Loading [MathJax]/jax/output/SVG/jax.js
Research article

Precise asymptotics for complete integral convergence in the law of the logarithm under the sub-linear expectations

  • Received: 11 October 2022 Revised: 31 January 2023 Accepted: 01 February 2023 Published: 09 February 2023
  • MSC : 60F15

  • The aim of this paper is to study and establish precise asymptotics for complete integral convergence in the law of the logarithm under the sub-linear expectation space. The methods and tools in this paper are different from those used to study precise asymptotics theorems in probability space. We extend precise asymptotics for complete integral convergence from the classical probability space to sub-linear expectation space. Our results generalize corresponding results obtained by Fu and Yang[13]. We further extend the limit theorems in classical probability space.

    Citation: Lizhen Huang, Qunying Wu. Precise asymptotics for complete integral convergence in the law of the logarithm under the sub-linear expectations[J]. AIMS Mathematics, 2023, 8(4): 8964-8984. doi: 10.3934/math.2023449

    Related Papers:

    [1] Qunying Wu . The convergence rate for the laws of logarithms under sub-linear expectations. AIMS Mathematics, 2023, 8(10): 24786-24801. doi: 10.3934/math.20231264
    [2] Mingzhou Xu, Xuhang Kong . Note on complete convergence and complete moment convergence for negatively dependent random variables under sub-linear expectations. AIMS Mathematics, 2023, 8(4): 8504-8521. doi: 10.3934/math.2023428
    [3] Xue Ding . A general form for precise asymptotics for complete convergence under sublinear expectation. AIMS Mathematics, 2022, 7(2): 1664-1677. doi: 10.3934/math.2022096
    [4] Lunyi Liu, Qunying Wu . Complete integral convergence for weighted sums of negatively dependent random variables under sub-linear expectations. AIMS Mathematics, 2023, 8(9): 22319-22337. doi: 10.3934/math.20231138
    [5] He Dong, Xili Tan, Yong Zhang . Complete convergence and complete integration convergence for weighted sums of arrays of rowwise m-END under sub-linear expectations space. AIMS Mathematics, 2023, 8(3): 6705-6724. doi: 10.3934/math.2023340
    [6] Chengcheng Jia, Qunying Wu . Complete convergence and complete integral convergence for weighted sums of widely acceptable random variables under the sub-linear expectations. AIMS Mathematics, 2022, 7(5): 8430-8448. doi: 10.3934/math.2022470
    [7] Xiaocong Chen, Qunying Wu . Complete convergence and complete integral convergence of partial sums for moving average process under sub-linear expectations. AIMS Mathematics, 2022, 7(6): 9694-9715. doi: 10.3934/math.2022540
    [8] Shuyan Li, Qunying Wu . Complete integration convergence for arrays of rowwise extended negatively dependent random variables under the sub-linear expectations. AIMS Mathematics, 2021, 6(11): 12166-12181. doi: 10.3934/math.2021706
    [9] Mingzhou Xu . Complete convergence and complete moment convergence for maximal weighted sums of extended negatively dependent random variables under sub-linear expectations. AIMS Mathematics, 2023, 8(8): 19442-19460. doi: 10.3934/math.2023992
    [10] Mingzhou Xu, Kun Cheng, Wangke Yu . Complete convergence for weighted sums of negatively dependent random variables under sub-linear expectations. AIMS Mathematics, 2022, 7(11): 19998-20019. doi: 10.3934/math.20221094
  • The aim of this paper is to study and establish precise asymptotics for complete integral convergence in the law of the logarithm under the sub-linear expectation space. The methods and tools in this paper are different from those used to study precise asymptotics theorems in probability space. We extend precise asymptotics for complete integral convergence from the classical probability space to sub-linear expectation space. Our results generalize corresponding results obtained by Fu and Yang[13]. We further extend the limit theorems in classical probability space.



    It is well known that complete convergence plays an important role in probability limit theory. Since the concept of complete convergence was introduced by Hsu and Robbins [1], there have been several directions of extension. One important topic of them is to discuss the precise rate, which is much more accurate than complete convergence. Heyde [2] proved for the first time the precise rate of sequences of independentand identically distributed random variables, and he got the following result:

    limε0ε2n=1P(|Sn|εn)=EX2,

    under the conditions EX=0 and EX2<. Results of this kind are frequently called precise asymptotics. For more results on the precise asymptotics, see Chen[3], Spătaru [4], Gut and Spătaru [5,6], Gut and Steinebach[7], He and Xie[8], etc. Liu and Lin [9] achieved the precise asymptotics for complete moment convergence. From then until now, the study on the precise asymptotics, no matter for complete convergence or complete moment convergence, is still a hot issue. For example, Zhao[10] established precise rates in complete moment convergence for ρ-mixing sequences; Zhang, Yang and Dong[11] discussed a general law of precise asymptotics for the complete moment convergence; Lin and Zhou[12] investigated precise asymptotics of complete moment convergence on moving average; Fu and Yang [13] offered moment convergence rates in the law of the logarithm for dependent sequences.

    The results above are based on the additivity of the probability measures and mathematical ex-pectations, which are built on the distribution-certainty or model-certainty. However, with the continuous progress of social economy, many uncertain phenomena gradually appear in financial insurance, statistical forecasting and other industrial problems, and these uncertain problems cannot be simulated by additive probability and expectation, such as risk measurement and super hedging in the field of mathematical finance. For the relevant references, we can refer to El Karoui et al. [36], Peng [37], Chen and Epstein[38], and so forth. Therefore, inspired by the desire to simulate uncertain models, academician Peng [16,17] is the first one to introduce a notion of sublinear expectation. In the framework of sublinear expectation, we have recently seen a lot of limit theorems, including the classical (weighted) central limit theory (see Peng [17], Fang et al.[18], Zhang and Chen [19], Li [20], Guo and Zhang [21], Blessing and Kupper [33]), strong law of large numbers (SLLN) (see Chen [22], Wu and Jiang[23], Yang and Xiao[24], Zhan and Wu [25], Ma and Wu [26]), weak LLN (see Chen et al. [27], Hu [28]), Marcinkiewicz-Zygmund LLN (see Hu[29]), and so forth. In addition, there are some extensions of the precise asymptotics theorems under sub-linear expectations, For example: Wu [14] obtained precise asymptotics for complete integral convergence under sub-linear expectations; Ding[15] proved a general form for precise asymptotics for complete convergence under sub-linear expectations; Wu and Wang[32] investigated general results on precise asymptotics under sub-linear expectations. Further, since Peng introduced the nonlinear expectation, the theory and application of the nonlinear expectation have been well developed in financial risk measurement and control. For instance: Peng [17] established multi-dimensional G-Brownian motion and related stochastic calculus under G-expectation; Marinacci[39] obtained limit laws for non-additive probabilities and their frequentist interpretation; Xi et al.[40] offered complete convergence for arrays of rowwise END random variables and its statistical applications under sub-linear expectations. For more relevant results, see Denis and Martini[41], Chen and Epstein[42], and so forth.

    Motivated by the topic of volatility uncertainty, the theory of the nonlinear expectation and its applications, we concentrate on precise asymptotics theorems under the sub-linear expectations. However, many basic properties or tools for classical probability theory are no longer available under sublinear expectations, the study on limit theorems under sublinear expectations is much more complex and difficult. The methods and tools in this paper are different from those used to study precise asymptotics theorems in probability space. We have obtained the precise asymptotics for complete integral convergence in the law of the logarithm under the sub-linear expectation space. As a result, the corresponding results obtained by Fu and Yang [13] have been generalized to the sublinear expectation space context.

    The paper is organized as follows: In Section 2, we summarize some of the basic concepts, definitions, and related properties under the sub-linear expectations. Not only that, we have also enumerated some important lemmas that are useful to prove the main results. In Section 3, we establish the main results of this paper. The proofs of main results are presented in Sections 4. The conclusion part is listed in Section 5.

    We use the framework and notions of Peng [16]. Let (Ω,F) be a given measurable space and let H be a linear space of real functions defined on (Ω,F) such that if X1,X2,,XnH then φ(X1,,Xn)H for each φCl,Lip(Rn), where Cl,Lip(Rn) denotes the linear space of (local Lipschitz) functions φ satisfying

    |φ(x)φ(y)|c(1+|x|m+|y|m)|xy|,  x,yRn,

    for some c>0, mN depending on φ. H is considered as a space of random variables. In this case we denote XH.

    In addition, Denk et al.[34] established that nonlinear expectations can always extend nonlinear expectations from a certain subset H of bounded measurable functions to the space of all bounded suitably measurable functions. Following this work, we could directly work on the space of all bounded measurable functions.

    Definition 2.1. (Peng [16]) A sub-linear expectation ˆE on H is a function ˆE:HˉR satisfying the following properties: For all X,YH, we have

    (a) Monotonicity: If XY, then ˆE(X)ˆE(Y);

    (b) Constant preserving: ˆE(c)=c;

    (c) Sub-additivity: ˆE(X+Y)ˆE(X)+ˆE(Y); whenever ˆE(X)+ˆE(Y) is not of the form + or +;

    (d) Positive homogeneity: ˆE(λX)=λˆE(X), λ0.

    Here ˉR:=[,]. The triple (Ω,H,ˆE) is called a sub-linear expectation space.

    Give a sub-linear expectation ˆE, let us denote the conjugate expectation ˆε of ˆE by

    ˆε(X):=ˆE(X), XH.

    From the definition, it is easily shown that for all X,YH

    ˆε(X)ˆE(X), ˆE(X+c)=ˆE(X)+c, ˆE(XY)ˆE(X)ˆE(Y),

    and

    |ˆEXˆEY|ˆE(|XY|). (2.1)

    If ˆE(Y)=ˆε(Y), then ˆE(X+aY)=ˆE(X)+aˆE(Y) for any aR.

    Next, we consider the capacities corresponding to the sub-linear expectations. Let GF. A function V:G[0,1] is called a capacity if

    V()=0, V(Ω)=1 and V(A)V(B) , for AB, A,BG.

    I(A) denotes the indicator function of A, AG, I(A)H.

    It is called to be sub-additive if V(AB)V(A)+V(B) for all A,BG with ABG. In the sub-linear space (Ω,H,ˆE), we denote a pair (V,V) of capacities by

    V(A):=inf{ˆE(ξ);I(A)ξ,ξH}, V(A):=1V(Ac), AF,

    where V(Ac) is the complement set of A. It is obvious that V is sub-additive, and

    V(A)V(A), AF; V(A)=ˆE(I(A)), V(A)=ˆε(I(A)), if I(A)H.

    Property 2.1. For all BF, if ηI(B)ξ, η,ξH, then

    ˆE(η)V(B)ˆE(ξ). (2.2)

    Remark 2.1. From (2.2), for all XH, y>0, γ>0, it emerges that V(|X|y)ˆE(|X|γ)/yγ, which is the well-known Markov's inequality.

    Remark 2.2. Mathematical expectation corresponds to the integral in (Ω,A,P), where the integral depends on a probability. In (Ω,H,ˆE), capacity is an alternative to probability, so what is the relationship between the capacity and integral? The following is the definition of the upper integral.

    Definition 2.2. For all |X|H, define

    CV(|X|):=0V(|X|>x)dx.

    From the above definition, we cannot help but think of the definition of mathematical expectation in probability space, E(|X|):=0P(|X|>x)dx. In (Ω,H,ˆE), ˆE(|X|) and CV(|X|) are not related in the general situations. From Zhang [30], we can learn that ˆE(|X|)CV(|X|) if one of the following three circumstances is satisfied: (i) ˆE is countably sub-additive; (ii) ˆE(|X|d)I(|X|>d)0, as d; (iii) |X| is bounded.

    Definition 2.3. (Peng[16] and Peng[35])

    (i) Identical distribution: Let X1 and X2 be two n-dimensional random vectors defined, respectively, in sublinear expectation spaces (Ω1,H1,ˆE1) and (Ω2,H2,ˆE2). They are called identically distributed if

    ˆE1(φ(X1))=ˆE2(φ(X2)), φCl,Lip(Rn),

    whenever the subexpectations are finite. A sequence {Xn;n1} of random variables is said to be identically distributed if for each i1, Xi and X1 are identically distributed.

    (ii) Independence: In a sublinear expectation space (Ω,H,ˆE), a random vector Y={Y1,...,Yn},YiH, is said to be independent of another random vector X={X1,...,Xm},XiH, under ˆE if for each test function φCl,Lip(Rm×Rn), we have ˆE(φ(X,Y))=ˆE[ˆE(φ(x,Y))x=X], whenever ˉφ(x):=ˆE(|φ(x,Y)|)< for all x and ˆE(|ˉφ(X)|)<.

    (iii) IID random variables: A sequence of random variables {Xn;n1} is said to be independent, if Xi+1 is independent of (X1,...,Xi) for each i1. It is said to be identically distributed, if Xid=X1 for each i1.

    In the following, let {Xn;n1} be a sequence of random variables in (Ω,H,ˆE), Sn=ni=1Xi. The symbol c stands for a generic positive constant which may differ from one place to another. Let ax and bx be positive numbers, axbx denotes limxax/bx=1, axbx denotes that there exists a constant c>0 such that axcbx for sufficiently large x, and I() denotes an indicator function.

    To prove our results, we need the following four lemmas.

    Lemma 2.1. (Zhang[31]). Let {Zn,k;k=1,...,kn} be an array of independent random variables such that ˆE(Zn,k)0, and ˆE(Z2n,k)<,k=1,...,kn. Then for all x,y>0

    V(maxmknmk=1Zn,kx)V(maxkknZn,ky)+exp{xyxy(Bnxy+1)ln(1+xyBn)}, (2.3)

    where Bn=knk=1ˆE(Z2n,k).

    Lemma 2.2. Let {Xk;k1} be a sequence of independent random variables with ˆE(Xk)=ˆE(Xk)=0 in (Ω,H,ˆE). Then there exists a constant c>0 such that for any x>0,

    V(|Sn|x)cnk=1ˆE(X2k)x2. (2.4)

    Proof. It follows from Theorem 3.1 in Zhang[30] that: Let {Xk;k1} be a sequence of independent random variables with ˆE(Xk)0 in (Ω,H,ˆE), then

    V(Snx)cnk=1ˆE(X2k)x2. (2.5)

    By ˆE(Xk)=0, then, {X,Xi} also satisfies the conditions of Theorem 3.1 in Zhang[30], we replace the {X,Xi} with the {X,Xi} in the upper form:

    V(Snx)cnk=1ˆE(X2k)x2. (2.6)

    Therefore, combining with (2.5) and (2.6), we obtain

    V(|Sn|x)V(Snx)+V(Snx)cnk=1ˆE(X2k)x2.

    Hence, we get that (2.4) in Lemma 2.2 is established.

    Lemma 2.3. (Wu [14]). Suppose that {Xn;n1} is a sequence of independent and identically distributed random variables with ˆE(X)=ˆE(X)=0 and ˆE is continuous, set Δn(x):=V((|Sn|/n)x)V(|ξ|x), then,

    Δn:=supx0|Δn(x)|0, as n, (2.7)

    where ξN(0,[σ_2,¯σ2]),and ¯σ2=ˆE(X2), σ_2=ˆε(X2).

    Lemma 2.4. Suppose that the conditions of Lemma 2.3 hold and CV(X2)<, for φCb(R), Cb(R) denotes the space of bounded continuous functions, then

    limnˆE(φ(Snn))=ˆE(φ(ξ)), (2.8)

    where ξN(0,[σ_2,¯σ2])under ˆE, N is G-normal random variable, ¯σ2=ˆE(X2), σ_2=ˆε(X2).

    And

    limnV(maxkn|Sk|>xn)=2G(x), x>0, (2.9)

    where 2G(x)=2i=0(1)iP{|N|(2i+1)x}=V(max0t1|W(t)|x), W(t) is a G-Brownian motion with W(1)N(0,[σ_2,¯σ2]).

    Proof. In order to facilitate the proof of the theorems in this paper, we use the conditions of the central limit theorem in Zhang [32] to prove our Lemma 2.4. Next, we prove that the conditions of Lemma 2.4 satisfy the conditions of Lemma 2.4 (i)(iii) in Zhang [31], let X(c):=(c)(Xc).

    (i) By the condition of CV(X2)< in Lemma 2.4, ˆE is continuous, then

    ˆE(X2c)CV(X2c)CV(X2)<.

    and ˆE(X2c)c, hence

    limcˆE(X2c) is finite. (2.10)

    (ii) By the condition of CV(X2)< in Lemma 2.4, then

    CV(X2)=0V(|X|2>x)dx<.

    and combining with V(|X|2>x)x, hence

    limxxV(|X|2>x)=0limxx2V(|X|>x)=0. (2.11)

    (iii) By the condition of CV(X2)< in Lemma 2.4, ˆE is continuous, then

    ˆE(X2)CV(X2)<.

    Since,

    ˆE(|X|c)+=ˆE(|X|c)I(|X|>c)ˆE(|X|c)(|X|c)I(|X|>c)ˆEX2c0,c.

    Hence,

    limcˆE(|X|c)+=0. (2.12)

    Combining with (2.1), (2.12) and ˆE(|X|)CV(|X|)<, we get

    |ˆE(±X)(c)ˆE(±X)|ˆE|(±X)(c)(±X)|=ˆE(|X|c)I(|X|>c)=ˆE(|X|c)+0,c.

    Therefore,

    limcˆE(±X)(c)=ˆE(±X)=0. (2.13)

    By X2=X2c+(X2c)I(X2>c), we get

    ˆE(X2c)ˆE(X2)ˆE(X2c)+ˆE(X2c)I(X2>c).

    Since,

    ˆE(X2c)I(X2>c)CV((X2c)I(X2>c))=0V((X2c)I(X2>c)>t)dt=0V(X2>c+t)dt=cV(X2>y)dy(y=c+t)0,c.

    Hence,

    limcˆE(X2c)=ˆE(X2). (2.14)

    Therefore, (2.10), (2.11) and (2.13) corresponds to the conditions of Lemma 2.4 (i)(iii) in Zhang [31], respectively. By (2.14), we obtain ¯σ2=limcˆE(X2c)=ˆE(X2), σ_2=limcˆε(X2c)=ˆε(X2). Hence, we get that (2.8) and (2.9) are established.

    For better understanding Lemma 2.4, we need to review some central limit theorems under the sub-linear expectations. Peng [35,43] initially proved that: If ˆE(X1)=ˆE(X1)=0 and ˆE(|X1|2+α)<, for some α>0, then limnˆE(φ(Snn))=ˆE(φ(ξ)), where ξN(0,[σ_2,¯σ2]), ¯σ2=ˆE(X21), σ_2=ˆε(X21). On the basis of Peng [35,43], Zhang [30] showed that the moment condition that ˆE(|X1|2+α)< can be weakened to ˆE[(|X1|2c)+]0 as c. Further, Zhang [44] proved the sufficient and necessary conditions for the central limit theorem : (i) limcˆE(X21c) is finite; (ii) x2V(|X1|x)0 as c; (iii) limcˆE[cX1c]=limcˆE[c(X1)c]=0. Under the sufficient and necessary conditions in Zhang [44], Zhang [31] further extended the central limit theorem for maximum value. On the basis of Zhang [31], we use the conditions of the central limit theorem in Zhang [31] to prove our Lemma 2.4 in this paper.

    In this subsection, we first recall some notations which will be used in the main results.

    If ˆE(|X|2+δ)< (δ>0), combining with Markov's inequality, it is easy to derive that

    CV(X2)=0V(X2>x)dx=0V(|X|>x1/2)dx1+1ˆE(|X|2+δ)x1+δ/2dx<.

    Therefore, for any δ>0, we know that ˆE(|X|2+δ)< implies CV(X2)<.

    Now we present our results, which are stated as follows.

    Theorem 3.1. Let {X,Xn;n1} be a sequence of independent and identically distributed random variables in (Ω,H,ˆE) with ˆE(X)=ˆE(X)=0, there exists a constant δ>0 such that ˆE(|X|2+δ)<. We assume that ˆE is continuous, then for any b>1/2,

    limε0ε2b+1n=2(ln n)b1/2n3/2CV(|Sn|I(|Sn|εn ln n))=CV(|ξ|2b+2)(b+1)(2b+1), (3.1)

    where  ξN(0,[σ_2,¯σ2]),and ¯σ2=ˆE(X2), σ_2=ˆε(X2).

    Remark 3.1. Under the moment condition with CV(|X|21s) in Theorem 2.2 of Wu and Wang [32], we take s=12b+2, p=1 and g(x)=(lnx)b+1 in Theorem 2.2 of Wu and Wang [32], then for 0p<1s, we have (3.1). However, if b>0, the moment condition of Theorem 3.1 is weaker than that of Theorem 2.2 in Wu and Wang [32].

    For further investigation, Theorem 3.2 further studies the maximum value of partial sums.

    Theorem 3.2. Let Mn=maxkn|Sk|. Under the conditions of Theorem 3.1, we have

    limε0ε2b+1n=2(ln n)b1/2n3/2CV(MnI(Mnεn ln n))=2E|N|2(b+1)(b+1)(2b+1)i=0(1)i(2i+1)2(b+1), (3.2)

    where N is a standard normal random variable.

    Remark 3.2. Theorems 3.1 and 3.2 extend the corresponding results obtained by Fu and Yang[13] from the probability space to sublinear expectation space.

    Note that

    ε2b+1n=2(ln n)b1/2n3/2CV(|Sn|I(|Sn|εn ln n))=ε2b+1n=2(ln n)b1/2nCV(|ξ|I(|ξ|εln n))+ε2b+1n=2(ln n)b1/2n{n1/2CV(|Sn|I(|Sn|εn ln n))=CV(|ξ|I(|ξ|εln n))}:=I1(ε)+I2(ε).

    Hence, in order to establish (3.1), it suffices to prove that

    limε0I1(ε)=CV(|ξ|2b+2)(b+1)(2b+1), (4.1)

    and

    limε0I2(ε)=0. (4.2)

    We first prove (4.1). For any b>1/2, then

    limε0I1(ε)=limε0ε2b+1n=2(ln n)b1/2n0V(|ξ|I(|ξ|εln n)>x)dx=limε0ε2b+1n=2(ln n)b1/2nεln nV(|ξ|x)dx=limε0ε2b+12(ln y)b1/2ydyεln yV(|ξ|x)dx=2limε0εln 2t2bdttV(|ξ|x)dx(t=εln y)=2limε0εln 2V(|ξ|x)dxxεln 2t2bdt=22b+1limε0εln 2V(|ξ|x)(x2b+1(εln 2)2b+1)dx=22b+10x2b+1V(|ξ|x)dx22b+1limε0(εln 2)2b+1εln 2V(|ξ|x)dx=CV(|ξ|2b+2)(b+1)(2b+1).

    Next, we prove (4.2). Without loss of generality, here and later, we assume that ˆE(X2)=1. Let b(M,ε)=exp(M/ε2), M>6. Note that

    |I2(ε)|ε2b+1nb(M,ε)(ln n)b1/2n|n1/2CV(|Sn|I(|Sn|εn ln n))CV(|ξ|I(|ξ|εln n))|+ε2b+1n>b(M,ε)(ln n)b1/2n3/2CV(|Sn|I(|Sn|εn ln n))+ε2b+1n>b(M,ε)(ln n)b1/2nCV(|ξ|I(|ξ|εln n)):=I21(ε)+I22(ε)+I23(ε). (4.3)

    Hence, in order to establish (4.2), it suffices to prove that

    limε0I21(ε)=0, (4.4)

    and

    limMI22(ε)=0,limMI23(ε)=0, (4.5)

    uniformly for 0<ε<1/4.

    We first prove (4.4). Let Γn=(ln n)1/2Δ1/2n and Δn=supx0|V(|Sn|xn)V(|ξ|x)|. It follows from Lemma 4 in Wu[14] that ˆEξ2<, by (2.7) in Lemma 2.3 and (2.4) in Lemma 2.2, Markov's inequality, we get

    I21(ε)=ε2b+1nb(M,ε)(ln n)b1/2n|n120V(|Sn|x+εn ln n)dx0V(|ξ|x+εln n)dx|ε2b+1nb(M,ε)(ln n)bn0|V(|Sn|(x+ε)n ln n)V(|ξ|(x+ε)ln n)|dxε2b+1nb(M,ε)(ln n)bnΓn0|V(|Sn|(x+ε)n ln n)V(|ξ|(x+ε)ln n)|dx+ε2b+1nb(M,ε)(ln n)bnΓn(V(|Sn|(x+ε)n ln n)+V(|ξ|(x+ε)ln n))dxε2b+1nb(M,ε)(ln n)b1/2Δ1/2nn+ε2b+1nb(M,ε)(ln n)bnΓn(nˆEX2(x+ε)2n ln n+ˆEξ2(x+ε)2ln n)dxε2b+1nb(M,ε)(ln n)b1/2Δ1/2nn+ε2b+1nb(M,ε)(ln n)b1nΓn1(x+ε)2dxε2b+1nb(M,ε)(ln n)b1/2Δ1/2nn.

    By

    nb(M,ε)((ln n)b1/2/n)=O(ln(b(M,ε)))b+1/2=O(ε2b1),ε0,

    using Lemma 2.3, Δn0 as n, and combining with Toeplitz's lemma: If xnx,ωi0, and ni=1ωi, then (ni=1ωixi/ni=1ωi)x, we obtain

    I21(ε)ε2b+1nb(M,ε)(ln n)b1/2Δ1/2nn=nb(M,ε)((ln n)b1/2Δ1/2n/n)ε2b1nb(M,ε)((ln n)b1/2Δ1/2n/n)nb(M,ε)((ln n)b1/2/n)0,ε0. (4.6)

    That is, (4.4) is established.

    Next, we prove (4.5). For 0<μ<1, let φ(x)Cl,Lip(R) be an even and nondecreasing function on x0 such that 0φ(x)1 for all x and φ(x)=0 if |x|μ, φ(x)=1 if |x|1. Hence,

    I(|x|1)φ(x)I(|x|μ). (4.7)

    Therefore, by (2.2), (4.7) and the identical distribution of X,Xi, for any x>0,

    V(|Xi|x)ˆE(φ(Xix))=ˆE(φ(Xx))V(|X|μx). (4.8)

    By (4.8) and taking x=εn ln n and y=εn ln n/(2+b) in (2.3) of Lemma 2.1, for n>b(M,ε)>exp(6/ε2), we get

    V(maxknSkεn ln n)ni=1V(|Xi|εn ln n2+b)+exp{(2+b)(2+b)ln(1+ε2ln n2+b)}nV(|X|cεn ln n)+1ε2(2+b)(ln n)(2+b).

    Since {X,Xi} also satisfies the conditions of Theorem 3.1, we replace the {X,Xi} with the {X,Xi} in the upper form:

    V(maxkn(Sk)εn ln n)nV(|X|cεn ln n)+1ε2(2+b)(ln n)(2+b).

    Therefore,

    V(maxkn|Sk|εn ln n)V(maxknSkεn ln n)+V(maxkn(Sk)εn ln n)nV(|X|cεn ln n)+1ε2(2+b)(ln n)(2+b).

    More generally, for any x>0 and n>exp(M/ε2), we have

    V(maxkn|Sk|(x+ε)n ln n)nV(|X|c(x+ε)n ln n)+1(x+ε)2(2+b)(ln n)(2+b):=II1(ε)+II2(ε). (4.9)

    Combining with (4.9), we get

    I22(ε)=ε2b+1n>b(M,ε)(ln n)b1/2n3/20V(|Sn|x+εn ln n)dxε2b+1n>b(M,ε)(ln n)b1/2n3/20V(maxkn|Sk|x+εn ln n)dx=ε2b+1n>b(M,ε)(ln n)bn0V(maxkn|Sk|(x+ε)n ln n)dxε2b+1n>b(M,ε)(ln n)bn0(II1(ε)+II2(ε))dx=ε2b+1n>b(M,ε)(ln n)bn0nV(|X|c(x+ε)n ln n)dx+ε2b+1n>b(M,ε)(ln n)bn01(x+ε)2(2+b)(ln n)(2+b)dx:=II11(ε)+II22(ε). (4.10)

    By the Markov's inequality, and ˆE(|X|2+δ)<, we assume that ε2<1/16, then

    II11(ε)ε2b+1n>b(M,ε)(ln n)bn0nˆE|X|2+δ(x+ε)2+δ(n ln n)1+δ/2dxε2b+1n>b(M,ε)(ln n)b1δ/2n1+δ/201(x+ε)2+δdxε2b+1n>b(M,ε)(ln n)b1δ/2n1+δ/2  ε1δε2bδ(ln (b(M,ε)))b1δ/2(b(M,ε))1δ/2+1=ε2bδ(Mε2)b1δ/2(eMε2)δ/2=ε2Mb1δ/21eMδ/2ε2Mb1δ/21e8Mδ0,M, (4.11)

    uniformly for 0<ε<1/4.

    Since,

    II22(ε)=ε2b+1n>b(M,ε)1n (ln n)201(x+ε)2(2+b)dxε2b+1n>b(M,ε)1n (ln n)2  ε32bε2b(M,ε)1x(ln x)2dxε2(ln (b(M,ε)))1=ε2(Mε2)1=M10,M. (4.12)

    Therefore, combining with (4.10)–(4.12), we obtain

    limMI22(ε)=0, (4.13)

    uniformly for 0<ε<1/4.

    Finally, it follows from Lemma 4 in Wu[14] that ˆE|ξ|p<, by Markov's inequality, for p>2b+2, we have

    I23(ε)=ε2b+1n>b(M,ε)(ln n)b1/2n0V(|ξ|x+εln n)dx=ε2b+1n>b(M,ε)(ln n)bn0V(|ξ|(x+ε)ln n)dxε2b+1n>b(M,ε)(ln n)bn0ˆE|ξ|p(x+ε)p(ln n)p/2dxε2b+1n>b(M,ε)(ln n)bp/2n01(x+ε)pdxε2b+1n>b(M,ε)(ln n)bp/2nεp+1ε2b+2pb(M,ε)(ln x)bp/2xdxε2b+2p(ln (b(M,ε)))b+1p/2=ε2b+2p(Mε2)b+1p/2=Mb+1p/20,M,

    uniformly for 0<ε<1/4.

    From this, combining with (4.6) and (4.13), (4.2) is established. This completes the proof of Theorem 3.1.

    Note that

    ε2b+1n=2(ln n)b1/2n3/2CV(MnI(Mnεn ln n))=ε2b+1n=2(ln n)b1/2nCV(max0t1|W(t)|I(max0t1|W(t)|εln n))+ε2b+1n=2(ln n)b1/2n{n1/2CV(MnI(Mnεn ln n))=CV(max0t1|W(t)|I(max0t1|W(t)|εln n))}:=H1(ε)+H2(ε).

    Hence, in order to establish (3.2), it suffices to prove that

    limε0H1(ε)=2E|N|2(b+1)(b+1)(2b+1)i=0(1)i(2i+1)2(b+1), (4.14)

    and

    limε0H2(ε)=0. (4.15)

    We first prove (4.14). Combining with (2.9) in Lemma 2.4, for any b>1/2, we get

    limε0H1(ε)=limε0ε2b+1n=2(ln n)b1/2nεln nV(max0t1|W(t)|x)dx=limε0ε2b+12(ln y)b1/2ydyεln yV(max0t1|W(t)|x)dx=4limε0εln 2u2bduuG(x)dx(u=εln y)=4i=0(1)ilimε0εln 2u2bduuP(|N|(2i+1)x)dx=4i=0(1)ilimε0εln 2P(|N|(2i+1)x)dxxεln 2u2bdu=4(2b+1)i=0(1)ilimε0εln 2P(|N|(2i+1)x)(x2b+1(εln 2)2b+1)dx=4(2b+1)i=0(1)i0x2b+1P(|N|(2i+1)x)dx4(2b+1)i=0(1)ilimε0(εln 2)2b+1εln 2P(|N|(2i+1)x)dx=2E|N|2(b+1)(b+1)(2b+1)i=0(1)i(2i+1)2(b+1).

    Next, we prove (4.15). Note that

    |H2(ε)|ε2b+1nb(M,ε)(ln n)b1/2n|n1/2CV(MnI(Mnεn ln n))=CV(max0t1|W(t)|I(max0t1|W(t)|εln n))|+ε2b+1n>b(M,ε)(ln n)b1/2n3/2CV(MnI(Mnεn ln n))+ε2b+1n>b(M,ε)(ln n)b1/2nCV(max0t1|W(t)|I(max0t1|W(t)|εln n)):=H21(ε)+H22(ε)+H23(ε).

    Hence, in order to establish (4.15), it suffices to prove that

    limε0H21(ε)=0, (4.16)

    and

    limMH22(ε)=0,limMH23(ε)=0, (4.17)

    uniformly for 0<ε<1/4.

    Now, we prove (4.16). Note that

    H21(ε)=ε2b+1nb(M,ε)(ln n)b1/2n|n120V(Mnx+εn ln n)dx=0V(max0t1|W(t)|x+εln n)dx|ε2b+1nb(M,ε)(ln n)bn0|V(Mn(x+ε)n ln n)V(max0t1|W(t)|(x+ε)ln n)|dx=ε2b+1nb(M,ε)(ln n)bnθn0|V(Mn(x+ε)n ln n)V(max0t1|W(t)|(x+ε)ln n)|dx+ε2b+1nb(M,ε)(ln n)bnθn|V(Mn(x+ε)nln n)V(max0t1|W(t)|(x+ε)ln n)|dx:=J1(ε)+J2(ε).

    Let θn=(ln n)1/2l1/2n and ln=supx0|V(Mnxn)V(max0t1|W(t)|x)|. Similarly to the proof of I21, it follows from (2.9) of Lemma 2.4 that ln0 as n, then

    J1(ε)=ε2b+1nb(M,ε)(ln n)bnθn0ln dxε2b+1nb(M,ε)(ln n)b1/2nl1/2n. (4.18)

    Since,

    J2(ε)ε2b+1nb(M,ε)(ln n)bnθnV(Mn(x+ε)n ln n)dx+ε2b+1nb(M,ε)(ln n)bnθnV(max0t1|W(t)|(x+ε)ln n)dx:=J21(ε)+J22(ε). (4.19)

    For J21(ε), is similar considerations to (4.9)–(4.13), we obtain

    J21(ε)=ε2b+1nb(M,ε)(ln n)bnθnV(maxkn|Sk|(x+ε)n ln n)dxε2b+1nb(M,ε)(ln n)bnθnnV(|X|c(x+ε)n ln n)dx+ε2b+1nb(M,ε)(ln n)bnθn1(x+ε)2(2+b)(ln n)(2+b)dxε2b+1nb(M,ε)(ln n)b1δ/2n1+δ/2θn1(x+ε)2+δdx+ε2b+1nb(M,ε)1n(ln n)2θn1(x+ε)2(2+b)dxε2b+1nb(M,ε)(ln n)b1δ/2n1+δ/2((ln n)1/2l1/2n)1δ+ε2b+1nb(M,ε)1n(ln n)2((ln n)1/2l1/2n)32bε2b+1nb(M,ε)(ln n)b1/2n1+δ/2l1/2+δ/2n+ε2b+1nb(M,ε)(ln n)b1/2nl3/2+bnε2b+1nb(M,ε)(ln n)b1/2nl1/2n. (4.20)

    Combining with (2.9) in Lemma 2.4, and Markov's inequality, we get

    J22(ε)=2ε2b+1nb(M,ε)(ln n)bnθnG((x+ε)ln n)dx2ε2b+1nb(M,ε)(ln n)bn|i=0(1)iθnP(|N|(2i+1)(x+ε)ln n)dx|2ε2b+1nb(M,ε)(ln n)bn|i=0(1)i(2i+1)2θnE|N|2(x+ε)2ln ndx|ε2b+1nb(M,ε)(ln n)b1nθn1(x+ε)2dxε2b+1nb(M,ε)(ln n)b1/2nl1/2n. (4.21)

    For the results of (4.18)–(4.21), are similar considerations to (4.6). Combining with Toeplitz's lemma, we get that

    H21(ε)J1(ε)+J21(ε)+J22(ε)ε2b+1nb(M,ε)(ln n)b1/2l1/2nnnb(M,ε)((ln n)b1/2l1/2n/n)nb(M,ε)((ln n)b1/2/n)0,ε0. (4.22)

    That is, (4.16) is established.

    Next, we prove (4.17). Since the proof for H22(ε) is the same as the proof for I22(ε), by (4.9)–(4.13), we get

    limMH22(ε)=0, (4.23)

    uniformly for 0<ε<1/4.

    Finally, combining with (2.9) in Lemma 2.4, Markov's inequality and E|N|β<, for β>2b+2, we obtain

    H23=ε2b+1n>b(M,ε)(ln n)b1/2n0V(max0t1|W(t)|x+εln n)dx=2ε2b+1n>b(M,ε)(ln n)bn0G((x+ε)ln n)dxε2b+1|i=0(1)in>b(M,ε)(ln n)bn0P(|N|(2i+1)(x+ε)ln n)dx|ε2b+1|i=0(1)in>b(M,ε)(ln n)bn0E|N|β(2i+1)β(x+ε)β(ln n)β/2dx|ε2b+1|i=0(1)i(2i+1)βn>b(M,ε)(ln n)bβ/2n01(x+ε)βdx|ε2b+2βb(M,ε)(ln y)bβ/2ydyε2b+2β(ln (b(M,ε)))bβ/2+1=ε2b+2β(Mε2)bβ/2+1=Mb+1β/20,M,

    uniformly for 0<ε<1/4.

    From this, combining with (4.22) and (4.23), (4.15) is established. This completes the proof of Theorem 3.2.

    The aim of this study is to research the precise asymptotics of independent identically distributed random variables for complete integral convergence under the sub-linear expectation space. Compared with the traditional probability space, the expectation and capacities of sub-linear expectation space are no longer additive. Moreover, many tools and methods applied to probability space no longer apply to sub-linear expectation space. Therefore, the methods and tools for studying precise asymptotics in this paper are different from those for researching precise asymptotics in probability space. In this paper, our research mainly refers to central limit theorem in (Ω,H,ˆE) by Zhang [31], which provides a powerful tool for our proof process.

    We use central limit theorem in (Ω,H,ˆE) to prove the precise asymptotics of a sequence of independent identically distributed random variables under the sub-linear expectation space. The results of this paper extend the precise asymptotics of complete integral convergence of independent identically distributed random variables in probability space to sub-linear expectation space. In the future research, we will further study the precise asymptotics of a wider range of random variables and explore more precise asymptotics theorems with practical significance.

    This paper was supported by the National Natural Science Foundation of China (12061028).

    In this article, all authors disclaim any conflicts of interest.



    [1] P. L. Hsu, H. Robbins, Complete convergence and the law of large numbers, Proc. Natl. Acad. Sci. USA, 33 (1947), 25–31. https://doi.org/10.1073/pnas.33.2.25 doi: 10.1073/pnas.33.2.25
    [2] C. C. Heyde, A supplement to the strong law of large numbers, J. Appl. Probab., 12 (1975), 173–175. https://doi.org/10.2307/3212424 doi: 10.2307/3212424
    [3] R. Chen, A remark on the tail probability of a distribution, J. Multivariate Anal., 8 (1978), 328–333. https://doi.org/10.1016/0047-259X(78)90084-2 doi: 10.1016/0047-259X(78)90084-2
    [4] A. Spătaru, Precise asymptotics in Spitzer's law of large numbers, J. Theoret. Probab., 12 (1999), 811–819. https://doi.org/10.1023/A:1021636117551 doi: 10.1023/A:1021636117551
    [5] A. Gut, A. Spătaru, Precise asymptotics in the Baum–Katz and Davis laws of large numbers, J. Math. Anal. Appl., 248 (2000), 233–246. https://doi.org/10.1006/jmaa.2000.6892 doi: 10.1006/jmaa.2000.6892
    [6] A. Gut, A. Spătaru, Precise asymptotics in the law of the iterated logarithm, Ann. Probab., 28 (2000), 1870–1883. https://doi.org/10.1007/s00574-006-0017-y doi: 10.1007/s00574-006-0017-y
    [7] A. Gut, J. Steinebach, Precise asymptotics–a general approach, Acta Math. Hungar., 138 (2013), 365–385. https://doi.org/10.1007/s10474-012-0236-1 doi: 10.1007/s10474-012-0236-1
    [8] J. He, T. Xie, Asymptotic property for some series of probability, Acta Math. Appl. Sin. Engl. Ser., 29 (2013), 179–186. https://doi.org/10.1007/s10255-012-0138-6 doi: 10.1007/s10255-012-0138-6
    [9] W. Liu, Z. Lin, Precise asymptotics for a new kind of complete moment convergence, Stat. Probab. Lett., 76 (2006), 1787–1799. https://doi.org/10.1016/j.spl.2006.04.027 doi: 10.1016/j.spl.2006.04.027
    [10] Y. Zhao, Precise rates in complete moment convergence for ρ-mixing sequences, J. Math. Anal. Appl., 339 (2008), 553–565. https://doi.org/10.1016/j.jmaa.2007.06.070 doi: 10.1016/j.jmaa.2007.06.070
    [11] Y. Zhang, X. Yang, Z. Dong, A general law of precise asymptotics for the complete moment convergence, Chinese Ann. Math. Ser. B, 30 (2009), 77–90. https://doi.org/10.1007/s11401-007-0309-6 doi: 10.1007/s11401-007-0309-6
    [12] Z. Y. Lin, H. Zhou, Precise asymptotics of complete moment convergence on moving average, Acta Math. Sin. (Engl. Ser.), 28 (2012), 2507–2526. https://doi.org/10.1007/s10114-012-0355-1 doi: 10.1007/s10114-012-0355-1
    [13] K. A. Fu, X. R. Yang, Moment convergence rates in the law of the logarithm for dependent sequences, Pro. Math. Sci., 119 (2009), 387–400. https://doi.org/10.1007/s12044-009-0034-z doi: 10.1007/s12044-009-0034-z
    [14] Q. Y. Wu, Precise asymptotics for complete integral convergence under sublinear expectations, Math. Probl. Eng., 2020 (2020), 1787–1799. https://doi.org/10.1155/2020/3145935 doi: 10.1155/2020/3145935
    [15] X. Ding, A general form for precise asymptotics for complete convergence under sublinear expectation, AIMS Math., 7 (2022), 1664–1677. https://doi.org/10.3934/math.2022096 doi: 10.3934/math.2022096
    [16] S. G. Peng, G-expectation, G-Brownian motion and related stochastic calculus of Itô type, In: F. E. Benth, G. Di Nunno, T. Lindstrøm, B. Øksendal, T. Zhang, Stochastic analysis and applications, Springer, 2 (2007), 541–567. http://dx.doi.org/10.1007/978-3-540-70847-6_25
    [17] S. G. Peng, Multi-dimensional G-Brownian motion and related stochastic calculus under G-expectation, Stoch. Proc. Appl., 118 (2008), 2223–2253. https://doi.org/10.1016/j.spa.2007.10.015 doi: 10.1016/j.spa.2007.10.015
    [18] X. Fang, S. Peng, Q. M. Shao, Limit theorems with rate of convergence under sublinear expectations, Bernoulli, 25 (2019), 2564–2596. https://doi.org/10.3150/18-BEJ1063 doi: 10.3150/18-BEJ1063
    [19] D. F. Zhang, Z. J. Chen, A weighted central limit theorem under sublinear expectations, Commun. Stat.-Theor. M., 43 (2014), 566–577. https://doi.org/10.1080/03610926.2012.665557 doi: 10.1080/03610926.2012.665557
    [20] X. P. Li, A central limit theorem for m-dependent random variables under sublinear expectations, Acta Math. Appl. Sin. Engl. Ser., 31 (2015), 435–444. https://doi.org/10.1007/s10255-015-0477-1 doi: 10.1007/s10255-015-0477-1
    [21] S. Guo, Y. Zhang, Central limit theorem for linear processes generated by m-dependent random variables under the sub-linear expectation, Commun. Stat-Theor. M., 2022, 1–13. https://doi.org/10.1080/03610926.2022.2028840
    [22] Z. J. Chen, Strong laws of large numbers for sub-linear expectations, Sci. China Math., 59 (2016), 945–954. https://doi.org/10.1007/s11425-015-5095-0 doi: 10.1007/s11425-015-5095-0
    [23] Q. Y. Wu, Y. Y. Jiang, Strong law of large numbers and Chover's law of the iterated logarithm under sub-linear expectations, J. Math. Anal. Appl., 460 (2018), 252–270. https://doi.org/10.1016/j.jmaa.2017.11.053 doi: 10.1016/j.jmaa.2017.11.053
    [24] B. Yang, H. Xiao, Law of large numbers under the nonlinear expectation, Proc. Amer. Math. Soc., 139 (2011), 3753–3762. https://doi.org/10.1090/S0002-9939-2011-10814-1 doi: 10.1090/S0002-9939-2011-10814-1
    [25] Z. T. Zhan, Q. Y. Wu, Strong laws of large numbers for weighted sums of extended negatively dependent random variables under sub-linear expectations, Commun. Stat.-Theor. M., 51 (2022), 1197–1216. https://doi.org/10.1080/03610926.2021.1873380 doi: 10.1080/03610926.2021.1873380
    [26] X. C. Ma, Q. Y. Wu, On some conditions for strong law of large numbers for weighted sums of END random variables under sublinear expectations, Discrete. Dyn. Nat. Soc., 2019 (2019), 7945431. https://doi.org/10.1155/2019/7945431 doi: 10.1155/2019/7945431
    [27] Z. J. Chen, Q. Y. Liu, G. F. Zong, Weak laws of large numbers for sublinear expectation, Math. Control. Relat. F., 8 (2018), 637–651. https://doi.org/10.3934/mcrf.2018027 doi: 10.3934/mcrf.2018027
    [28] C. Hu, Weak and strong laws of large numbers for sub-linear expectation, Commun. Stat.-Theor. M., 49 (2020), 430–440. https://doi.org/10.1080/03610926.2018.1543771 doi: 10.1080/03610926.2018.1543771
    [29] C. Hu, Marcinkiewicz-Zygmund laws of large numbers under sublinear expectation, Math. Probl. Eng., 2020 (2020), 5050973. https://doi.org/10.1155/2020/5050973 doi: 10.1155/2020/5050973
    [30] L. X. Zhang, Exponential inequalities under the sub-linear expectations with applications to laws of the iterated logarithm, Sci. China Math., 59 (2016), 2503–2526. https://doi.org/10.1007/s11425-016-0079-1 doi: 10.1007/s11425-016-0079-1
    [31] L. X. Zhang, Heyde's theorem under the sub-linear expectations, Stat. Probab. Lett., 170 (2021), 108987. https://doi.org/10.1016/j.spl.2020.108987 doi: 10.1016/j.spl.2020.108987
    [32] Y. Wu, X. J. Wang, General results on precise asymptotics under sub-linear expectations, J. Math. Anal. Appl., 511 (2022), 126090. https://doi.org/10.1016/j.jmaa.2022.126090 doi: 10.1016/j.jmaa.2022.126090
    [33] J. Blessing, M. Kupper, Nonlinear semigroups and limit theorems for convex expectations, arXiv, 2022. https://doi.org/10.48550/arXiv.2210.14096
    [34] R. Denk, M. Kupper, M. Nendel, Kolmogorov-type and general extension results for nonlinear expectations, Banach J. Math. Anal., 12 (2018), 515–540. https://doi.org/10.1215/17358787-2017-0024 doi: 10.1215/17358787-2017-0024
    [35] S. G. Peng, A new central limit theorem under sublinear expectations, arXiv, 2008. https://doi.org/10.48550/arXiv.0803.2656
    [36] N. El Karoui, S. G. Peng, M. C. Quenez, Backward stochastic differential equation in finance, Math. Finance, 7 (1997), 1–71. https://doi.org/10.1111/1467-9965.00022 doi: 10.1111/1467-9965.00022
    [37] S. G. Peng, Monotonic limit theorem of BSDE and nonlinear decomposition theorem of Doob-Meyer type, Probab. Theory Relat. Fields, 113 (1999), 473–499. https://doi.org/10.1007/s004400050214 doi: 10.1007/s004400050214
    [38] Z. J. Chen, L. Epstein, Ambiguity, risk and asset returns in continuous time, Econometrica, 70 (2002), 1403–1443. https://doi.org/10.1111/1468-0262.00337 doi: 10.1111/1468-0262.00337
    [39] M. Marinacci, Limit laws for non-additive probabilities and their frequentist interpretation, J. Econ. Theory, 84 (1999), 145–195. https://doi.org/10.1006/jeth.1998.2479 doi: 10.1006/jeth.1998.2479
    [40] M. M. Xi, Y. Wu, X. J. Wang, Complete convergence for arrays of rowwise END random variables and its statistical applications under sub-linear expectations, J. Korean Stat. Soc., 48 (2019), 412–425. https://doi.org/10.1016/j.jkss.2018.12.002 doi: 10.1016/j.jkss.2018.12.002
    [41] L. Denis, C. Martini, A theoretical framework for the pricing of contingent claims in the presence of model uncertainty, Ann. Appl. Probab., 16 (2006), 827–852.
    [42] Z. J. Chen, L. Epstein, Expected utility theory with purely subjective non-additive probabilities, J. Math. Econ., 16 (1987), 65–88. https://doi.org/10.1016/0304-4068(87)90022-X doi: 10.1016/0304-4068(87)90022-X
    [43] S. G. Peng, Nonlinear expectations and stochastic calculus under uncertainty, arXiv, 2010. https://doi.org/10.48550/arXiv.1002.4546
    [44] L. X. Zhang, The convergence of the sums of independent random variables under the sub-linear expectations, Acta Math. Sin. (Engl. Ser.), 36 (2020), 224–244. https://doi.org/10.1007/s10114-020-8508-0 doi: 10.1007/s10114-020-8508-0
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1549) PDF downloads(68) Cited by(0)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog