0.3,0.2,0.5) (0.4,0.5,0.1)
    t4 (0.4,0.1,0.3) (0.6,0.1,0.4) (0.3,0.1,0.4) (0.4,0.2,0.3)
    t5 (0.5,0.3,0.2) (0.4,0.1,0.5) (0.3,0.1,0.5)(0.6,0.1,0.4)

     | Show Table
    DownLoad: CSV

    Theorem 3.1. Let ˜N¨eij = (Lij,Gij,Łij) and ˜N=(L,G,Ł) be any two qROPFSfNs and λ, λ1, λ2≻0, having the properties.

    (ⅰ) ˜N¨e11˜N¨e12 = ˜N¨e12˜N¨e11

    (ⅱ) ˜N¨e11˜N¨e12 = ˜N¨e12˜N¨e11

    (ⅲ) λ(˜N¨e11˜N¨e12) = λ˜N¨e11λ˜N¨e12

    (iv) (λ1λ2)˜N = λ1˜Nλ2˜N

    (ⅴ) ˜N(λ1λ2)=λ1˜Nλ2

    (ⅵ) ˜Nλ¨e11˜Nλ¨e12 = (˜N¨e11˜N¨e12)λ.

    Proof. Straightforward.

    In this section, we discuss some aggregation operators like qROPFSfWA and qROPFSfOWA operators and their related results.

    Definition 4.1. Assume that ˜N¨eij = (Lij,Gij,Łij) for (i=1,2,nandj=1,2,.m) be collection of q=ROPFSfNs and weight vector ω = {ω1, ω2, ...., ωn} with the condition ni=1ωi=1 and υ = {υ1, υ2, ......, υm} with the condition that ni=1υi=1 for alternatives xi and parameters ej, respectively. The mapping qROPFSfWA: Đn Đ is said to be qROPFSfWA operator. (Đ is the collection of qROPFSfNs).

    qROPFSfWA(˜N¨e11,˜N¨e12,.,˜N¨enm)=mj=1υi(ni=1ωi˜N¨eij). (9)

    Theorem 4.1. Consider the collection of qROPFSfNs ˜N¨eij = (Lij,Gij,Łij) then the aggregation result for qROPFSfWA operator is expressed:

    qROPFSfWA(˜N¨e11,˜N¨e12,.,˜N¨enm)=mj=1υi(ni=1ωi˜N¨eij)
    =(q1mj=1(ni=1(1Lqij)ωi)υi,Πmj=1(Πni=1Gωiij)υi,Πmj=1(Πni=1Łωiij)υi)
    qROPFSfWA(˜N¨e11,˜N¨e12,.,˜N¨enm)=(q1mj=1(ni=1(1Lqij)ωi)υi,Πmj=1(Πni=1Gωiij)υi,Πmj=1(Πni=1Łωiij)υi) (10)

    Ω = {ω1, ω2, ...., ωn} with the condition ni=1ωi=1 and υ = {υ1, υ2, ......, υm} with the condition that ni=1υi=1 for alternatives xi and parameters ej, respectively.

    Proof. To solve this result we use the mathematical induction. We have,

    ˜N¨e11˜N¨e12=(q(L11)q+(L12)q(L11)q(L12)q,G11G12,Ł11Ł12)
    λ(˜N=(q1[1Lq]λ,Gλ,Łλ))

    for λ ≥ 1. For n = 2 and m = 2, Eq (10) is true.

    qROPFSfWA(˜N¨e11,˜N¨e12)=2j=1υi(2i=1ωi˜N¨eij)=υ1(2i=1ωi˜N¨e11)υ2(2i=1ωi˜N¨e12)
    =υ1(ω1˜N¨e11ω2˜N¨e21)υ2(ω1˜N¨e12ω2˜N¨e22)
    =υ1{(q1(1Lq11)ω1,Gω111,Łω111)(q1(1Lq21)ω2,Gω221,Łω221)}υ2{(q1(1Lq12)ω1,Gω112,Łω112)(q1(1Lq22)ω2,Gω222,Łω222)}
    =υ1(q1Π2i=1(1Lqi1)ωi,Π2i=1Gωii1,Π2i=1Łωii1)υ2(q1Π2i=1(1Lqi2)ωi,Π2i=1Gωii2,Π2i=1Łωii2)
    =υ1(q1(Π2i=1(1Lqi1)ωi)υ1,(Π2i=1Gωii1)υ1,(Π2i=1Łωii1)υ1)υ2(q1(Π2i=1(1Lqi2)ωi)υ2,(Π2i=1Gωii2)υ2,(Π2i=1Łωii2)υ2)
    =(q12j=1(2i=1(1Lqij)ωi)υi,Π2j=1(Π2i=1Gωiij)υi,Π2j=1(Π2i=1Łωiij)υi).

    Next, we will check for n = κ1 and m = κ2.

    qROPFSfWA(˜N¨e11,˜N¨e12,.,˜N¨eκ1κ2)=κ2.j=1υi(κ1i=1ωi˜N¨eij)
    =(q1κ2j=1(κ1i=1(1Lqij)ωi)υi,Πκ2j=1(Πκ1i=1Gωiij)υi,Πκ2j=1(Πκ1i=1Łωiij)υi).

    And further for n = κ1+1 and m = κ2+1.

    qROPFSfWA(˜N¨e11,˜N¨e12,.,˜N¨eκ1+1κ2+1)={κ2j=1υi(κ1i=1ωi˜N¨eij)}υ(κ1+1)(ωκ2+1˜N¨e(κ1+1)(κ2+1))
    =(q1κ2j=1(κ1i=1(1Lqij)ωi)υi,Πκ2j=1(Πκ1i=1Gωiij)υi,Πκ2j=1(Πκ1i=1Łωiij)υi)υ(κ1+1)(ωκ2+1˜N¨e(κ1+1)(κ2+1))
    =(q1(κ2+1)j=1((κ1+1)i=1(1Lqij)ωi)υi,Π(κ2+1)j=1(Π(κ1+1)i=1Gωiij)υi,Π(κ2+1)j=1(Π(κ1+1)i=1Łωiij)υi).

    Hence by the induction process we prove that Eq (10) is true for all m, n≥1 and also Eq (10) is true for n = κ1+1 and m = κ2+1. Moreover, to obtained the aggregated result from qROPFSfWA operator is again qROPFSfNs. For, any ˜N¨eij = (Lij,Gij,Łij) be collection of qROPFSfNs and weight vector ω = {ω1, ω2, ...., ωn} with the condition ni=1ωi=1 and υ = {υ1, υ2, ......, υm} with the condition that ni=1υi=1 for alternatives xi and parameters ej, respectively. So,

    0Lij101Lij10(1Lqij)ωi10Πni=1(1Lqij)ωi10Πmj=1(Πni=1(1Lqij)ωi)υi10qΠmj=1(Πni=1(1Lqij)ωi)υi1.

    Now, for 0 ≤Gij1 0 ≤ Πni=1Gωiij1 0 ≤Πmj=1(Πni=1Gωiij)υi1 and

    0Łij10Πni=1Łωiij10Πmj=1(Πni=1Łωiij)υi1.

    As, 0Lqij+Gqij+Łqij1 Gqij+Łqij1Lqij

    Πni=1(Gqij)ωi+Πni=1(Łqij)ωiΠni=1(1Lqij)ωi
    Πmj=1(Πni=1(Gqij)ωi)υi+Πmj=1(Πni=1(Łqij)ωi)υiΠmj=1(Πni=1(1Lqij)ωi)υi. (11)

    Now, we have

    0{q1mj=1(ni=1(1Lqij)ωi)υi}q+{Πmj=1(Πni=1Gωiij)υi}q+{Πmj=1(Πni=1Łωiij)υi}q.

    By Eq (11), 0 1mj=1(ni=1(1Lqij)ωi)υi+Πmj=1(Πni=1Gωiij)υi+Πmj=1(Πni=1Łωiij)υi=1.

    Therefore,

    0{q1mj=1(ni=1(1Lqij)ωi)υi}q+{Πmj=1(Πni=1Gωiij)υi}q+{Πmj=1(Πni=1Łωiij)υi}q1.

    Hence, we proved the required result.

    Example 4.1. Assume that a person wants to purchase a new laptop in the domain set

    U = {t₁, t₂, t₃, t₄, t₅}

    t₁ = HP Pavilion,

    t₂ = Dell Inspiron,

    t₃ = Apple iBook,

    t₄ = Toshiba,

    t₅ = Lenovo

    and with the parameters € = {e1, e2, e3,e4}

    e₁ = Battery life,

    e₂ = Memory and storage,

    e₃ = Carrying weight,

    e₄ = Warranty.

    Suppose that the weight vectors ω = {0.15, 0.16, 0.20, 0.25, 0.24} and υ = {0.5, 0.17, 0.13, 0.20} for the expert xi and parameters ej, respectively. From "Table 2" we decision maker show the result in the form of qROPFSfNs, by evaluated each laptop to their corresponding parameters.

    Table 2.  Tabular representation of qROPFSfS˜N¨eij = (Lij,Gij,Łij) for q ≥ 3.
    ˉU e1 e2 e3 e4
    t1=HP Pavilion (0.66,0.4,0.2) (0.6,0.5,0.3) (0.45.0.25,0.1) (0.73,0.22,0.1)
    t2=Dell Inspiron (0.76,0.2,0.1) (0.55,0.5,0.2) (0.77,0.4,0.3) (0.87,0.32,0.15)
    t3=Apple iBook (0.71,0.3,0.1) (0.9,0.5,0.3) (0.66,0.54,0.2) (0.7,0.5,0.1)
    t4=Toshiba (0.8,0.4,0.3) (0.65,0.35,0.15) (0.83,0.2,0.1) (0.8,0.3,0.2)
    t5=Lenovo (0.62,0.5,0.2) (0.8,0.33,0.1) (0.58,0.3,0.1) (0.84,0.35,0.1)

     | Show Table
    DownLoad: CSV

    By Eq (10) we have

    qROPFSfWA(˜N¨e11,˜N¨e12,.,˜N¨e54)=(q1mj=1(ni=1(1Lqij)ωi)υi,Πmj=1(Πni=1Gωiij)υi,Πmj=1(Πni=1Łωiij)υi)
    =(31{(10.663)0.15(10.763)0.16(10.713)0.20(10.83)0.25(10.623)0.24}0.51{(10.63)0.15(10.553)0.16(10.093)0.20(10.653)0.25(10.83)0.24}0.171{(10.453)0.15(10.773)0.16(10.663)0.20(10.833)0.25(10.583)0.24}0.131{(10.733)0.15(10.873)0.16(10.73)0.20(10.83)0.25(10.843)0.24}0.20,({(10.43)0.15(10.23)0.16(10.33)0.20(10.43)0.25(10.53)0.24}0.5{(10.53)0.15(10.53)0.16(10.53)0.20(10.353)0.25(10.333)0.24}0.17{(10.253)0.15(10.43)0.16(10.543)0.20(10.23)0.25(10.33)0.24}0.13{(10.223)0.15(10.323)0.16(10.53)0.20(10.33)0.25(10.353)0.24}0.20),({(10.2)0.15(10.13)0.16(10.13)0.20(10.33)0.25(10.23)0.24}0.5{(10.33)0.15(10.23)0.16(10.33)0.20(10.153)0.25(10.13)0.24}0.17{(10.13)0.15(10.33)0.16(10.23)0.20(10.13)0.25(10.13)0.24}0.13{(10.13)0.15(10.153)0.16(10.13)0.20(10.23)0.25(10.13)0.24}0.20))
    =(0.7471,0.3543,0.1588).

    Theorem 4.2. Assume that ˜N¨eij = (Lij,Gij,Łij) be the collection of qROPFSfNs and weight vector ω = {ω1, ω2, ...., ωn} with the condition ni=1ωi=1 and υ = {υ1, υ2, ......, υm} with the condition that ni=1υi=1 for alternatives xi and parameters ej, respectively. Then the qROPFSfWA operator hold the following properties:

    (1)Idempotency: If ˜N¨eij = R¨e, where R¨e=(,Ə,) and for all (i=1,2,,nandj=1,2,.,m), then qROPFSfWA(˜N¨e11,˜N¨e12,.,˜N¨enm) = R¨e.

    (2) Boundedness: If

    ˜N¨eij=˜Neij={minjmini(Lij),minjmini(Gij),maxjmaxi(Łij)}

    and

    ˜N+¨eij=˜Neij={maxjmaxi(Lij),minjmini(Gij),minjmini(Łij)},

    then

    ˜N¨eijqROPFSfWA(˜N¨e11,˜N¨e12,.,˜N¨enm)~N+¨eij.

    (3) Monotonicity: If R¨eij = (ij,Əij,ij) be the collection of qROPFSfNs such that Lijij,GijƏij, Łijij then

    qROPFSfWA(˜N¨e11,˜N¨e12,.,˜N¨enm)qROPFSfWA(R¨e11,R¨e12,.,R¨enm).

    (4)Shift Invariance: If R¨e=(ij,Əij,ij) is qROPFSfNs, then

    qROPFSfWA(˜N¨e11R¨e,˜N¨e12R¨e,.,˜N¨enmR¨e)=
    qROPFSfWA(˜N¨e11,˜N¨e12,.,˜N¨enm)R¨e.

    (5)Homogeneity: If λ ≥ 0, then

    qROPFSfWA(λ˜N¨e11,λ˜N¨e12,.,λ˜N¨enm)=λqROPFSfWA(˜N¨e11,˜N¨e12,.,˜N¨enm).

    Proof. We know that ˜N¨e11=R¨e=(,Ə,), then we have

    qROPFSfWA(˜N¨e11,˜N¨e12,.,˜N¨enm)=(q1mj=1(ni=1(1Lqij)ωi)υi,Πmj=1(Πni=1Gωiij)υi,Πmj=1(Πni=1Łωiij)υi)
    =(q1mj=1(ni=1(1q)ωi)υi,Πmj=1(Πni=1Əq)υi,Πmj=1(Πni=1q)υi)
    =(q1(1q),Əq,q).

    Hence, qROPFSfWA(˜N¨e11,˜N¨e12,.,˜N¨enm) = R¨e.

    (2) Boundedness: We know that

    ˜N¨eij={minjmini(Lij),minjmini(Gij),maxjmaxi(Łij)}

    and

    ˜N+¨eij={maxjmaxi(Lij),minjmini(Gij),minjmini(Łij)}.

    To show that,

    ˜N¨eijqROPFSfWA(˜N¨e11,˜N¨e12,.,˜N¨enm)~N+¨eij.
    minjmini{Lij}Lijmaxjmaxi{Lij}1maxjmaxi{Lqij}1Lqij1minjmini{Lqij}Πmj=1(Πni=1(1maxjmaxi{Lqij})ωi)viΠmj=1(Πni=1(1Lqij)ωi)viΠmj=1(Πni=1(1minjmini{Lqij})ωi)vi((1maxjmaxi{Lqij})ni=1ωi)mi=1viΠmj=1(Πni=1(1Lqij)ωi)vi((1minjmini{Lqij})ni=1ωi)mi=1vi(1maxjmaxi{Lqij})Πmj=1(Πni=1(1Lqij)ωi)vi(1minjmini{Lqij})1(1maxjmaxi{Lqij})1Πmj=1(Πni=1(1Lqij)ωi)vi1(1minjmini{Lqij})minjmini{Lij}q1Πmj=1(Πni=1(1Lqij)ωi)vimaxjmaxi{Lij}. (12)

    Next, we have

    minjmini{Gij}Gijmaxjmaxi{Gij}Πmj=1(Πni=1(minjmini{Gij})ωi)viΠmj=1(Πni=1(Gij)ωi)viΠmj=1(Πni=1(maxjmaxi{Gij})ωi)vi((minjmini{Gij})ni=1ωi)mi=1viΠmj=1(Πni=1(Gij)ωi)vi((maxjmaxi{Gij})ni=1ωi)mi=1viminjmini{Gij}Πmj=1(Πni=1(1Lqij)ωi)vimaxjmaxi{Gij} (13)

    and

    minjmini{Łij}Łijmaxjmaxi{Łij}Πmj=1(Πni=1(minjmini{Łij})ωi)viΠmj=1(Πni=1(Łij)ωi)viΠmj=1(Πni=1(maxjmaxi{Łij})ωi)vi((minjmini{Łij})ni=1ωi)mi=1viΠmj=1(Πni=1(Łij)ωi)vi((maxjmaxi{Łij})ni=1ωi)mi=1viminjmini{Łij}Πmj=1(Πni=1(Łij)ωi)vimaxjmaxi{Łij} (14)

    Therefore, from Eqs (12)–(14), we have

    minjmini{Lij}q1Πmj=1(Πni=1(1Lqij)ωi)vimaxjmaxi{Lij}minjmini{Gij}Πmj=1(Πni=1(1Lqij)ωi)vimaxjmaxi{Gij}minjmini{Łij}Πmj=1(Πni=1(Łij)ωi)vimaxjmaxi{Łij}.

    Let δ = qROPFSfWA(˜N¨e11,˜N¨e12,.,˜N¨enm)=(Lδ,Gδ,Łδ), then by score function

    S(δ)=LqδGqδŁqδ+(eLqδGqδŁqδeLqδGqδŁqδ+112)πqδ(maxjmaxi{Lij})q(minjmini{Gij})q(minjmini{Łij})q+(e(maxjmaxi{Lij})q(minjmini{Gij})q(minjmini{Łij})qe(maxjmaxi{Lij})q(minjmini{Gij})q(minjmini{Łij})q+112)πq˜N+¨eij =S(˜N+¨eij)S(δ)S(˜N+¨eij)

    and

    S(δ)=LqδGqδŁqδ+(eLqδGqδŁqδeLqδGqδŁqδ+112)πqδ(minjmini{Lij})q(minjmini{Gij})q(maxjmaxi{Łij})q+(e(minjmini{Lij})q(minjmini{Gij})q(maxjmaxi{Łij})qe(minjmini{Lij})q(minjmini{Gij})q(maxjmaxi{Łij})q+112)πq˜N+¨eij =S(˜N+¨eij)S(δ)S(˜N+¨eij)

    Now we have the following cases:

    (i) If S (δ)≤ S (˜N+¨eij) and S (δ)≥S (˜N¨eij), by the comparison of these two qROPFSfNs, we get

    ˜N¨eij<qROPFSfWA(˜N¨e11,˜N¨e12,.,˜N¨enm)<˜N+¨eij.

    (ii) If S (δ) = S (˜N+¨eij), then

    LqδGqδŁqδ+(eLqδGqδŁqδeLqδGqδŁqδ+112)πqδ
    =(maxjmaxi{Lij})q(minjmini{Gij})q(minjmini{Łij})q+(e(maxjmaxi{Lij})q(minjmini{Gij})q(minjmini{Łij})qe(maxjmaxi{Lij})q(minjmini{Gij})q(minjmini{Łij})q+112)πq˜N+¨eij

    then by above inequalities, we get

    Lδ=maxjmaxi{Lij},Gδ=minjmini(Gij),Łδ=maxjmaxi(Łij)πqδ=πq˜N¨eijqROPFSfWA(˜N¨e11,˜N¨e12,.,˜N¨enm)=˜N¨eij

    Hence

    ˜N¨eijqROPFSfWA(˜N¨e11,˜N¨e12,.,˜N¨enm)˜N+¨eij.

    (3)Monotonicity: Since Lijij,GijƏijandŁijij, then

    Lijij1ij 1−Lij1qij 1−Lqij

    Πmj=1(Πni=1(1qij)ωi)υiΠmj=1(Πni=1(1Lqij)ωi)υi

    ⇒ 1Πmj=1(Πni=1(1Lqij)ωi)υi1Πmj=1(Πni=1(1qij)ωi)υi

    q1Πmj=1(Πni=1(1Lqij)ωi)υiq1Πmj=1(Πni=1(1qij)ωi)υi

    next GijƏij

    Πni=1(Gij)ωiΠni=1(Əij)ωi

    Πmj=1(Πni=1(Gij)ωi)υiΠmj=1(Πni=1(Əij)ωi)υi

    and Łijij

    Πni=1(Łij)ωiΠni=1(ij)ωi

    Πmj=1(Πni=1(Łij)ωi)υiΠmj=1(Πni=1(ij)ωi)υi.

    Suppose that δ˜N = qROPFSfWA(˜N¨e11,˜N¨e12,.,˜N¨enm) = (Lδ˜N,Gδ˜N,Łδ˜N) and

    δR=qROPFSfWA(R¨e11,R¨e12,.,R¨enm)=(δR,ƏδR,δR).

    Now, from the above equation, we have

    Lijij,GijƏijandŁijij

    then by the score function we have S (δ˜N) S (δR).

    Now, we have the following cases:

    (Ⅰ) By the comparison of two q-ROPF soft numbers, if S (δ˜N)< S (δR), then

    qROPFSfWA(˜N¨e11,˜N¨e12,.,˜N¨enm)<qROPFSfWA(R¨e11,R¨e12,.,R¨enm).

    (Ⅱ) If S (δ˜N)= S (δR), where

    S(δ˜N)=Lqδ˜NGqδ˜NŁqδ˜N+(eLqδ˜NGqδ˜NŁqδ˜NeLqδ˜NGqδ˜NŁqδ˜N+112)πqδ˜NS(δR)=LqδRGqδRŁqδR+(eLqδ˜NGqδ˜NŁqδ˜NeLqδRGqδRŁqδR+112)πqδ~δR.

    We have, Lδ˜N=δR,Gδ˜N=ƏδRandŁδ˜N=δR. Hence

    πqδ˜N = πqδR

    (Lδ˜N,Gδ˜N,Łδ˜N) = (δR,ƏδR,δR).

    Proved that qROPFSfWA(˜N¨e11,˜N¨e12,.,˜N¨enm)<qROPFSfWA(R¨e11,R¨e12,.,R¨enm).

    (4)Shift Invariance: Since R¨e=(,Ə,) and ˜N¨eij = (L¨eij,G¨eij,ٍeij) are the q-ROPF soft numbers, so ˜N¨eij R¨e=(q(1Lqij)(1q),GqijƏ,Łqij). Therefore,

    qROPFSfWA(˜N¨e11R¨e,˜N¨e12R¨e,.,˜N¨enmR¨e)=mj=1υi(ni=1ωi(˜N¨eijR¨e))
    =(q1Πmj=1(Πni=1(1Lqij)ωi(1q)ωi)υi,Πmj=1(Πni=1GωiijƏωi)υi,Πmj=1(Πni=1Łωiijωi)υi)
    =(q1(1q)Πmj=1(Πni=1(1Lqij)ωi)υi,ƏΠmj=1(Πni=1Gωiij)υi,Πmj=1(Πni=1Łωiij)υi)
    =(q1Πmj=1(Πni=1(1Lqij)ωi)υi,Πmj=1(Πni=1Gωiij)υi,Πmj=1(Πni=1Łωiij)υi)(,Ə,)
    qROPFSfWA(˜N¨e11,˜N¨e12,.,˜N¨enm)R¨e.

    (5)Homogeneity: Let ˜N¨eij = (L¨eij,G¨eij,ٍeij) be a qROPFSfNs and λ ≥0, be any real number, then

    λ˜N=(q1(1Lqij)λ,Gqij,Łqij)
    qROPFSfWA(λ˜N¨e11,λ˜N¨e12,.,~λN¨enm)=(q1(mj=1(ni=1(1Lqij)ωi)υi)λ,(Πmj=1(Πni=1Gωiij)υi)λ,(Πmj=1(Πni=1Łωiij)υi)λ)
    =λqROPFSfWA(˜N¨e11,˜N¨e12,.,˜N¨enm).

    Hence, the property proved.

    Definition 4.2. Assume that ˜N¨eij = (Lij,Gij,Łij) for (i=1,2,nandj=1,2,.m) be collection of q=ROPFSfNs and weight vector ω = {ω1, ω2, ...., ωn} with the condition ni=1ωi=1 and υ = {υ1, υ2, ......, υm} with the condition that ni=1υi=1 for alternatives xi and parameters ej, respectively. The mapping qROPFSfOWA:Đn Đ is said to be qROPFSfOWA operator. (Đ is the collection of qROPFSfNs).

    qROPFSfOWA(˜N¨e11,˜N¨e12,.,˜N¨enm)=mj=1υi(ni=1ωi˜Nσ¨eij). (15)

    Theorem 4.3. Consider the collection of qROPFSfNs ˜N¨eij = (Lij,Gij,Łij) then the aggregation result for qROPFSfOWA operator is expressed:

    qROPFSfWA(˜N¨e11,˜N¨e12,.,˜N¨enm)=mj=1υi(ni=1ωi˜N¨σeij)
    =(q1mj=1(ni=1(1Lqσij)ωi)υi,Πmj=1(Πni=1Gωiσij)υi,Πmj=1(Πni=1Łωiσij)υi)
    qROPFSfWA(˜N¨e11,˜N¨e12,.,˜N¨enm)=(q1mj=1(ni=1(1Lqσij)ωi)υi,Πmj=1(Πni=1Gωiσij)υi,Πmj=1(Πni=1Łωiσij)υi) (16)

    ω = {ω1, ω2, ...., ωn} with the condition ni=1ωi=1 and υ = {υ1, υ2, ......, υm} with the condition that ni=1υi=1 for alternatives xi and parameters ej, respectively.

    Proof. Proof is similar to the theory of "qROPFSfWA" operator.

    Example 4.2. From "Table 2" of Example 4.1, we take the collections qROPFSfNs˜N¨eij = (Lij,Gij,Łij)) by using the score function, the we obtain the tabular representation of ˜N¨eij = (Lσij,Gσij,Łσij) is presented in "Table 3".

    Table 3.  Tabular representation of qROPFSfS˜N¨eij = (Lσij,Gσij,Łσij) for q ≥ 3.
    ˉU e1 e2 e3 e4
    t1 (0.8,0.4,0.3) (0.9,0.5,0.3) (0.83,0.2,0.1) (0.87,0.32,0.15)
    t2 (0.76,0.2,0.1) (0.8,0.33,0.1) (0.77,0.4,0.3) (0.84,0.35,0.1)
    t3 (0.71,0.3,0.1) (0.65,0.35,0.15) (0.66,0.54,0.2) (0.8,0.3,0.2)
    t4 (0.66,0.4,0.2) (0.6,0.5,0.3) (0.58,0.3,0.1) (0.73,0.22,0.1)
    t5 (0.62,0.5,0.2) (0.55,0.5,0.2) (0.45.0.25,0.1)(0.7,0.5,0.1)

     | Show Table
    DownLoad: CSV

    By Eq (16) we have

    qROPFSfWA(˜N¨e11,˜N¨e12,.,˜N¨enm)=(q1mj=1(ni=1(1Lqσij)ωi)υi,Πmj=1(Πni=1Gωiσij)υi,Πmj=1(Πni=1Łωiσij)υi)
    =(31{(10.83)0.15(10.763)0.16(10.713)0.20(10.663)0.25(10.623)0.24}0.51{(10.93)0.15(10.83)0.16(10.653)0.20(10.63)0.25(10.553)0.24}0.171{(10.833)0.15(10.773)0.16(10.663)0.20(10.583)0.25(10.453)0.24}0.131{(10.873)0.15(10.843)0.16(10.83)0.20(10.733)0.25(10.73)0.24}0.20,({(10.43)0.15(10.23)0.16(10.33)0.20(10.43)0.25(10.53)0.24}0.5{(10.53)0.15(10.333)0.16(10.353)0.20(10.53)0.25(10.53)0.24}0.17{(10.23)0.15(10.43)0.16(10.543)0.20(10.33)0.25(10.253)0.24}0.13{(10.323)0.15(10.353)0.16(10.33)0.20(10.223)0.25(10.53)0.24}0.20),({(10.33)0.15(10.13)0.16(10.13)0.20(10.23)0.25(10.23)0.24}0.5{(10.33)0.15(10.13)0.16(10.153)0.20(10.33)0.25(10.23)0.24}0.17{(10.13)0.15(10.33)0.16(10.23)0.20(10.13)0.25(10.13)0.24}0.13{(10.153)0.15(10.13)0.16(10.23)0.20(10.13)0.25(10.13)0.24}0.20))
    =(0.7264,0.3568,0.1568).

    Theorem 4.4. Consider the collection of qROPFSfNs ˜N¨eij = (Lij,Gij,Łij) of weight vector ω = {ω1, ω2, ...., ωn} with the condition ni=1ωi=1 and υ = {υ1, υ2, ......, υm} with the condition that ni=1υi=1 for alternatives xi and parameters ej, respectively. Then the qROPFSfOWA operator hold the following properties:

    (1)Idempotency: If ˜N¨eij = {\mathfrak{R}}_{\ddot{{{{\mathrm{e}}}}}} , where {\mathfrak{R}}_{\ddot{{{{\mathrm{e}}}}}} = \left(\complement, Ə, Ⅎ\right) and for all \left({{{\mathrm{i}}}} = {{{\mathrm{1, 2}}}}, \dots, {{{\mathrm{n}}}}\; {{{\mathrm{a}}}}{{{\mathrm{n}}}}{{{\mathrm{d}}}}\; {{{\mathrm{j}}}} = {{{\mathrm{1, 2}}}}, \dots., {{{\mathrm{m}}}}\right) , then q - ROPF{S_f}OWA \left({\widetilde{{{{\mathrm{N}}}}}}_{{\ddot{{{{\mathrm{e}}}}}}_{11}}, {\widetilde{{{{\mathrm{N}}}}}}_{{\ddot{{{{\mathrm{e}}}}}}_{12}}, \dots., {\widetilde{{{{\mathrm{N}}}}}}_{{\ddot{{{{\mathrm{e}}}}}}_{{{{\mathrm{n}}}}{{{\mathrm{m}}}}}}\right) = {\mathfrak{R}}_{\ddot{{{{\mathrm{e}}}}}} .

    (2) Boundedness: If

    {\widetilde{{{{\mathrm{N}}}}}}_{{\ddot{{{{\mathrm{e}}}}}}_{{{{\mathrm{i}}}}{{{\mathrm{j}}}}}}^{-} = \left\{\min\limits _j \min\limits _i\left(\mathcal{L}_{{\mathrm{ij}}}\right), \min\limits _j \min\limits _i\left({\mathrm{G}}_{{\mathrm{ij}}}\right), \max\limits _j \max\limits _i\left({{\mathrm{Ł}}}_{{\mathrm{ij}}}\right)\right\}

    and

    {\widetilde{{{{\mathrm{N}}}}}}_{{\ddot{{{{\mathrm{e}}}}}}_{{{{\mathrm{i}}}}{{{\mathrm{j}}}}}}^{-} = \left\{\max\limits _j \max\limits _i\left(\mathcal{L}_{{\mathrm{ij}}}\right), \min\limits _j \min\limits _i\left({\mathrm{G}}_{{\mathrm{ij}}}\right), \min\limits _j \min\limits _i\left({{\mathrm{Ł}}}_{{\mathrm{ij}}}\right)\right\} ,

    then

    \widetilde {\rm{N}}_{{{{\rm{\ddot e}}}_{{\rm{ij}}}}}^ - \le q - ROPF{S_f}OWA\left( {{{\widetilde {\rm{N}}}_{{{{\rm{\ddot e}}}_{11}}}}, {{\widetilde {\rm{N}}}_{{{{\rm{\ddot e}}}_{12}}}}, \cdots , {{\widetilde {\rm{N}}}_{{{{\rm{\ddot e}}}_{{\rm{nm}}}}}}} \right) \le \widetilde {\rm{N}}_{{{{\rm{\ddot e}}}_{{\rm{ij}}}}}^ + .

    (3) Monotonicity: If {\mathfrak{R}}_{{\ddot{{{{\mathrm{e}}}}}}_{{{{\mathrm{i}}}}{{{\mathrm{j}}}}}} = \left({\complement }_{{{{\mathrm{i}}}}{{{\mathrm{j}}}}}, {Ə}_{{{{\mathrm{i}}}}{{{\mathrm{j}}}}}, {Ⅎ}_{{{{\mathrm{i}}}}{{{\mathrm{j}}}}}\right) be the collection of q - ROPF{S_f}Ns such that {\mathcal{L}}_{{{{\mathrm{i}}}}{{{\mathrm{j}}}}}\le {\complement }_{{{{\mathrm{i}}}}{{{\mathrm{j}}}}}, {{{{\mathrm{G}}}}}_{{{{\mathrm{i}}}}{{{\mathrm{j}}}}}\le {Ə}_{{{{\mathrm{i}}}}{{{\mathrm{j}}}}} , {{{{\mathrm{Ł}}}}}_{{{{\mathrm{i}}}}{{{\mathrm{j}}}}}\ge {Ⅎ}_{{{{\mathrm{i}}}}{{{\mathrm{j}}}}} then

    q - ROPF{S_f}OWA \left({\widetilde{{{{\mathrm{N}}}}}}_{{\ddot{{{{\mathrm{e}}}}}}_{11}}, {\widetilde{{{{\mathrm{N}}}}}}_{{\ddot{{{{\mathrm{e}}}}}}_{12}}, \dots ., {\widetilde{{{{\mathrm{N}}}}}}_{{\ddot{{{{\mathrm{e}}}}}}_{{{{\mathrm{n}}}}{{{\mathrm{m}}}}}}\right) \le q - ROPF{S_f}OWA \left({\mathfrak{R}}_{{\ddot{{{{\mathrm{e}}}}}}_{11}}, {\mathfrak{R}}_{{\ddot{{{{\mathrm{e}}}}}}_{12}}, \dots ., {\mathfrak{R}}_{{\ddot{{{{\mathrm{e}}}}}}_{{{{\mathrm{n}}}}{{{\mathrm{m}}}}}}\right) .

    (4) Shift Invariance: If {\mathfrak{R}}_{\ddot{{{{\mathrm{e}}}}}} = \left({\complement }_{{{{\mathrm{i}}}}{{{\mathrm{j}}}}}, {Ə}_{{{{\mathrm{i}}}}{{{\mathrm{j}}}}}, {Ⅎ}_{{{{\mathrm{i}}}}{{{\mathrm{j}}}}}\right) is q - ROPF{S_f}Ns, then

    q - ROPF{S_f}OWA \left({\widetilde{{{{\mathrm{N}}}}}}_{{\ddot{{{{\mathrm{e}}}}}}_{11}}{{{\mathrm{\oplus}}}}{\mathfrak{R}}_{\ddot{{{{\mathrm{e}}}}}}, {\widetilde{{{{\mathrm{N}}}}}}_{{\ddot{{{{\mathrm{e}}}}}}_{12}}{{{\mathrm{\oplus}}}}{\mathfrak{R}}_{\ddot{{{{\mathrm{e}}}}}}, \dots ., {\widetilde{{{{\mathrm{N}}}}}}_{{\ddot{{{{\mathrm{e}}}}}}_{{{{\mathrm{n}}}}{{{\mathrm{m}}}}}}{{{\mathrm{\oplus}}}}{\mathfrak{R}}_{\ddot{{{{\mathrm{e}}}}}}\right) =
    q - ROPF{S_f}OWA \left({\widetilde{{{{\mathrm{N}}}}}}_{{\ddot{{{{\mathrm{e}}}}}}_{11}}, {\widetilde{{{{\mathrm{N}}}}}}_{{\ddot{{{{\mathrm{e}}}}}}_{12}}, \dots ., {\widetilde{{{{\mathrm{N}}}}}}_{{\ddot{{{{\mathrm{e}}}}}}_{{{{\mathrm{n}}}}{{{\mathrm{m}}}}}}\right){{{\mathrm{\oplus}}}}{\mathfrak{R}}_{\ddot{{{{\mathrm{e}}}}}} .

    (5) Homogeneity: If {{{\mathrm{\lambda }}}} ≥ 0, then

    q - ROPF{S_f}OWA \left({{{\mathrm{\lambda }}}}{\widetilde{{{{\mathrm{N}}}}}}_{{\ddot{{{{\mathrm{e}}}}}}_{11}}, {\widetilde{{{{\mathrm{\lambda }}}}{{{\mathrm{N}}}}}}_{{\ddot{{{{\mathrm{e}}}}}}_{12}}, \dots ., {{{{\mathrm{\lambda }}}}\widetilde{{{{\mathrm{N}}}}}}_{{\ddot{{{{\mathrm{e}}}}}}_{{{{\mathrm{n}}}}{{{\mathrm{m}}}}}}\right) = {{{\mathrm{\lambda }}}} q - ROPF{S_f}OWA \left({\widetilde{{{{\mathrm{N}}}}}}_{{\ddot{{{{\mathrm{e}}}}}}_{11}}, {\widetilde{{{{\mathrm{N}}}}}}_{{\ddot{{{{\mathrm{e}}}}}}_{12}}, \dots ., {\widetilde{{{{\mathrm{N}}}}}}_{{\ddot{{{{\mathrm{e}}}}}}_{{{{\mathrm{n}}}}{{{\mathrm{m}}}}}}\right) .

    Proof. Straight forward.

    In real life situation DM play very important role, and it is a pre-plan process of selecting the best choice out of many alternatives. Let Ą = {ą₁, ą₂, ......ąl} be the set of alternative and corresponding set parameter Ĉ = {c₁, c₂…..., cm}. The team of n senior expert Đ₁, Đ₂, ......., Đn} evaluate to each alternative ąs to their corresponding parameters cj. The group of senior experts provide their evaluation in terms of {\widetilde{{{{\mathrm{N}}}}}}_{{\ddot{{{{\mathrm{e}}}}}}_{{{{\mathrm{i}}}}{{{\mathrm{j}}}}}} = \left({\mathcal{L}}_{{{{\mathrm{i}}}}{{{\mathrm{j}}}}}, {{{{\mathrm{G}}}}}_{{{{\mathrm{i}}}}{{{\mathrm{j}}}}}, {{{{\mathrm{Ł}}}}}_{{{{\mathrm{i}}}}{{{\mathrm{j}}}}}\right) with the weight vector ω = {\left({{{\mathrm{\omega }}}}₁, {{{\mathrm{\omega }}}}2, ....., {{{\mathrm{\omega }}}}n\right)}^{{{{\mathrm{T}}}}} with the condition \sum _{i = 1}^{n}{\omega }_{i} = 1 and υ = {\left({{{\mathrm{\upsilon }}}}1, \; {{{\mathrm{\upsilon }}}}2, \; ......, \; {{{\mathrm{\upsilon }}}}m\right)}^{{{{\mathrm{T}}}}} with the condition that \sum _{i = 1}^{n}{\upsilon }_{i} = 1 for alternatives xi and parameters ej, respectively. Where the collective information of senior expert are described by the decision matrix M = {\left[{\widetilde{{{{\mathrm{N}}}}}}_{{\ddot{{{{\mathrm{e}}}}}}_{{{{\mathrm{i}}}}{{{\mathrm{j}}}}}}\right]}_{{{{\mathrm{m}}}}\times {{{\mathrm{n}}}}} and the aggregated q-ROPF soft number ℧S for alternative (S = 1, 2, …., l) is given as ℧S = \left({\mathcal{L}}_{{{{\mathrm{S}}}}}, {{{{\mathrm{G}}}}}_{{{{\mathrm{S}}}}}, {{{{\mathrm{Ł}}}}}_{{{{\mathrm{S}}}}}\right) . Finally, we apply the score function on each aggregated q-ROPF soft number ℧S = \left({\mathcal{L}}_{{{{\mathrm{S}}}}}, {{{{\mathrm{G}}}}}_{{{{\mathrm{S}}}}}, {{{{\mathrm{Ł}}}}}_{{{{\mathrm{S}}}}}\right) for the alternative and rank them in a specific ordered to get the best option. Steps involve in algorithm for solving MADM applications.

    Algorithm:

    Step 1. Construct a decision matrix M = {\left[{\widetilde{{{{\mathrm{N}}}}}}_{{\ddot{{{{\mathrm{e}}}}}}_{{{{\mathrm{i}}}}{{{\mathrm{j}}}}}}\right]}_{{{{\mathrm{m}}}}\times {{{\mathrm{n}}}}} :

    M = \left[\begin{array}{cccc}\left({\mathcal{L}}_{11}{\text{, }}{{\text{G}}}_{11}{\text{, }}{{\text{Ł}}}_{11}\right)& \left({\mathcal{L}}_{12}{\text{, }}{{\text{G}}}_{12}{\text{, }}{{\text{Ł}}}_{12}\right)& \cdots & \left({\mathcal{L}}_{1m}{\text{, }}{{\text{G}}}_{1m}{\text{, }}{{\text{Ł}}}_{1m}\right)\\ \left({\mathcal{L}}_{21}{\text{, }}{{\text{G}}}_{21}{\text{, }}{{\text{Ł}}}_{21}\right)& \left({\mathcal{L}}_{22}{\text{, }}{{\text{G}}}_{22}{\text{, }}{{\text{Ł}}}_{22}\right)& \cdots & \left({\mathcal{L}}_{2m}{\text{, }}{{\text{G}}}_{2m}{\text{, }}{{\text{Ł}}}_{2m}\right)\\ ⋮& ⋮& \ddots & ⋮\\ \left({\mathcal{L}}_{1m}{\text{, }}{{\text{G}}}_{1m}{\text{, }}{{\text{Ł}}}_{1m}\right)& \left({\mathcal{L}}_{2m}{\text{, }}{{\text{G}}}_{2m}{\text{, }}{{\text{Ł}}}_{2m}\right)& \cdots & \left({\mathcal{L}}_{nm}{\text{, }}{{\text{G}}}_{nm}{\text{, }}{{\text{Ł}}}_{nm}\right)\end{array}\right]

    Step 2. Normalization of q-ROPF soft decision matrix M = {\left[{\widetilde{{{{\mathrm{N}}}}}}_{{\ddot{{{{\mathrm{e}}}}}}_{{{{\mathrm{i}}}}{{{\mathrm{j}}}}}}\right]}_{{{{\mathrm{m}}}}\times {{{\mathrm{n}}}}}

    {P}_{ij} = \left\{\begin{array}{c}{\rm{for \;cost \;type \;parameter \;we \; use}}\;{\widetilde{{{{\mathrm{N}}}}}}_{{\ddot{{{{\mathrm{e}}}}}}_{{{{\mathrm{i}}}}{{{\mathrm{j}}}}}}^{C}\\ {\rm{for \;benefit \;type \;parameter\; we \; use}}\;{\widetilde{{{{\mathrm{N}}}}}}_{{\ddot{{{{\mathrm{e}}}}}}_{{{{\mathrm{i}}}}{{{\mathrm{j}}}}}}\end{array}\right.

    where {\widetilde{{{{\mathrm{N}}}}}}_{{\ddot{{{{\mathrm{e}}}}}}_{{{{\mathrm{i}}}}{{{\mathrm{j}}}}}}^{C} } reprsent the complement of {\widetilde{{{{\mathrm{N}}}}}}_{{\ddot{{{{\mathrm{e}}}}}}_{{{{\mathrm{i}}}}{{{\mathrm{j}}}}}} .

    Step 3. To aggregate the -ROPF soft number {\widetilde{{{{\mathrm{N}}}}}}_{{\ddot{{{{\mathrm{e}}}}}}_{{{{\mathrm{i}}}}{{{\mathrm{j}}}}}} = \left({\mathcal{L}}_{{{{\mathrm{i}}}}{{{\mathrm{j}}}}}, {{{{\mathrm{G}}}}}_{{{{\mathrm{i}}}}{{{\mathrm{j}}}}}, {{{{\mathrm{Ł}}}}}_{{{{\mathrm{i}}}}{{{\mathrm{j}}}}}\right) for each alternative.

    Step 4. To calculate the score value.

    Step 5. At the end arrange the score value to choose the best option.

    For a decision-making problem, we consider a numerical example. Let consider a Đ₁, Đ₂, Đ₃, Đ₄, Đ₅ which represents the set of senior expert doctors having ω = {\left({{{\mathrm{0.16, 0.26, 0.15, 0.20, 0.23}}}}\right)}^{{{{\mathrm{T}}}}} represent the weight-vector which evaluate a common disease "obstructive goiter" of four different patients (alternatives) z₁, z₂, z₃ and z₄ based on the following signs and symptoms may include:

    \hat{\mathrm{C}} = \left\{\begin{array}{c}{{{{\mathrm{c}}}}}_{1} = {\rm{Difficulty \;swallowing}}\\ {{{{\mathrm{c}}}}}_{2} = {\rm{Difficulty\; breathing\; with\; exertion}}\\ {{{{\mathrm{c}}}}}_{3} = {\rm{Cough}}\\ {{{{\mathrm{c}}}}}_{4} = {\rm{Hoarseness}}\\ {{{{\mathrm{c}}}}}_{5} = {\rm{Snoring}}\end{array}\right\}

    which represent the set of parameters having weight vectors υ = {\left({{{\mathrm{0.28, 0.20, 0.1, 0.15, 0.27}}}}\right)}^{{{{\mathrm{T}}}}} . To diagnose the illness patients, we construct a step-wise algorithm.

    By q-ROPF soft weight averaging operator:

    Step 1. Construct a decision matrix M = {\left[{\widetilde{{{{\mathrm{N}}}}}}_{{\ddot{{{{\mathrm{e}}}}}}_{{{{\mathrm{i}}}}{{{\mathrm{j}}}}}}\right]}_{{{{\mathrm{m}}}}\times {{{\mathrm{n}}}}} expressed in q-ROPF soft numbers, which are given in Tables 47, respectively

    Table 4.  q-ROPF soft matrix for patient {z}_{1} .
    {c}_{1} {c}_{2} {c}_{3} {c}_{4} {c}_{5}
    {{\text{Đ}}}_{1} \left(0.71, 0.25, 0.1\right) \left(0.77, 0.2, 0.15\right) \left(0.88, 0.22, 0.11\right) \left(0.81, 0.18, 0.11\right) \left(0.79, 0.2, 0.1\right)
    {{\text{Đ}}}_{2} \left(0.8, 0.22, 0.11\right) \left(0.85, 0.12, 0.11\right) \left(0.7, 0.3, 0.15\right) \left(0.75, 0.15, 0.1\right) \left(0.74, 0.4, 0.14\right)
    {{\text{Đ}}}_{3} \left(0.77, 0.2, 0.1\right) \left(0.75, 0.25, 0.15\right) \left(0.84, 0.12, 0.11\right) \left(0.86, 0.2, 0.1\right) \left(0.86, 0.2, 0.1\right)
    {{\text{Đ}}}_{4} \left(0.78, 0.18, 0.1\right) \left(0.7, 0.18, 0.11\right) \left(0.75, 0.25, 0.1\right) \left(0.7, 0.25, 0.15\right) \left(0.65, 0.16, 0.11\right)
    {{\text{Đ}}}_{5} \left(0.7, 0.35, 0.25\right) \left(0.8, 0.19, 0.1\right) \left(0.74, 0.2, 0.1\right) \left(0.6, 0.3, 0.2\right) \left(0.5, 0.3, 0.1\right)

     | Show Table
    DownLoad: CSV
    Table 5.  q-ROPF soft matrix for patient {z}_{2} .
    {c}_{1} {c}_{2} {c}_{3} {c}_{4} {c}_{5}
    {{\text{Đ}}}_{1} \left(0.6, 0.3, 0.15\right) \left(0.7, 0.22, 0.11\right) \left(0.66, 0.25, 0.1\right) \left(0.8, 0.2, 0.1\right) \left(0.63, 0.3, 0.1\right)
    {{\text{Đ}}}_{2} \left(0.5, 0.25, 0.1\right) \left(0.8, 0.25, 0.13\right) \left(0.75, 0.16, 0.12\right) \left(0.66, 0.25, 0.18\right) \left(0.71, 0.17, 0.2\right)
    {{\text{Đ}}}_{3} \left(0.64, 0.25, 0.1\right) \left(0.5, 0.2, 0.1\right) \left(0.85, 0.24, 0.1\right) \left(0.7, 0.3, 0.2\right) \left(0.6, 0.26, 0.15\right)
    {{\text{Đ}}}_{4} \left(0.66, 0.4, 0.25\right) \left(0.6, 0.3, 0.18\right) \left(0.76, 0.2, 0.1\right) \left(0.68, 0.25, 0.15\right) \left(0.55, 0.25, 0.15\right)
    {{\text{Đ}}}_{5} \left(0.7, 0.5, 0.2\right) \left(0.75, 0.2, 0.18\right) \left(0.67, 0.25, 0.15\right) \left(0.6, 0.3, 0.2\right) \left(0.7, 0.3, 0.1\right)

     | Show Table
    DownLoad: CSV
    Table 6.  q-ROPF soft matrix for patient {z}_{3} .
    {c}_{1} {c}_{2} {c}_{3} {c}_{4} {c}_{5}
    {{\text{Đ}}}_{1} \left(0.7, 0.25, 0.15\right) \left(0.55, 0.33, 0.11\right) \left(0.76, 0.2, 0.1\right) \left(0.8, 0.19, 0.1\right) \left(0.65, 0.22, 0.1\right)
    {{\text{Đ}}}_{2} \left(0.65, 0.22, 0.11\right) \left(0.8, 0.3, 0.1\right) \left(0.8, 0.2, 0.18\right) \left(0.5, 0.15, 0.1\right) \left(0.9, 0.1, 0.1\right)
    {{\text{Đ}}}_{3} \left(0.87, 0.23, 0.1\right) \left(0.6, 0.25, 0.15\right) \left(0.7, 0.2, 0.1\right) \left(0.76, 0.21, 0.11\right) \left(0.76, 0.23, 0.11\right)
    {{\text{Đ}}}_{4} \left(0.8, 0.3, 0.2\right) \left(0.78, 0.13, 0.1\right) \left(0.75, 0.25, 0.15\right) \left(0.4, 0.2, 0.1\right) \left(0.66, 0.3, 0.2\right)
    {{\text{Đ}}}_{5} \left(0.75, 0.4, 0.2\right) \left(0.65, 0.3, 0.1\right) \left(0.6, 0.1, 0.1\right) \left(0.6, 0.23, 0.1\right) \left(0.66, 0.3, 0.2\right)

     | Show Table
    DownLoad: CSV
    Table 7.  q-ROPF soft matrix for patient {z}_{4} .
    {c}_{1} {c}_{2} {c}_{3} {c}_{4} {c}_{5}
    {{\text{Đ}}}_{1} \left(0.76, 0.3, 0.1\right) \left(0.85, 0.22, 0.11\right) \left(0.84, 0.2, 0.1\right) \left(0.78, 0.3, 0.1\right) \left(0.65, 0.26, 0.1\right)
    {{\text{Đ}}}_{2} \left(0.82, 0.14, 0.11\right) \left(0.78, 0.18, 0.1\right) \left(0.6, 0.12, 0.11\right) \left(0.73, 0.17, 0.11\right) \left(0.9, 0.3, 0.1\right)
    {{\text{Đ}}}_{3} \left(0.72, 0.22, 0.1\right) \left(0.83, 0.25, 0.1\right) \left(0.84, 0.13, 0.11\right) \left(0.72, 0.22, 0.11\right) \left(0.77, 0.2, 0.1\right)
    {{\text{Đ}}}_{4} \left(0.6, 0.27, 0.16\right) \left(0.6, 0.3, 0.2\right) \left(0.7, 0.3, 0.2\right) \left(0.83, 0.13, 0.11\right) \left(0.6, 0.25, 0.15\right)
    {{\text{Đ}}}_{5} \left(0.66, 0.23, 0.11\right) \left(0.80, 0.22, 0.12\right) \left(0.77, 0.25, 0.15\right) \left(0.70, 0.17, 0.12\right) \left(0.5, 0.3, 0.2\right)

     | Show Table
    DownLoad: CSV

    Step 2. Normalization is not necessary because all the parameters are similar.

    Step 3. To aggregate the q - ROPF{S_f}WA operator for each alternative, so we get

    {{\mho }_{1}} = \left({{{\mathrm{0.7590, 0.2206, 0.1198}}}}\right) \\{{\mho }_{2}} = \left({{{\mathrm{0.6772, 0.2621, 0.1429}}}}\right) \\{{\mho }_{3}} = \left({{{\mathrm{0.7361, 0.2172, 0.1210}}}}\right) \\{{\mho }_{4}} = \left({{{\mathrm{0.7557, 0.2220, 0.1204}}}}\right) .

    Step 4. To calculate the score value.

    {\rm{S}}({{\mho }_{1}}) = 0.5120\\{\rm{S}}({{\mho }_{2}}) = 0.3539\\{\rm{S}}({{\mho }_{3}}) = 0.4681\\{\rm{S}}({{\mho }_{4}}) = 0.5052.

    Step 5. At the end arrange the score value to choose the best option.

    {\rm{S}}({{{\rm{\mho}} }_{1}}) \succ{\rm{S}}({{\mho }_{4}}) \succ{\rm{S}}({{\mho }_{3}}) \succ{\rm{S}}({{\mho }_{2}}).

    Figure 1 shows the ranking order of alternatives of q - ROPF{S_f}WA operator.

    Figure 1.  The ranking order of alternatives of q - ROPF{S_f}WA operator.

    So, from the above analysis, it is observed that patient z₁ is more illness.

    By q-ROPF soft ordered weight averaging operator:

    Step 1. Construct a decision matrix M = {\left[{\widetilde{{{{\mathrm{N}}}}}}_{{\ddot{{{{\mathrm{e}}}}}}_{{{{\mathrm{i}}}}{{{\mathrm{j}}}}}}\right]}_{{{{\mathrm{m}}}}\times {{{\mathrm{n}}}}} expressed in q-ROPF soft numbers, which are given in Table 811, respectively.

    Table 8.  q-ROPF soft matrix for patient {{{{\mathrm{z}}}}}_{1} .
    {c}_{1} {c}_{2} {c}_{3} {c}_{4} {c}_{5}
    {{\text{Đ}}}_{1} \left(0.8, 0.22, 0.11\right) \left(0.85, 0.12, 0.11\right) \left(0.88, 0.22, 0.11\right) \left(0.86, 0.2, 0.1\right) \left(0.86, 0.2, 0.1\right)
    {{\text{Đ}}}_{2} \left(0.78, 0.18, 0.1\right) \left(0.8, 0.19, 0.1\right) \left(0.84, 0.12, 0.11\right) \left(0.81, 0.18, 0.11\right) \left(0.79, 0.2, 0.1\right)
    {{\text{Đ}}}_{3} \left(0.77, 0.2, 0.1\right) \left(0.77, 0.2, 0.15\right) \left(0.75, 0.25, 0.1\right) \left(0.75, 0.15, 0.1\right) \left(0.74, 0.4, 0.14\right)
    {{\text{Đ}}}_{4} \left(0.71, 0.25, 0.1\right) \left(0.75, 0.25, 0.15\right) \left(0.74, 0.2, 0.1\right) \left(0.7, 0.25, 0.15\right) \left(0.65, 0.16, 0.11\right)
    {{\text{Đ}}}_{5} \left(0.7, 0.35, 0.25\right) \left(0.7, 0.18, 0.11\right) \left(0.7, 0.3, 0.15\right) \left(0.6, 0.3, 0.2\right) \left(0.5, 0.3, 0.1\right)

     | Show Table
    DownLoad: CSV
    Table 9.  q-ROPF soft matrix for patient {z}_{2} .
    {c}_{1} {c}_{2} {c}_{3} {c}_{4} {c}_{5}
    {{\text{Đ}}}_{1} \left(0.8, 0.22, 0.11\right) \left(0.85, 0.12, 0.11\right) \left(0.88, 0.22, 0.11\right) \left(0.86, 0.2, 0.1\right) \left(0.86, 0.2, 0.1\right)
    {{\text{Đ}}}_{2} \left(0.78, 0.18, 0.1\right) \left(0.8, 0.19, 0.1\right) \left(0.84, 0.12, 0.11\right) \left(0.81, 0.18, 0.11\right) \left(0.79, 0.2, 0.1\right)
    {{\text{Đ}}}_{3} \left(0.77, 0.2, 0.1\right) \left(0.77, 0.2, 0.15\right) \left(0.75, 0.25, 0.1\right) \left(0.75, 0.15, 0.1\right) \left(0.74, 0.4, 0.14\right)
    {{\text{Đ}}}_{4} \left(0.71, 0.25, 0.1\right) \left(0.75, 0.25, 0.15\right) \left(0.74, 0.2, 0.1\right) \left(0.7, 0.25, 0.15\right) \left(0.65, 0.16, 0.11\right)
    {{\text{Đ}}}_{5} \left(0.7, 0.35, 0.25\right) \left(0.7, 0.18, 0.11\right) \left(0.7, 0.3, 0.15\right) \left(0.6, 0.3, 0.2\right) \left(0.5, 0.3, 0.1\right)

     | Show Table
    DownLoad: CSV
    Table 10.  q-ROPF soft matrix for patient {z}_{3} .
    {c}_{1} {c}_{2} {c}_{3} {c}_{4} {c}_{5}
    {{\text{Đ}}}_{1} \left(0.87, 0.23, 0.1\right) \left(0.8, 0.3, 0.1\right) \left(0.8, 0.2, 0.18\right) \left(0.8, 0.19, 0.1\right) \left(0.9, 0.1, 0.1\right)
    {{\text{Đ}}}_{2} \left(0.8, 0.3, 0.2\right) \left(0.78, 0.13, 0.1\right) \left(0.76, 0.2, 0.1\right) \left(0.76, 0.21, 0.11\right) \left(0.76, 0.23, 0.11\right)
    {{\text{Đ}}}_{3} \left(0.75, 0.4, 0.2\right) \left(0.65, 0.3, 0.1\right) \left(0.75, 0.25, 0.15\right) \left(0.6, 0.23, 0.1\right) \left(0.66, 0.3, 0.2\right)
    {{\text{Đ}}}_{4} \left(0.7, 0.25, 0.15\right) \left(0.6, 0.25, 0.15\right) \left(0.7, 0.2, 0.1\right) \left(0.5, 0.15, 0.1\right) \left(0.65, 0.22, 0.1\right)
    {{\text{Đ}}}_{5} \left(0.65, 0.22, 0.11\right) \left(0.55, 0.33, 0.11\right) \left(0.6, 0.1, 0.1\right) \left(0.4, 0.2, 0.1\right) \left(0.55, 0.15, 0.1\right)

     | Show Table
    DownLoad: CSV
    Table 11.  q-ROPF soft matrix for patient {z}_{4} .
    {c}_{1} {c}_{2} {c}_{3} {c}_{4} {c}_{5}
    {{\text{Đ}}}_{1} \left(0.82, 0.14, 0.11\right) \left(0.85, 0.22, 0.11\right) \left(0.84, 0.2, 0.1\right) \left(0.83, 0.13, 0.11\right) \left(0.9, 0.3, 0.1\right)
    {{\text{Đ}}}_{2} \left(0.76, 0.3, 0.1\right) \left(0.83, 0.25, 0.1\right) \left(0.80, 0.13, 0.11\right) \left(0.78, 0.3, 0.1\right) \left(0.77, 0.2, 0.1\right)
    {{\text{Đ}}}_{3} \left(0.72, 0.22, 0.1\right) \left(0.80, 0.22, 0.12\right) \left(0.77, 0.25, 0.15\right) \left(0.73, 0.17, 0.11\right) \left(0.65, 0.26, 0.1\right)
    {{\text{Đ}}}_{4} \left(0.66, 0.23, 0.11\right) \left(0.78, 0.18, 0.1\right) \left(0.7, 0.3, 0.2\right) \left(0.72, 0.22, 0.11\right) \left(0.6, 0.25, 0.15\right)
    {{\text{Đ}}}_{5} \left(0.6, 0.27, 0.16\right) \left(0.6, 0.3, 0.2\right) \left(0.6, 0.12, 0.11\right) \left(0.70, 0.17, 0.12\right) \left(0.5, 0.3, 0.2\right)

     | Show Table
    DownLoad: CSV

    Step 2. Normalization is not necessary because all the parameters are similar.

    Step 3. To aggregate the q - ROPF{S_f}OWA operator for each alternative, so we get

    {{\mho }_{1}} = \left({{{\mathrm{0.7597, 0.2172, 0.1186}}}}\right) \\{{\mho }_{2}} = \left({{{\mathrm{0.6698, 0.2648, 0.1421}}}}\right) \\{{\mho }_{3}} = \left({{{\mathrm{0.7295, 0.2176, 0.1201}}}}\right) \\{{\mho }_{4}} = \left({{{\mathrm{0.7473, 0.2277, 0.1201}}}}\right) .

    Step 4. To calculate the score value.

    {\rm{S}}({{\mho }_{1}}) = 0.5140\\{\rm{S}}({{\mho }_{2}}) = 0.3413\\{\rm{S}}({{\mho }_{3}}) = 0.4557\\{\rm{S}}({{\mho }_{4}}) = 0.4878.

    Step 5. At the end arrange the score value to choose the best option.

    {\rm{S}}({{\mho }_{1}}) \succ{\rm{S}}({{\mho }_{4}}) \succ{\rm{S}}({{\mho }_{3}}) \succ{\rm{S}}({{\mho }_{2}}).

    Figure 2 shows the ranking order of alternatives of q - ROPF{S_f}OWA operator.

    Figure 2.  The ranking order of alternatives of q - ROPF{S_f}OWA operator.

    So, from the above analysis, it is observed that patient z₁ is more illness.

    In this section we compare the result of our proposed model with the existing methods based on different operators, to show superiority and influence. In the existing method of various operators (see [15,24,26,27,28]) we handle the DM problem with the help of membership and non-membership degree with attributes, but it cannot handle the situation when the expert's judgment is of a type like yes, abstinence, no and rejection, because there is no information about the neutral degree. So, the logic behind our proposed model is that they have the capability to handle the situations with more generality than the existing concepts, with positive, neutral, and negative degrees (0≤ {\left({{{\mathrm{\mu }}}}\right)}^{q}+{\left({{{\mathrm{\eta }}}}\right)}^{q}+{\left({{{\mathrm{\nu }}}}\right)}^{q}\le 1) with parameterization tools, which is more generalized than the previous concept. Based on q-ROPF soft weighted averaging operator and q-ROPF soft order weighted averaging operator we construct a decision matrix M = {\left[{\widetilde{{{{\mathrm{N}}}}}}_{{\ddot{{{{\mathrm{e}}}}}}_{{{{\mathrm{i}}}}{{{\mathrm{j}}}}}}\right]}_{{{{\mathrm{m}}}}\times {{{\mathrm{n}}}}} expressed in q-ROPF soft numbers, which are given in Table 411 than aggregated this decision matrix with weight vector ω = {\left({{{\mathrm{0.16, 0.26, 0.15, 0.20, 0.23}}}}\right)}^{{{{\mathrm{T}}}}} and their corresponding results for each candidate are given in Table 12 and also Figure 3 shows the graphical representation of proposed operators with existing operators.

    Table 12.  Comparison analysis with existing operators.
    Methods {z}_{1} {z}_{2} {z}_{3} {z}_{4} Ranking
    IFWA [26] 0.220169 0.211734 0.332146 0.270078 {\mho }_{3} > {\mho }_{4} > {\mho }_{1} > {\mho }_{2}
    IFOWA [26] 0.230663 0.217267 0.329021 0.254617 {\mho }_{3} > {\mho }_{4} > {\mho }_{1} > {\mho }_{2}
    IFHA [26] 0.232465 0.225013 0.32471 0.240629 {\mho }_{3} > {\mho }_{4} > {\mho }_{1} > {\mho }_{2}
    IF {S}_{f} WA [27] 0.516859 0.548324 0.604673 0.590214 {\mho }_{3} > {\mho }_{4} > {\mho }_{2} > {\mho }_{1}
    PF {S}_{f} WA [28] 0.522097 0.565965 0.621904 0.590214 {\mho }_{3} > {\mho }_{4} > {\mho }_{2} > {\mho }_{1}
    PF {S}_{f} OWA [28] 0.532526 0.575719 0.621094 0.593809 {\mho }_{3} > {\mho }_{4} > {\mho }_{2} > {\mho }_{1}
    PF {S}_{f}{{{\mathrm{H}}}} A [28] −0.39452 −0.37378 −0.34634 −0.33975 {\mho }_{3} > {\mho }_{4} > {\mho }_{2} > {\mho }_{1}
    q-ROFWA [15] 0.81579 0.79845 0.147617 0.099586 {\mho }_{3} > {\mho }_{4} > {\mho }_{1} > {\mho }_{2}
    q-{{{\mathrm{R}}}}{{{\mathrm{O}}}}{{{\mathrm{F}}}}{S}_{f} WA [24] 0.414877 0.46537 0.522354 0.484856 {\mho }_{3} > {\mho }_{4} > {\mho }_{2} > {\mho }_{1}
    q-{{{\mathrm{R}}}}{{{\mathrm{O}}}}{{{\mathrm{F}}}}{S}_{f} OWA [24] 0.426939 0.475573 0.521928 0.483572 {\mho }_{3} > {\mho }_{4} > {\mho }_{2} > {\mho }_{1}
    q-{{{\mathrm{R}}}}{{{\mathrm{O}}}}{{{\mathrm{F}}}}{S}_{f}{{{\mathrm{H}}}} A [24] −0.29764 −0.27858 −0.2507 −0.5753 {\mho }_{3} > {\mho }_{4} > {\mho }_{2} > {\mho }_{1}
    q-{{{\mathrm{R}}}}{{{\mathrm{O}}}}{{{\mathrm{P}}}}{{{\mathrm{F}}}}{S}_{f} WA 0.5120 0.3539 0.4681 0.5052 {\mho }_{1} > {\mho }_{4} > {\mho }_{3} > {\mho }_{2}
    q-{{{\mathrm{R}}}}{{{\mathrm{O}}}}{{{\mathrm{P}}}}{{{\mathrm{F}}}}{S}_{f} OWA 0.5140 0.3413 0.4557 0.4878 {\mho }_{1} > {\mho }_{4} > {\mho }_{3} > {\mho }_{2}

     | Show Table
    DownLoad: CSV
    Figure 3.  Graphical representation of comparison analysis.

    In this article we present the hybrid of picture fuzzy set and q-rung orthopair fuzzy soft set, to get the generalized structure of q-rung orthopair fuzzy soft set called q-rung orthopair picture fuzzy soft set q - ROPF{S_f}S, which is characterized by positive, neutral and negative membership degree by affixing a parameterization tool to solve the uncertainties. The notion of q - ROPF{S_f}S S covers the gap of neutral degree, in the existing concept of q-rung orthopair fuzzy soft set. The main contribution of this article is to investigate the basic operations and aggregation operators like q-ROPF soft weighted averaging operator and q-ROPF soft ordered weighted averaging operator under the environment of q-rung orthopair picture fuzzy soft set. Moreover, some fundamental properties like idempotency, boundedness, monotonicity, shift invariance, and homogeneity based on these operators are studied. Under the environment of q-ROPF soft set, we consider a biological problem (medical problem) and construct a stepwise algorithm for decision-making problem. Finally, we make a comparison analysis to compare the result of our proposed model with the existing methods, for show superiority and influence. The advantage of our proposed model is that they can handle the situations with more generality than an existing concept (q-rung orthopair fuzzy soft set), i.e., the existing concept, we deal the real-life problems with membership degree and non-membership degree (0≤ {\left({{{\mathrm{\mu }}}}\right)}^{q}+{\left({{{\mathrm{\eta }}}}\right)}^{q} ≤1) with attributes but in the proposed method we handle the situations with positive, neutral and negative degree (0≤ {\left({{{\mathrm{\mu }}}}\right)}^{q}+{\left({{{\mathrm{\eta }}}}\right)}^{q}+{\left({{{\mathrm{\nu }}}}\right)}^{q}\le 1) with parameterization tools, which is more generalized than the previous concept. This proposed work will be extended in various directions such as q-rung orthopair interval-valued picture fuzzy soft set, q-rung orthopair bi-polar picture fuzzy soft set, q-rung orthopair m-polar picture fuzzy soft set, q-rung orthopair cubic picture fuzzy soft set and q-rung orthopair neutrosophic fuzzy soft set, etc.

    The authors A. ALoqaily and N. Mlaiki would like to thank Prince Sultan University for paying the APC and for the support through the TAS research lab.

    The authors disclose no conflict of interests in publishing this paper.



    [1] L. A. Zadeh, Fuzzy sets, Inf. Control, 8 (1965), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X doi: 10.1016/S0019-9958(65)90241-X
    [2] L. A. Zadeh, The concept of a linguistic variable and its application to approximate reasoning-I, Inform. Sci., 8 (1975), 199–249. https://doi.org/10.1016/0020-0255(75)90036-5 doi: 10.1016/0020-0255(75)90036-5
    [3] Q. Song, A. Kandel, M. Schneider, Parameterized fuzzy operators in fuzzy decision-making, Int. J. Intell. Syst., 18 (2003), 971–987. https://doi.org/10.1002/int.10124 doi: 10.1002/int.10124
    [4] H. Zhao, Z. Xu, M. Ni, S. Liu, Generalized aggregation operators for intuitionistic fuzzy sets, Int. J. Intell. Syst., 25 (2010), 1–30. https://doi.org/10.1002/int.20386 doi: 10.1002/int.20386
    [5] C. Tan, Generalized intuitionistic fuzzy geometric aggregation operator and its application to multi-criteria group decision-making, Soft Comput., 15 (2011), 867–876. doi: 10.1007/s00500-010-0554-6
    [6] C. Tan, W. Yi, X. Chen, Generalized intuitionistic fuzzy geometric aggregation operators and their application to multi-criteria decision making, J. Oper. Res. Soc., 66 (2015), 1919–19. https://doi.org/10.1057/jors.2014.104 doi: 10.1057/jors.2014.104
    [7] B. C. Cuong, Picture fuzzy sets, J. Comput. Sci. Cybern., 30 (2014), 409. https://doi.org/10.15625/1813-9663/30/4/5032 doi: 10.15625/1813-9663/30/4/5032
    [8] H. Garg, Some picture fuzzy aggregation operators and their applications to multi-criteria decision-making, Arab. J. Sci. Eng., 42 (2017), 5275–5290. https://doi.org/10.1007/s13369-017-2625-9 doi: 10.1007/s13369-017-2625-9
    [9] G. Wei, Picture fuzzy aggregation operators and their application to multiple attribute decision-making, J. Intell. Fuzzy Syst., 33 (2017), 713–724. https://doi.org/10.3233/JIFS-161798 doi: 10.3233/JIFS-161798
    [10] S. Khan, S. Abdullah, S. Ashraf, Picture fuzzy aggregation information based on Einstein operations and their application in decision-making, Math. Sci., 13 (2019), 213–229. https://doi.org/10.1007/s40096-019-0291-7 doi: 10.1007/s40096-019-0291-7
    [11] C. Jana, T. Senapati, M. Pal, R. R. Yager, Picture fuzzy Dombi aggregation operators: Application to MADM process, Appl. Soft Comput., 74 (2019), 99–109. https://doi.org/10.1016/j.asoc.2018.10.021 doi: 10.1016/j.asoc.2018.10.021
    [12] R. R. Yager, Pythagorean fuzzy subsets, In 2013 Joint IFSA World Congress and NAFIPS Annual Meeting (IFSA/NAFIPS), IEEE, Edmonton, Canada, 2013, 57–61. https://doi.org/10.1109/IFSA-NAFIPS.2013.6608375
    [13] R. R. Yager, Pythagorean membership grades in multi-criteria decision making, IEEE Trans. Fuzzy Syst., 22 (2014), 958–965. https://doi.org/10.1109/TFUZZ.2013.2278989 doi: 10.1109/TFUZZ.2013.2278989
    [14] R. R. Yager, A. M. Abbasov, Pythagorean membership grades, complex numbers, and decision making, Int. J. Intell. Syst., 2 (2014), 436–452. https://doi.org/10.1002/int.21584 doi: 10.1002/int.21584
    [15] P. Liu, P. Wang, Some q-rung orthopair fuzzy aggregation operators and their applications to multiple-attribute decision-making, Int. J. Intell. Syst., 33 (2018), 259–280. https://doi.org/10.1002/int.21927 doi: 10.1002/int.21927
    [16] P. Liu, J. Liu, some q-rung orthopair fuzzy Bonferroni mean operators and their application to multi-attribute group decision-making, Int. J. Intell. Syst., 33 (2018), 315–347. https://doi.org/10.1002/int.21933 doi: 10.1002/int.21933
    [17] P. Liu, S. M. Chen, P. Wang, Multiple-attribute group decision-making based on q-rung orthopair fuzzy power maclurin symmetric mean operators, IEEE Trans. Syst. Man Cybern. Syst., 2018, 1–16. https://doi.org/10.1109/TSMC.2018.2852948 doi: 10.1109/TSMC.2018.2852948
    [18] C. Jana, G. Muhiuddin, M. Pal, Some Dombi aggregation of q-rung orthopair fuzzy numbers in multiple-attribute decision-making, Int. J. Intell. Syst., 34 (2019), 3220–3240. https://doi.org/10.1002/int.22191 doi: 10.1002/int.22191
    [19] H. Garg, S. M. Chen, Multi-attribute group decision-making based on neutrality aggregation operators of q-rung orthopair fuzzy sets, Inf. Sci., 517 (2020), 427–447. https://doi.org/10.1016/j.ins.2019.11.035 doi: 10.1016/j.ins.2019.11.035
    [20] R. R. Yager, Generalized orthopair fuzzy sets, IEEE T. Fuzzy Syst., 25 (2016), 1222–1230. https://doi.org/10.1109/TFUZZ.2016.2604005 doi: 10.1109/TFUZZ.2016.2604005
    [21] D. Molodtsov, Soft set theory-first results, Comput. Math. Appl., 37 (1999), 19–31. https://doi.org/10.1016/S0898-1221(99)00056-5 doi: 10.1016/S0898-1221(99)00056-5
    [22] P. K. Maji, R. Biswas, A. R. Roy, Fuzzy soft sets, J. Fuzzy Math., 9 (2001), 589–602.
    [23] P. Maji, R. Biswas, A. Roy, Intuitionistic fuzzy soft sets, J. Fuzzy Math., 9 (2001), 677–692.
    [24] A. Hussain, M. I. Ali, T. Mahmood, M. Munir, q-Rung orthopair fuzzy soft average aggregation operators and their application in multicriteria decision-making, Int. J. Intell. Syst., 35 (2020), 571–599. https://doi.org/10.1002/int.22217 doi: 10.1002/int.22217
    [25] F. Smarandache, A unifying field in logics neutrosophy: Neutrosophic probability, set and logic, American Research Press, Rehoboth, 1999.
    [26] Z. S. Xu, Intuitionistic fuzzy aggregation operators, IEEE Trans Fuzzy Syst., 15 (2007), 1179–1187. https://doi.org/10.1109/TFUZZ.2006.890678 doi: 10.1109/TFUZZ.2006.890678
    [27] R. Arora, H. Garg, A robust aggregation operators for multi-criteria decision-making with intuitionistic fuzzy soft set environment, Sci. Iran., 25 (2018), 913–942. https://doi.org/10.24200/sci.2017.4433 doi: 10.24200/sci.2017.4433
    [28] R. M. Zulqarnain, X. L. Xin, H. Garg, W. A. Khan, Aggregation operators of Pythagorean fuzzy soft sets with their application for green supplier chain management, J. Intell. Fuzzy Syst., 40 (2021), 5545–5563. https://doi.org/10.3233/JIFS-202781 doi: 10.3233/JIFS-202781
    [29] K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Set. Syst., 20 (1986), 87–96. https://doi.org/10.1016/S0165-0114(86)80034-3 doi: 10.1016/S0165-0114(86)80034-3
    [30] B. P. Joshi, A. Singh, P. K. Bhatt, K. S. Vaisla, Interval valued q-rung orthopair fuzzy sets and their properties, J. Intell. Fuzzy Syst., 35 (2018), 5225–5230. https://doi.org/10.3233/JIFS-169806 doi: 10.3233/JIFS-169806
    [31] K. Hayat, M. S. Raja, E. Lughofer, N. Yaqoob, New group-based generalized interval-valued q-rung orthopair fuzzy soft aggregation operators and their applications in sports decision-making problems, Comput. Appl. Math., 42 (2023), 1–28. https://doi.org/10.1007/s40314-022-02130-8 doi: 10.1007/s40314-022-02135-3
    [32] X. Yang, K. Hayat, M. S. Raja, N. Yaqoob, C. Jana, Aggregation and interaction aggregation soft operators on interval-valued q-rung orthopair fuzzy soft environment and application in automation company evaluation, IEEE Access, 10 (2022), 91424–91444. https://doi.org/10.1109/ACCESS.2022.3202211 doi: 10.1109/ACCESS.2022.3202211
    [33] K. Hayat, R. A. Shamim, H. Al Salman, A. Gumaei, X. P. Yang, M. A. Akbar, Group Generalized q-Rung orthopair fuzzy soft sets: New aggregation operators and their applications, Math. Probl. Eng., 2021 (2021). https://doi.org/10.1155/2021/5672097 doi: 10.1155/2021/5672097
    [34] I. Deli, N. Çağman, Intuitionistic fuzzy parameterized soft set theory and its decision making, Appl. Soft Comput., 28 (2015), 109–113. https://doi.org/10.1016/j.asoc.2014.11.053 doi: 10.1016/j.asoc.2014.11.053
    [35] I. Deli, A TOPSIS method by using generalized trapezoidal hesitant fuzzy numbers and application to a robot selection problem, J. Intell. Fuzzy Syst., 38 (2020), 779–793. https://doi.org/10.3233/JIFS-179448 doi: 10.3233/JIFS-179448
    [36] I. Deli, S. Broumi, Neutrosophic soft matrices and NSM-decision making, J. Intell. Fuzzy Syst., 28 (2015), 2233–2241. https://doi.org/10.3233/IFS-141505 doi: 10.3233/IFS-141505
    [37] M. Akram, G. Shahzadi, J. C. R. Alcantud, Multi-attribute decision-making with q-rung picture fuzzy information, Granular Comput., 7 (2022), 197–215. https://doi.org/10.1007/s41066-021-00260-8 doi: 10.1007/s41066-021-00260-8
    [38] M. Akram, M. Shabir, A. N. Al-Kenani, J. C. R. Alcantud, Hybrid decision-making frameworks under complex spherical fuzzy N-soft sets, J. Math., 2021 (2021), 1–46. https://doi.org/10.1155/2021/5563215 doi: 10.1155/2021/5563215
    [39] M. Akram, A. Luqman, J. C. R. Alcantud, Risk evaluation in failure modes and effects analysis: hybrid TOPSIS and ELECTRE I solutions with Pythagorean fuzzy information, Neural Comput. Appl., 33 (2021), 5675–5703. https://doi.org/10.1007/s00521-020-05350-3 doi: 10.1007/s00521-020-05350-3
    [40] M. Akram, F. Wasim, J. C. R. Alcantud, A. N. Al-Kenani, Multi-criteria optimization technique with complex Pythagorean fuzzy n-soft information, Int. J. Comput. Intel. Syst., 14 (2021), 1–24. https://doi.org/10.1007/s44196-021-00008-x doi: 10.1007/s44196-021-00008-x
    [41] M. Akram, M. Amjad, J. C. R. Alcantud, G. Santos-García, Complex Fermatean fuzzy N-soft sets: A new hybrid model with applications, J. Amb. Intel. Hum. Comp., 14 (2022), 1–34. https://doi.org/10.1007/s12652-021-03629-4 doi: 10.1007/s12652-021-03629-4
  • This article has been cited by:

    1. Sumbal Ali, Asad Ali, Ahmad Bin Azim, Abdul Samad Khan, Fuad A. Awwad, Emad A. A. Ismail, TOPSIS method based on q-rung orthopair picture fuzzy soft environment and its application in the context of green supply chain management, 2024, 9, 2473-6988, 15149, 10.3934/math.2024735
    2. Ahmad Bin Azim, Asad Ali, Abdul Samad Khan, Fuad A. Awwad, Sumbal Ali, Emad A.A. Ismail, Aggregation operators based on Einstein averaging under q-spherical fuzzy rough sets and their applications in navigation systems for automatic cars, 2024, 10, 24058440, e34698, 10.1016/j.heliyon.2024.e34698
    3. Ahmad Bin Azim, Asad Ali, Sumbal Ali, Ahmad Aloqaily, Nabil Mlaiki, q-Spherical Fuzzy Rough Frank Aggregation Operators in AI Neural Networks: Applications in Military Transport Systems, 2024, 12, 2169-3536, 104215, 10.1109/ACCESS.2024.3414845
    4. Yuan Rong, Liying Yu, An extended MARCOS approach and generalized Dombi aggregation operators-based group decision-making for emergency logistics suppliers selection utilizing q-rung picture fuzzy information, 2024, 9, 2364-4966, 10.1007/s41066-023-00439-1
    5. Ahmad Bin Azim, Asad Ali, Abdul Samad Khan, Fuad A. Awwad, Sumbal Ali, Emad A. A. Ismail, Applications of q-Spherical Fuzzy Rough CODAS to the Assessment of a Problem Involving Renewable Energy Site Selection, 2024, 12, 2169-3536, 114100, 10.1109/ACCESS.2024.3412193
    6. Muhammad Rahim, Fazli Amin, ElSayed M. Tag Eldin, Hamiden Abd El-Wahed Khalifa, Sadique Ahmad, p, q-Spherical fuzzy sets and their aggregation operators with application to third-party logistic provider selection, 2024, 46, 10641246, 505, 10.3233/JIFS-235297
    7. Ahmad Bin Azim, Ahmad ALoqaily, Asad Ali, Sumbal Ali, Nabil Mlaiki, Industry 4.0 project prioritization by using q-spherical fuzzy rough analytic hierarchy process, 2023, 8, 2473-6988, 18809, 10.3934/math.2023957
    8. Muhammad Rahim, Shougi Suliman Abosuliman, Roobaea Alroobaea, Kamal Shah, Thabet Abdeljawad, Cosine similarity and distance measures for p,q− quasirung orthopair fuzzy sets: Applications in investment decision-making, 2024, 10, 24058440, e32107, 10.1016/j.heliyon.2024.e32107
    9. Sumbal Ali, Asad Ali, Ahmad Bin Azim, Ahmad Aloqaily, Nabil Mlaiki, Utilizing aggregation operators based on q-rung orthopair neutrosophic soft sets and their applications in multi-attributes decision making problems, 2024, 10, 24058440, e35059, 10.1016/j.heliyon.2024.e35059
    10. Muhammad Rahim, Kamal Shah, Thabet Abdeljawad, Maggie Aphane, Alhanouf Alburaikan, Hamiden Abd El-Wahed Khalifa, Confidence Levels-Based p, q-Quasirung Orthopair Fuzzy Operators and Its Applications to Criteria Group Decision Making Problems, 2023, 11, 2169-3536, 109983, 10.1109/ACCESS.2023.3321876
    11. Ahmad Bin Azim, Asad Ali, Abdul Samad Khan, Fuad A. Awwad, Emad A.A. Ismail, Sumbal Ali, Utilizing sine trigonometric q-spherical fuzzy rough aggregation operators for group decision-making and their role in digital transformation, 2024, 10, 24058440, e30758, 10.1016/j.heliyon.2024.e30758
    12. Ahmad Bin Azim, Asad Ali, Abdul Samad Khan, Fuad A. Awwad, Emad A.A. Ismail, Sumbal Ali, Assessing indoor positioning system: A q-spherical fuzzy rough TOPSIS analysis, 2024, 10, 24058440, e31018, 10.1016/j.heliyon.2024.e31018
    13. Jialin Li, Applications of Decision Support System for Enhancing Public Art Communication through Emotional Intelligence Using q-Rung Orthopair Fuzzy Information, 2024, 2169-3536, 1, 10.1109/ACCESS.2024.3480458
    14. Keliang Luo, Advancing Smart Sensor Networks and Carbon-Based Biosensors Through Artificial Intelligence: A Deep Learning Approach to Optoelectronic Device Innovation, 2025, 13, 2169-3536, 86083, 10.1109/ACCESS.2025.3567561
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1607) PDF downloads(80) Cited by(14)

Figures and Tables

Figures(3)  /  Tables(12)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog