In this paper, we establish the complete convergence and complete integral convergence of partial sums for moving average process based on independent random variables under the sub-linear expectations. The results in the paper extend some convergence properties of moving average process under independent assumption from probability space to the sub-linear expectation space.
Citation: Xiaocong Chen, Qunying Wu. Complete convergence and complete integral convergence of partial sums for moving average process under sub-linear expectations[J]. AIMS Mathematics, 2022, 7(6): 9694-9715. doi: 10.3934/math.2022540
[1] | Mingzhou Xu . Complete convergence of moving average processes produced by negatively dependent random variables under sub-linear expectations. AIMS Mathematics, 2023, 8(7): 17067-17080. doi: 10.3934/math.2023871 |
[2] | Mingzhou Xu . On the complete moment convergence of moving average processes generated by negatively dependent random variables under sub-linear expectations. AIMS Mathematics, 2024, 9(2): 3369-3385. doi: 10.3934/math.2024165 |
[3] | Chengcheng Jia, Qunying Wu . Complete convergence and complete integral convergence for weighted sums of widely acceptable random variables under the sub-linear expectations. AIMS Mathematics, 2022, 7(5): 8430-8448. doi: 10.3934/math.2022470 |
[4] | Lunyi Liu, Qunying Wu . Complete integral convergence for weighted sums of negatively dependent random variables under sub-linear expectations. AIMS Mathematics, 2023, 8(9): 22319-22337. doi: 10.3934/math.20231138 |
[5] | He Dong, Xili Tan, Yong Zhang . Complete convergence and complete integration convergence for weighted sums of arrays of rowwise m-END under sub-linear expectations space. AIMS Mathematics, 2023, 8(3): 6705-6724. doi: 10.3934/math.2023340 |
[6] | Mingzhou Xu, Xuhang Kong . Note on complete convergence and complete moment convergence for negatively dependent random variables under sub-linear expectations. AIMS Mathematics, 2023, 8(4): 8504-8521. doi: 10.3934/math.2023428 |
[7] | Shuyan Li, Qunying Wu . Complete integration convergence for arrays of rowwise extended negatively dependent random variables under the sub-linear expectations. AIMS Mathematics, 2021, 6(11): 12166-12181. doi: 10.3934/math.2021706 |
[8] | Mingzhou Xu, Kun Cheng, Wangke Yu . Complete convergence for weighted sums of negatively dependent random variables under sub-linear expectations. AIMS Mathematics, 2022, 7(11): 19998-20019. doi: 10.3934/math.20221094 |
[9] | Mingzhou Xu . Complete convergence and complete moment convergence for maximal weighted sums of extended negatively dependent random variables under sub-linear expectations. AIMS Mathematics, 2023, 8(8): 19442-19460. doi: 10.3934/math.2023992 |
[10] | Lizhen Huang, Qunying Wu . Precise asymptotics for complete integral convergence in the law of the logarithm under the sub-linear expectations. AIMS Mathematics, 2023, 8(4): 8964-8984. doi: 10.3934/math.2023449 |
In this paper, we establish the complete convergence and complete integral convergence of partial sums for moving average process based on independent random variables under the sub-linear expectations. The results in the paper extend some convergence properties of moving average process under independent assumption from probability space to the sub-linear expectation space.
Limit theory is one of the important branches of probability theory. In recent years, the limitation of classical limit theory which only applies to some deterministic models has been gradually highlighted. In order to explain the uncertain phenomena in practical problems and to solve nonlinear probability and distribution problems, many scholars began to study limit theory under sub-linear expectation. Peng[1,2,3] was the first scholar to put forward the definition of sub-linear expectation space, and he also constructed the relevant theoretical system. Sub-linear expectation space provides a more flexible framework for solving sub-linear probability problems. On the basis of Peng's research, Zhang[4,5,6] obtained a series of important conclusions such as strong law of large numbers, exponential inequality, Rosenthal's inequality and so on under sub-linear expectations, which laid a foundation for the limit theory research in sub-linear expectation space.
Complete convergence and complete moment convergence are two important parts of probability limit theory. The concept of complete convergence was first proposed by Hsu[7]. As a more general form of convergence, complete moment convergence was put forward later than complete convergence. Chow[8] first proposed complete γ-order moment convergence. In probability space, the study of complete convergence and complete moment convergence becomes mature relatively. Sung[9] proved the complete convergence for arrays of rowwise independent random, Wu[10,11] obtained the complete convergence theorem of negatively dependent sequences and arrays of rowwise negatively dependent random variables respectively, Bao et al.[12] expanded the range of random variables and established the complete convergence of weighted sums of arrays of rowwise END random variables and so on. Complete integral convergence in sub-linear expectation space corresponds to complete moment convergence in probability space. In recent ten years, the results of complete convergence and complete integral convergence in sub-linear expectations are increasingly abundant, such as Deng and Wang[13], Li and Wu[14] obtained complete convergence and complete integral convergence for extended independent random variables respectively, Lu et al.[15] proved complete f-moment convergence for END variables, Zhong and Wu[16] extended the complete integral convergence of weighted sum of END random variables, Xu and Cheng[17] got convergence theorems for sum of i.i.d random variables, Ding[18] obtained a general form of precise asymptotics for complete convergence, and Zhang[19] discussed sufficient and necessary conditions for convergence of independent random variables, he also obtained the Lévy and Kolmogorov maximum inequalities under sub-linear expectations.
There are a lot of conclusions about convergence properties of moving average process after the notion of it was defined. For the study on limit theory of moving average process in classical probability space, Ibragimov[20] first established the central limit theorem in 1962, and then Burton and Dehling[21] obtained the large deviation theorem. Subsequently, Li et al.[22] proved that the result of complete convergence of moving average process. Zhang[23] studied the complete convergence of moving average process under dependent conditions. With the attention of scholars in this field, many research results have been obtained. For example, Yang et al.[24] proved complete convergence of moving average process based on AANA sequence, Yang and Hu[25] obtained complete moment convergence of moving average process generated by PNQD random variables, Qiu and Chen[26] investigated convergence of moving average process under END assumptions, and so on. Recently, Tao et al. [27] studied complete convergence of moving average process generated by WOD random variable sequence, Song and Zhu[28] studied complete convergence and complete moment convergence of the maximum partial sum of moving average process based on ρ−-mixing random variable sequence. Based on the above study, there are some research results on linear process in sub-linear expectation space. For example, Liu and Zhang[29,30,31] got the central limit theorem for linear processes generated by IID random variables, and investigated the law of the iterated logarithm and large deviation principle for linear process based on stationary independent random variables.
In this paper, we aim to extend some convergence properties of Song and Zhu[28] from probability space to sub-linear space and get corresponding results.
We use the framework and notations of Peng[1,2,3]. Let (Ω,F) be a given measurable space and let H be a linear space of real functions defined on (Ω,F) such that if X1,X2,…,Xn∈H then φ(X1,…,Xn)∈H for each φ∈Cl,Lip(Rn), where Cl,Lip(Rn) denotes the linear space of (local Lipschitz) functions φ satisfying
|φ(x)−φ(y)|≤c(1+|x|m+|y|m)|x−y|, ∀ x,y∈Rn, |
for some c>0, m∈N depending on φ. H is considered as a space of random variables. In this case we denote X∈H.
Definition 2.1. A sub-linear expectation ˆE on H is a function ˆE:H→ˉR satisfying the following properties: For all X,Y∈H, we have
(1) Monotonicity: If X≥Y then ˆEX≥ˆEY;
(2) Constant preserving: ˆEc=c;
(3) Sub-additivity: ˆE(X+Y)≤ˆEX+ˆEY; whenever ˆEX+ˆEY is not of the form +∞−∞ or −∞+∞;
(4) Positive homogeneity: ˆE(λX)=λˆEX,λ≥0.
Here ˉR=[−∞,∞]. The triple (Ω,H,ˆE) is called a sub-linear expectation space.
Given a sub-linear expectation ˆE, let us denote the conjugate expectation ˆε of ˆE by
ˆεX:=−ˆE(−X), ∀X∈H. |
From the definition, it is easily shown that for all X,Y∈H,
ˆεX≤ˆEX, ˆE(X+c)=ˆEX+c,|ˆE(X−Y)|≤ˆE|X−Y|andˆE(X−Y)≥ˆEX−ˆEY. |
If ˆEY=ˆεY, then ˆE(X+aY)=ˆEX+aˆEY for any a∈R. Next, we consider the capacities corresponding to the sub-linear expectations. Let G⊂F. A function V:G→[0,1] is called a capacity if
V(∅)=0, V(Ω)=1 and V(A)≤V(B) for ∀A⊆B,A,B∈G. |
It is called sub-additive if V(A∪B)≤V(A)+V(B) for all A,B∈G with A∪B∈G. In the sub-linear space (Ω,H,ˆE), we denote a pair (V,V) of capacities by
V(A):=inf{ˆEξ;I(A)≤ξ,ξ∈H}, V(A):=1−V(Ac), ∀A∈F, |
where Ac is the complement set of A. By definition of V and V, it is obvious that V is sub-additive, and
V≤V, ∀A∈F. |
If I(A)∈H, then V(A)=ˆE(I(A)),V(A)=ˆε(I(A)).
If f≤I(A)≤g,f,g∈H, then ˆEf≤V(A)≤ˆEg,ˆεf≤V(A)≤ˆεg.
Definition 2.2. We define the Choquet integrals/expecations (CV,CV) by
CV=∫∞0V(X≥t)dt+∫0−∞[V(X≥t)−1]dt, |
with V being replaced by V and V respectively.
Definition 2.3. In a sub-linear expectation space (Ω,H,ˆE), a random vector Y=(Y1,…,Yn),Yi∈H is said to be independent to another random vector X=(X1,…,Xm),Xi∈H under ˆE if
ˆE[φ(X,Y)]=ˆE[ˆE[φ(x,Y)]|x=X],∀φ∈Cl, Lip (Rm×Rn), |
whenever ˉφ(x):=ˆE[|φ(x,Y)|]<∞ for all x and ˆE[|ˉφ(X)|]<∞.
Next, we introduce a definition that extends the concept of stationary sequence to sub-linear expectation spaces.
Definition 2.4. {Yn,n∈N} is said to be a sequence of stationary random variables on the (Ω,H,ˆE), if for any a function ϕn∈Cl,Lip(Rn):Rn→R, then
ˆE[ϕn(Y1,Y2,…,Yn)]=ˆE[ϕn(Y1+k,Y2+k,…,Yn+k)],∀n≥1,k∈N |
Definition 2.5. In a sub-linear expectation space (Ω,H,ˆE), a sequence of random variables {Xn,n⩾ is said to be stochastically dominated by a random variable X if there exists a positive constant c such that
\begin{equation*} \hat{\mathbb{E}}\left(f\left(\left|X_{n}\right|\right)\right) \leqslant c \hat{\mathbb{E}}(f(|X|)), \forall 0 \leqslant f \in C_{l, \text{Lip}}(\mathbb{R}). \end{equation*} |
Definition 2.6. (i) A sub-linear expectation \hat{\mathbb{E}}: \mathcal{H} \rightarrow \mathbb{R} is called to be countably sub-additive if
\begin{equation*} \hat{\mathbb{E}}(X)\leq \sum\limits_{n = 1}^{\infty} \hat{\mathbb{E}}\left(X_{n}\right),\quad \text { where } \quad X \leq \sum\limits_{n = 1}^{\infty} X_{n}, \quad X, X_{n} \in \mathcal{H}, \quad X \geq 0, X_{n} \geq 0, \quad n \geq 1.\\ \end{equation*} |
(ii) A function V: \mathcal{F} \rightarrow [0, 1] is called to be countably sub-additive if
\begin{equation*} {V}\left\{\bigcup\limits_{n = 1}^{\infty} A_{n}\right\} \leq \sum\limits_{n = 1}^{\infty} {V}\left(A_{n}\right), \quad \forall A_{n} \in \mathcal{F}. \end{equation*} |
In this paper, the symbol c stands for a generic positive constant which may differ from one place to another. Let a_{n} \ll b_{n} denote that there exists a constant c > 0 such that a_{n} \leq c b_{n} for sufficiently large n , and I(\cdot) denote an indicator function.
To prove our results, we need the following lemmas.
Lemma 2.1. (Zhang [6])(i) Markov inequality: \forall X \in \mathcal{H},
\begin{align*} \mathbb{V}(|X| \geq x) \leq \frac{\hat{\mathbb{E}}(|X|^{p})}{x^{p}},\ \forall x > 0,p > 0, \end{align*} |
(ii) H {\rm \ddot{o}} lder inequality: \forall X, Y \in \mathcal{H}, p, q > 1 satisfying p^{-1}+q^{-1} = 1 ,
\begin{align*} \hat{\mathbb{E}}(|X Y|) \leq\left(\hat{\mathbb{E}}\left(|X|^{p}\right)\right)^{1 / p}\left(\hat{\mathbb{E}}\left(|Y|^{q}\right)\right)^{1 / q}. \end{align*} |
Lemma 2.2. (Zhong and Wu [16])Suppose X \in \mathcal{H}, p > 0, \alpha > 0 , and l(x) is a slowly varying function.
(i) Then for any c > 0 ,
\begin{equation} \ C_{\mathbb{V}}\left[|X|^{\alpha p} l\left(|X|^{p}\right)\right] < \infty \Leftrightarrow \sum\limits_{n = 1}^{\infty} n^{\alpha-1} l(n) \mathbb{V}\left(|X| > c n^{1/p}\right) < \infty, \\\nonumber\\ \end{equation} |
taking l(x) = 1 and l(x) = \log(1+\left|X\right|) respectively, we can get that \forall c > 0 ,
\begin{align} &C_{\mathbb{V}}\left(|X|^{\alpha p}\right) < \infty \Leftrightarrow \sum\limits_{n = 1}^{\infty} n^{\alpha-1} \mathbb{V}\left(|X| > c n^{1/p}\right) < \infty, \end{align} | (2.1) |
\begin{align} &C_{\mathbb{V}}\left[|X|^{\alpha p} \log\left(1+\left|X\right|\right)\right] < \infty \Leftrightarrow \sum\limits_{n = 1}^{\infty} n^{\alpha-1} \log\left(1+n\right) \mathbb{V}\left(|X| > c n^{1/p}\right) < \infty. \end{align} | (2.2) |
(ii) If C_{\mathbb{V}}\left[|X|^{\alpha p} l\left(|X|^{p}\right)\right] < \infty , then for any \theta > 1 and c > 0 ,
\begin{equation} \ \sum\limits_{k = 1}^{\infty} \theta^{k \alpha} l\left(\theta^{k}\right) \mathbb{V}\left(|X| > c \theta^{k/p}\right) < \infty, \\\nonumber\\ \end{equation} |
taking l(x) = 1 , C_{\mathbb{V}}\left[|X|^{\alpha p} \right] < \infty implies
\begin{align} \sum\limits_{k = 1}^{\infty} \theta^{k \alpha} \mathbb{V}\left(|X| > c \theta^{k/p}\right) < \infty, \end{align} | (2.3) |
and taking l(x) = \log(1+\left|X\right|) , C_{\mathbb{V}}\left[|X|^{\alpha p} \log (1+\left|X\right|^{p})\right] < \infty implies that
\begin{align} \sum\limits_{k = 1}^{\infty} \theta^{k \alpha} \log(1+\theta^{k}) \mathbb{V}\left(|X| > c \theta^{k/p}\right) < \infty. \end{align} | (2.4) |
Lemma 2.3. (Zhang [5])Suppose that X_{k} is independent to \left(X_{k+1}, \ldots, X_{n}\right) for each k = 1, \ldots, n-1 , and \hat{\mathbb{E}} X_{n} \leq 0 for n\geq 1 . Then
\begin{equation} \hat{\mathbb{E}}\left[\left(S_{n}^{+}\right)^{r}\right] \leq C_{r}\left\{\sum\limits_{k = 1}^{n} \hat{\mathbb{E}}\left[\left|X_{k}\right|^{r}\right]+\left(\sum\limits_{k = 1}^{n} \hat{\mathbb{E}}\left[\left|X_{k}\right|^{2}\right]\right)^{r / 2}\right\}, \mathit{\text{for}} r > 2, \end{equation} | (2.5) |
here C_{r} is a positive constant depending only on r .
Lemma 2.4. (Xu and Cheng [17])Let Y be a random variable under sub-linear expectation space (\Omega, \mathcal{H}, \hat{\mathbb{E}}) . Then for any \alpha > 0, \gamma > 0 and \beta < -1 ,
\begin{align*} &\int_{1}^{\infty} u^{\beta} \hat{\mathbb{E}}\left[|Y|^{\alpha} I\left(|Y| \leq u^{\gamma}\right)\right] \text{d} u \leq c C_{\mathbb{V}}\left(|Y|^{(\beta+1) / \gamma+\alpha}\right),\\ &\int_{1}^{\infty} u^{\beta} \log \left(u\right) \hat{\mathbb{E}}\left[|Y|^{\alpha} I\left(|Y| \leq u^{\gamma}\right)\right] \text{d} u \leq c C_{\mathbb{V}}\left(|Y|^{(\beta+1) / \gamma+\alpha} \log (1+|Y|)\right). \end{align*} |
Lemma 2.5. (Zhang [5])If \hat{\mathbb{E}} is countably sub-additive, then for X \in \mathcal{H} ,
\begin{equation} \hat{\mathbb{E}}\left(|X|\right)\leq C_{\mathbb{V}}\left(|X|\right).\\\nonumber\\ \end{equation} |
Theorem 3.1. Let 1\leq p < 2, \alpha > 1 . Assume \left\{a_{i}, -\infty < i < \infty\right\} is an absolutely summable sequence of real numbers. Suppose that \left\{X_{n} = \sum_{i = -\infty}^{\infty} a_{i} Y_{i+n}, n \geq 1\right\} is a moving average process generated by a sequence \left\{Y_{j}, -\infty < j < \infty\right\} of stationary independent random variables which is stochastically dominated by a random variable Y . If \hat{\mathbb{E}} is countably sub-additive, C_{\mathbb{V}}\left(|Y|^{\alpha p}\right) < \infty and \hat{\mathbb{E}}{Y_{j}} = \hat{\varepsilon} Y_{j} = 0 , then for any \varepsilon > 0 ,
\begin{equation} \sum\limits_{n = 1}^{\infty} n^{\alpha-2} \mathbb{V}\left\{\left|S_{n}\right| > \varepsilon n^{1 / p}\right\} < \infty.\\ \end{equation} | (3.1) |
Theorem 3.2. Assume that the conditions of Theorem 3.1 are satisfied. Let r > 0 , and
\begin{align*} \begin{array}{l} \left\{\begin{array}{ll} C_{\mathbb{V}}\left(|Y|^{\alpha p}\right) < \infty, & \mathit{\text{if}}\; r < \alpha p, \\ C_{\mathbb{V}}\left(|Y|^{\alpha p} \log (1+|Y|)\right) < \infty, & \mathit{\text{if}}\; r = \alpha p, \\ C_{\mathbb{V}}\left(|Y|^{r}\right) < \infty, & \mathit{\text{if}}\; r > \alpha p, \end{array}\right. \\ \end{array} \end{align*} |
then for any \varepsilon > 0 ,
\begin{equation} \sum\limits_{n = 1}^{\infty} n^{\alpha-2-r / p} C_{\mathbb{V}}\left\{\left|S_{n}\right|-\varepsilon n^{1 / p}\right\}_{+}^{r} < \infty. \end{equation} | (3.2) |
For fixed n \geq 1 and for -\infty < j < +\infty , denote
\begin{align*} &Y_{j}^{\prime}: = -n^{1/p} I\left(Y_{j} < -n^{1/p}\right)+Y_{j} I\left(\left|Y_{j}\right| \leq n^{1/p}\right)+n^{1/p} I\left(Y_{j} > n^{1/p}\right) ,\\ &Y_{j}^{\prime \prime }: = Y_{j}-Y_{j}^{\prime} = \left(Y_{j}+n^{1/p}\right) I\left(Y_{j} < -n^{1/p}\right)+\left(Y_{j}-n^{1/p}\right) I\left(Y_{j} > n^{1/p}\right). \end{align*} |
Note that
\begin{align*} \sum\limits_{k = 1}^{n} X_{k} = \sum\limits_{k = 1}^{n} \sum\limits_{i = -\infty}^{\infty} a_{i} Y_{i+k} = \sum\limits_{i = -\infty}^{\infty} a_{i} \sum\limits_{j = i+1}^{i+n} Y_{j} = \sum\limits_{i = -\infty}^{\infty} a_{i} \sum\limits_{j = i+1}^{i+n} (Y_{j}^{\prime}+Y_{j}^{\prime \prime }). \end{align*} |
Thus,
\begin{align*} & \sum\limits_{n = 1}^{\infty} n^{\alpha-2} \mathbb{V}\left\{\left|S_{n}\right| > \varepsilon n^{1 / p}\right\} \\ = &\sum\limits_{n = 1}^{\infty} n^{\alpha-2} \mathbb{V}\left(\left|\sum\limits_{i = -\infty}^{\infty} a_{i} \sum\limits_{j = i+1}^{i+n} (Y_{j}^{\prime}+Y_{j}^{\prime\prime})\right| > \varepsilon n^{1/p}\right) \\ \leq &\sum\limits_{n = 1}^{\infty} n^{\alpha-2} \mathbb{V}\left(\left|\sum\limits_{i = -\infty}^{\infty} a_{i} \sum\limits_{j = i+1}^{i+n} Y_{j}^{\prime\prime}\right| > \frac{\varepsilon n^{1/p}}{2} \right)+\sum\limits_{n = 1}^{\infty} n^{\alpha-2}\mathbb{V}\left(\left|\sum\limits_{i = -\infty}^{\infty} a_{i} \sum\limits_{j = i+1}^{i+n} Y_{j}^{\prime }\right| > \frac{\varepsilon n^{1/p}}{2} \right)\\ : = &I_{1}+I_{2}. \end{align*} |
Let 2^{-\frac{1}{\alpha}} < \mu < 1 , g(y)\in C_{l, Lip}(\mathbb{R}) , such that 0 \leq g(y) \leq 1 for all y and g(y) = 1 if |y|\leq \mu , g(y) = 0 if |y| > 1 . And g(y) is a decreasing function for y\geq 0 . Then,
\begin{equation} I(|y| \leq \mu) \leq g(|y|) \leq I(|y| \leq 1), \quad I(|y| > 1) \leq 1-g(|y|) \leq I(|y| > \mu). \end{equation} | (4.1) |
Let g_{j}(y) \in C_{l, Lip}(\mathbb{R}), j \geq 1 such that 0 \leq g_{j}(y) \leq 1 for all y and g_{j}\left(\frac{y}{2^{j/ \alpha}}\right) = 1 if 2^{(j-1)/ \alpha} < |y| \leq 2^{j /\alpha} , g_{j}\left(\frac{y}{2^{j /\alpha}}\right) = 0 if |y| \leq \mu 2^{(j-1)/ \alpha} or |y| > (1+\mu) 2^{j /\alpha} . Then,
\begin{align} &I\left(2^{\frac{j-1}{\alpha}} < |Y| \leq 2^{\frac{j}{\alpha}}\right)\leq g_{j}\left(\frac{|Y|}{2^{j / \alpha}}\right) \leq I\left(\mu 2^{\frac{j-1}{\alpha}} < |Y| \leq(1+\mu) 2^{\frac{j}{\alpha}}\right), \end{align} | (4.2) |
\begin{align} &|Y|^{q} g\left(\frac{|Y|}{2^{k /\alpha}}\right) \leq 1+\sum\limits_{j = 1}^{k} |Y|^{q} g_{j}\left(\frac{|Y|}{2^{j /\alpha}}\right),\forall q > 0, \end{align} | (4.3) |
\begin{align} &|Y|^{q} \left(1-g\left(\frac{|Y|}{2^{k /\alpha}}\right)\right) \leq \sum\limits_{j = k}^{\infty} |Y|^{q} g_{j}\left(\frac{|Y|}{2^{j /\alpha}}\right),\forall q > 0. \end{align} | (4.4) |
For I_{1} , noting \left|Y_{j}^{\prime\prime}\right|\leq \left|Y_{j}\right| I\left(\left|Y_{j}\right| > n^{1/p}\right) , g(y) is a decreasing function for y \geq 0 and \sum\limits_{i = -\infty}^{\infty}\left|a_{i}\right| < \infty , then by (4.1) and countably sub-additive of \hat{\mathbb{E}} : \hat{\mathbb{E}}\left(\sum\limits_{n = 1}^{\infty} X_{n}\right) \leq \sum\limits_{n = 1}^{\infty} \hat{\mathbb{E}} X_{n} for X_{n} \geq 0 , we have
\begin{align*} I_{1}&\leq c \sum\limits_{n = 1}^{\infty} n^{\alpha-2-1/p} {\hat{\mathbb{E}}\left|\sum\limits_{i = -\infty}^{\infty} a_{i} \sum\limits_{j = i+1}^{i+n} Y_{j}^{\prime\prime}\right|} \\ &\leq c \sum\limits_{n = 1}^{\infty} n^{\alpha-2-1/p} \sum\limits_{i = -\infty}^{\infty}\left|a_{i}\right| \sum\limits_{j = i+1}^{i+n} \hat{\mathbb{E}}\left|Y_{j}^{\prime\prime}\right| \\ &\leq c \sum\limits_{n = 1}^{\infty} n^{\alpha-2-1/p} \sum\limits_{i = -\infty}^{\infty}\left|a_{i}\right| \sum\limits_{j = i+1}^{i+n} \hat{\mathbb{E}}|Y_{j}|\left(1-g\left(\frac{|Y_{j}|}{n^{1/p}}\right)\right)\\ &\leq c \sum\limits_{n = 1}^{\infty} n^{\alpha-1-1/p} \sum\limits_{i = -\infty}^{\infty}\left|a_{i}\right| \hat{\mathbb{E}}|Y|\left(1-g\left(\frac{|Y|}{n^{1/p}}\right)\right)\\ &\leq c \sum\limits_{n = 1}^{\infty} n^{\alpha-1-1/p} \hat{\mathbb{E}}|Y|\left(1-g\left(\frac{|Y|}{n^{1/p}}\right)\right)\\ & = c \sum\limits_{k = 0}^{\infty} \sum\limits_{n = 2^k}^{2^{k+1}-1} n^{\alpha-1-1/p} \hat{\mathbb{E}}|Y|\left(1-g\left(\frac{|Y|}{n^{1/p}}\right)\right) \\ &\leq c \sum\limits_{k = 1}^{\infty} 2^{k(\alpha-1/p)} \hat{\mathbb{E}}|Y|\left(1-g\left(\frac{|Y|}{2^{k/p}}\right)\right). \end{align*} |
Thus, combined with (4.4), countably sub-additive of \hat{\mathbb{E}} and (2.3), we get
\begin{align*} I_{1}&\leq c \sum\limits_{k = 1}^{\infty} 2^{k(\alpha-1/p)} \hat{\mathbb{E}}\left(\sum\limits_{j = k}^{\infty}|Y| g_{j}\left(\frac{|Y|}{2^{j/p}}\right)\right) \\ &\leq c \sum\limits_{k = 1}^{\infty} 2^{k(\alpha-1/p)} \sum\limits_{j = k}^{\infty}\hat{\mathbb{E}}\left|Y\right| g_{j}\left(\frac{|Y|}{2^{j/p}}\right) \\ & \leq c \sum\limits_{j = 1}^{\infty} \hat{\mathbb{E}}|Y| g_{j}\left(\frac{|Y|}{2^{j/p}}\right) \sum\limits_{k = 1}^{j} 2^{k(\alpha-1/p)}\\ &\leq c \sum\limits_{j = 1}^{\infty} 2^{j \alpha } \hat{\mathbb{E}}\left(g_{j}\left(\frac{|Y|}{2^{j/p}}\right)\right) \\ &\leq c \sum\limits_{j = 1}^{\infty} 2^{j \alpha} \mathbb{V}\left(|Y| > \mu 2^{-1/p}2^{j/p}\right)\\ & < \infty . \end{align*} |
In the following, we prove I_{2} < \infty . First, we prove that
\begin{equation} n^{-1/p}\left|\sum\limits_{i = -\infty}^{\infty} a_{i} \sum\limits_{j = i+1}^{i+n} \hat{\mathbb{E}} Y_{j}^{\prime}\right| \rightarrow 0 \quad \text { as } n \rightarrow \infty. \nonumber\\ \end{equation} |
Since \sum\limits_{i = -\infty}^{\infty}\left|a_{i}\right| < \infty , \hat{\mathbb{E}} Y_{j} = 0 and |\hat{\mathbb{E}} X-\hat{\mathbb{E}} Y| \leq \hat{\mathbb{E}}|X-Y| , noting \alpha > 1 and \alpha p > 1 . By countably sub-additive of \hat{\mathbb{E}} and Lemma 2.4, we know \hat{\mathbb{E}}\left(|Y|^{\alpha p}\right)\leq C_{\mathbb{V}}\left(|Y|^{\alpha p}\right) < \infty , together with (4.1), we have
\begin{align*} n^{-1/p}\left|\sum\limits_{i = -\infty}^{\infty} a_{i} \sum\limits_{j = i+1}^{i+n} \hat{\mathbb{E}} Y_{j}^{\prime}\right| &\leq n^{-1/p}\sum\limits_{i = -\infty}^{\infty} |a_{i}|\sum\limits_{j = i+1}^{i+n} \left|\hat{\mathbb{E}} Y_{j}-\hat{\mathbb{E}} Y_{j}^{\prime }\right|\\ & \leq n^{-1/p}\sum\limits_{i = -\infty}^{\infty} |a_{i}| \sum\limits_{j = i+1}^{i+n}\hat{\mathbb{E}}\left|Y_{j}-Y_{j}^{\prime }\right| \\ & \leq n^{1-1/p} \hat{\mathbb{E}}|Y|\left(1-g\left(\frac{|Y|}{n^{1/p}}\right)\right) \\ & \leq n^{1-1/p} \frac{{\mathbb{E}}|Y||Y|^{\alpha p-1}}{n^{(\alpha p-1)/p}} \left(1-g\left(\frac{|Y|}{n^{1/p}}\right)\right) \\ & \leq c n^{1-\alpha } \hat{\mathbb{E}}|Y|^{\alpha p} \rightarrow 0 \quad \text { as } n \rightarrow \infty. \end{align*} |
Therefore, for all n large enough, we obtain
\begin{align} \left|\sum\limits_{i = -\infty}^{\infty} a_{i} \sum\limits_{j = i+1}^{i+n} \hat{\mathbb{E}} Y_{j}^{\prime}\right| < \frac{\varepsilon n^{1/p}}{4}. \end{align} | (4.5) |
By (4.5), Markov inequality, H {\rm \ddot{o}} lder inequality: \hat{\mathbb{E}}(|X Y|) \leq\left(\hat{\mathbb{E}}\left(|X|^{p}\right)\right)^{1 / p}\left(\hat{\mathbb{E}}\left(|Y|^{q}\right)\right)^{1 / q} for p, q > 1 satisfying \frac{1}{p}+\frac{1}{q} = 1 and C_{r} inequality, taking v > \max \left\{\alpha p, 2, \frac{2 p(\alpha-1)}{2-p}\right\} , we have that
\begin{align*} I_{2} &\leq \sum\limits_{n = 1}^{\infty} n^{\alpha -2} \mathbb{V}\left(\left|\sum\limits_{i = -\infty}^{\infty} a_{i} \sum\limits_{j = i+1}^{i+n}\left(Y_{j}^{\prime }-\hat{\mathbb{E}} Y_{j}^{\prime }\right)\right| > \frac{\varepsilon n^{1/p}}{4}\right) \\ & \leq c \sum\limits_{n = 1}^{\infty} n^{\alpha-2-v/p} \hat{\mathbb{E}}\left|\sum\limits_{i = -\infty}^{\infty} a_{i} \sum\limits_{j = i+1}^{i+n}\left(Y_{j}^{\prime}-\hat{\mathbb{E}} Y_{j}^{\prime}\right)\right|^{v} \\ & \leq c \sum\limits_{n = 1}^{\infty} n^{\alpha-2-v/p} \hat{\mathbb{E}}\left\{\sum\limits_{i = -\infty}^{\infty}\left|a_{i}\right| \left|\sum\limits_{j = i+1}^{i+n}\left(Y_{j}^{\prime}-\hat{\mathbb{E}} Y_{j}^{\prime}\right)\right|\right\}^{v} \\ & = c \sum\limits_{n = 1}^{\infty} n^{\alpha-2-v/p} \hat{\mathbb{E}}\left\{\sum\limits_{i = -\infty}^{\infty}\left|a_{i}\right|^{1-1 / v}\left(\left|a_{i}\right|^{1 / v} \left|\sum\limits_{j = i+1}^{i+n}\left(Y_{j}^{\prime }-\hat{\mathbb{E}} Y_{j}^{\prime }\right)\right|\right)\right\}^{v} \\ & \leq c \sum\limits_{n = 1}^{\infty} n^{\alpha-2-v/p} \hat{\mathbb{E}}\left\{\left(\sum\limits_{i = -\infty}^{\infty}\left(\left|a_{i}\right|^{\frac{v-1}{v}}\right)^{\frac{v}{v-1}}\right)^{\frac{v-1}{v}}\left(\sum\limits_{i = -\infty}^{\infty}\left(\left|a_{i}\right|^{\frac{1}{v}}\right)^{v} \left| \sum\limits_{j = i+1}^{i+n}\left(Y_{j}^{\prime}-\hat{\mathbb{E}} Y_{j}^{\prime}\right)\right|^{v}\right)^{\frac{1}{v}}\right\}^{v}\\ & \leq c \sum\limits_{n = 1}^{\infty} n^{\alpha-2-v/p} \left(\sum\limits_{i = -\infty}^{\infty}\left|a_{i}\right|\right)^{v-1}\left(\sum\limits_{i = -\infty}^{\infty}\left|a_{i}\right| \hat{\mathbb{E}} \left|\sum\limits_{j = i+1}^{i+n}\left(Y_{j}^{\prime}-\hat{\mathbb{E}} Y_{j}^{\prime}\right)\right|^{v}\right) \\ & \leq c \sum\limits_{n = 1}^{\infty} n^{\alpha-2-v/p} \sum\limits_{i = -\infty}^{\infty}\left|a_{i}\right| \hat{\mathbb{E}}\left(\left|\left(\sum\limits_{j = i+1}^{i+n}\left(Y_{j}^{\prime}-\hat{\mathbb{E}} Y_{j}^{\prime}\right)\right)^{+}+\left(\sum\limits_{j = i+1}^{i+n}\left(Y_{j}^{\prime}-\hat{\mathbb{E}} Y_{j}^{\prime}\right)\right)^{-}\right|^{v}\right) \\ & \leq c \sum\limits_{n = 1}^{\infty} n^{\alpha-2-v/p} \sum\limits_{i = -\infty}^{\infty}\left|a_{i}\right| \left\{\hat{\mathbb{E}}\left(\left(\sum\limits_{j = i+1}^{i+n}\left(Y_{j}^{\prime}-\hat{\mathbb{E}} Y_{j}^{\prime}\right)\right)^{+}\right)^{v}+\hat{\mathbb{E}}\left(\left(\sum\limits_{j = i+1}^{i+n}\left(Y_{j}^{\prime}-\hat{\mathbb{E}} Y_{j}^{\prime}\right)\right)^{-}\right)^{v}\right\} . \end{align*} |
Because of the fact that \left\{Y_{j}^{\prime}-\hat{\mathbb{E}} Y_{j}^{\prime}, -\infty < j < \infty\right\} is independent, by (2.5) and C_{r} inequality, together with \left|\hat{\mathbb{E}} Y_{j}^{\prime}\right|^{v} \leq \hat{\mathbb{E}}\left|Y_{j}^{\prime}\right|^{v} , for all i and n , we have
\begin{align} \hat{\mathbb{E}}\left(\left(\sum\limits_{j = i+1}^{i+n}\left(Y_{j}^{\prime}-\hat{\mathbb{E}} Y_{j}^{\prime}\right)\right)^{+}\right)^{v} & \leq c \left\{\sum\limits_{j = i+1}^{i+n} \hat{\mathbb{E}}\left|Y_{j}^{\prime}-\hat{\mathbb{E}} Y_{j}^{\prime}\right|^{v}+\left(\sum\limits_{j = i+1}^{i+n} \hat{\mathbb{E}}\left|Y_{j}^{\prime}-\hat{\mathbb{E}} Y_{j}^{\prime}\right|^{2}\right)^{v/ 2}\right\} \\ & \leq c \sum\limits_{j = i+1}^{i+n} \hat{\mathbb{E}}\left|Y_{j}^{\prime}-\hat{\mathbb{E}} Y_{j}^{\prime}\right|^{v}+c\left(\sum\limits_{j = i+1}^{i+n} \hat{\mathbb{E}}\left|Y_{j}^{\prime}-\hat{\mathbb{E}} Y_{j}^{\prime}\right|^{2}\right)^{v/ 2} \\ & \leq c \sum\limits_{j = i+1}^{i+n} \hat{\mathbb{E}}\left|Y_{j}^{\prime}\right|^{v}+c \left(\sum\limits_{j = i+1}^{i+n} \hat{\mathbb{E}}\left|Y_{j}^{\prime}\right|^{2}\right)^{v / 2}. \end{align} | (4.6) |
By \hat{\mathbb{E}} Y_{j} = \hat{\varepsilon} Y_{j} = 0 , it shall be noted that \left\{-Y_{j}, -\infty < j < \infty\right\} also satisfies the conditions of Theorem 3.1. Considering -Y_{j}^{\prime} instead of Y_{j}^{\prime} in (4.6), then by (x+y)^{-} \leq x^{-}+|y| and C_{r} inequality, for all i and n , we can obtain
\begin{align} &\hat{\mathbb{E}}\left(\left(\sum\limits_{j = i+1}^{i+n}\left(Y_{j}^{\prime}-\hat{\mathbb{E}} Y_{j}^{\prime}\right)\right)^{-}\right)^{v} \\ = &\hat{\mathbb{E}}\left(\left(\sum\limits_{j = i+1}^{i+n}\left(Y_{j}^{\prime}-\hat{\varepsilon} Y_{j}^{\prime}+\hat{\varepsilon} Y_{j}^{\prime}-\hat{\mathbb{E}} Y_{j}^{\prime}\right)\right)^{-}\right)^{v} \\ \leq&\hat{\mathbb{E}}\left(\left(\sum\limits_{j = i+1}^{i+n}\left(Y_{j}^{\prime}-\hat{\varepsilon} Y_{j}^{\prime}\right)\right)^{-}+\left|\sum\limits_{j = i+1}^{i+n} \left(\hat{\varepsilon} Y_{j}^{\prime}-\hat{\mathbb{E}} Y_{j}^{\prime}\right)\right|\right)^{v} \\ \leq& c \left(\hat{\mathbb{E}}\left(\left(\sum\limits_{j = i+1}^{i+n}\left(Y_{j}^{\prime}-\hat{\varepsilon} Y_{j}^{\prime}\right)\right)^{-}\right)^{v}+\hat{\mathbb{E}}\left|\sum\limits_{j = i+1}^{i+n}\left(\hat{\varepsilon} Y_{j}^{\prime}-\hat{\mathbb{E}} Y_{j}^{\prime}\right)\right|^{v}\right) \\ \leq& c \hat{\mathbb{E}}\left(\left(\sum\limits_{j = i+1}^{i+n}\left(Y_{j}^{\prime}-\hat{\varepsilon} Y_{j}^{\prime}\right)\right)^{-}\right)^{v}+c \hat{\mathbb{E}}\left(\sum\limits_{j = i+1}^{i+n}\left|\hat{\varepsilon} Y_{j}^{\prime}-\hat{\mathbb{E}} Y_{j}^{\prime}\right|\right)^{v} \\ \leq& c \hat{\mathbb{E}}\left(\left(\sum\limits_{j = i+1}^{i+n}\left(Y_{j}^{\prime}+\hat{\mathbb{E}}\left(-Y_{j}^{\prime}\right)\right)\right)^{-}\right)^{v}+c\left(\sum\limits_{j = i+1}^{i+n}\left|\hat{\varepsilon} Y_{j}^{\prime}\right|\right)^{v}+c\left(\sum\limits_{j = i+1}^{i+n}\left|\hat{\mathbb{E}} Y_{j}^{\prime}\right|\right)^{v} \\ \leq& c \hat{\mathbb{E}}\left(\left(\sum\limits_{j = i+1}^{i+n}\left(-Y_{j}^{\prime}-\hat{\mathbb{E}}\left(-Y_{j}^{\prime}\right)\right)\right)^{+}\right)^{v}+c\left(\sum\limits_{j = i+1}^{i+n}\left|-\hat{\mathbb{E}}\left(-Y_{j}^{\prime}\right)\right|\right)^{v}+c\left(\sum\limits_{j = i+1}^{i+n}\left|\hat{\mathbb{E}} Y_{j}^{\prime}\right|\right)^{v} \\ \leq& c \sum\limits_{j = i+1}^{i+n} \hat{\mathbb{E}}\left(\left|\left(-Y_{j}^{\prime}\right)\right|^{v}\right)+c\left(\sum\limits_{j = i+1}^{i+n} \hat{\mathbb{E}}\left|\left(-Y_{j}^{\prime}\right)\right|^{2}\right)^{v / 2}+c\left(\sum\limits_{j = i+1}^{i+n}\left|\hat{\mathbb{E}}\left(-Y_{j}^{\prime}\right)\right|\right)^{v}+c\left(\sum\limits_{j = i+1}^{i+n}\left|\hat{\mathbb{E}} Y_{j}^{\prime}\right|\right)^{v} \\ \leq& c \sum\limits_{j = i+1}^{i+n} \hat{\mathbb{E}}\left|Y_{j}^{\prime}\right|^{v}+c\left(\sum\limits_{j = i+1}^{i+n} \hat{\mathbb{E}}\left|Y_{j}^{\prime}\right|^{2}\right)^{v / 2}+c\left(\sum\limits_{j = i+1}^{i+n}\left|\hat{\mathbb{E}}\left(\pm Y_{j}^{\prime}\right)\right|\right)^{v}. \end{align} | (4.7) |
By (4.6) and (4.7), we have
\begin{align*} I_{2} \leq & c \sum\limits_{n = 1}^{\infty} n^{\alpha-2-v/p} \sum\limits_{i = -\infty}^{\infty}\left|a_{i}\right|\left\{\hat{\mathbb{E}}\left(\left(\sum\limits_{j = i+1}^{i+n}\left(Y_{j}^{\prime}-\hat{\mathbb{E}} Y_{j}^{\prime}\right)\right)^{+}\right)^{v}+\hat{\mathbb{E}}\left(\left(\sum\limits_{j = i+1}^{i+n}\left(Y_{j}^{\prime}-\hat{\mathbb{E}} Y_{j}^{\prime}\right)\right)^{-}\right)^{v}\right\} \\ \leq & c\sum\limits_{n = 1}^{\infty} n^{\alpha-2-v/p} \sum\limits_{i = -\infty}^{\infty}\left|a_{i}\right|\sum\limits_{j = i+1}^{i+n} \hat{\mathbb{E}}\left|Y_{j}^{\prime}\right|^{v}+ c \sum\limits_{n = 1}^{\infty} n^{\alpha-2-v/p} \sum\limits_{i = -\infty}^{\infty}\left|a_{i}\right| \left(\sum\limits_{j = i+1}^{i+n} \hat{\mathbb{E}}\left|Y_{j}^{\prime}\right|^{2}\right)^{v / 2}\\ &+c \sum\limits_{n = 1}^{\infty} n^{\alpha-2-v/p} \sum\limits_{i = -\infty}^{\infty}\left|a_{i}\right|\left(\sum\limits_{j = i+1}^{i+n}\left|\hat{\mathbb{E}}\left(\pm Y_{j}^{\prime}\right)\right|\right)^{v} \\ : = & I_{21}+I_{22}+I_{23}. \end{align*} |
For I_{21} , by (2.1), (4.2), (4.3) and v > \alpha p , we have
\begin{align} I_{21} & \leq c \sum\limits_{n = 1}^{\infty} n^{\alpha-2-v/p} \sum\limits_{i = -\infty}^{\infty}\left|a_{i}\right|\sum\limits_{j = i+1}^{i+n} \left[n^{v/p } \hat{\mathbb{E}}\left(1-g\left(\frac{\left|Y_{j}\right|}{n^{1/p}}\right)\right)+\hat{\mathbb{E}}\left|Y_{j}\right|^{v} g\left(\frac{\mu\left|Y_{j}\right|}{n^{1/p}}\right)\right]\\ & \leq c \sum\limits_{n = 1}^{\infty} n^{\alpha-1-v/p} \left[n^{v/p } \hat{\mathbb{E}}\left(1-g\left(\frac{\left|Y\right|}{n^{1/p}}\right)\right)+\hat{\mathbb{E}}\left|Y\right|^{v} g\left(\frac{\mu\left|Y\right|}{n^{1/p}}\right)\right] \\ & \leq c \sum\limits_{n = 1}^{\infty} n^{\alpha-1} \mathbb{V}\left(\left|Y\right| > \mu n^{1/p}\right)+c \sum\limits_{n = 1}^{\infty} n^{\alpha -1-v/p} \hat{\mathbb{E}}|Y|^{v} g\left(\frac{\mu|Y|}{n^{1/p}}\right) \\ & \ll \sum\limits_{n = 1}^{\infty} n^{\alpha -1-v/p} \hat{\mathbb{E}}|Y|^{v} g\left(\frac{\mu|Y|}{n^{1/p}}\right) \\ & = \sum\limits_{k = 0}^{\infty} \sum\limits_{n = 2^{k}}^{2^{k+1}-1} n^{\alpha -1-v/p} \hat{\mathbb{E}}|Y|^{v} g\left(\frac{\mu |Y|}{n^{1/p}}\right)\\ &\leq \sum\limits_{k = 1}^{\infty} 2^{k(\alpha-v/p)} \hat{\mathbb{E}}|Y|^{v} g\left(\frac{\mu |Y|}{2^{(k+1)/p}}\right)\\ &\leq \sum\limits_{k = 1}^{\infty} 2^{k(\alpha-v/p)} \hat{\mathbb{E}}\left(1+\sum\limits_{j = 1}^{k}|Y|^{v} g_{j}\left(\frac{\mu |Y|}{2^{(j+1)/p}}\right)\right)\\ &\leq \sum\limits_{k = 1}^{\infty} 2^{k(\alpha-v/p)} + \sum\limits_{k = 1}^{\infty} 2^{k(\alpha-v/p)} \sum\limits_{j = 1}^{k} \hat{\mathbb{E}}\left(|Y|^{v} g_{j}\left(\frac{\mu |Y|}{2^{(j+1)/p}}\right)\right)\\ & \ll \sum\limits_{j = 1}^{\infty} 2^{jv/p} \mathbb{V}\left(|Y| > 2^{j/p}\right) \sum\limits_{k = j}^{\infty} 2^{k(\alpha-v/p)} \\ & \leq \sum\limits_{j = 1}^{\infty} 2^{j \alpha } \mathbb{V}\left(|Y| > 2^{j/p}\right) \\ & < \infty. \end{align} | (4.8) |
For I_{22} , we consider the following two cases.
If 1 < \alpha p < 2 , noting \hat{\mathbb{E}}\left|Y_{j}^{\prime }\right|\leq \hat{\mathbb{E}}\left|Y_{j}\right| , \sum\limits_{i = -\infty}^{\infty}\left|a_{i}\right| < \infty and \hat{\mathbb{E}}\left(|Y|^{\alpha p}\right)\leq C_{\mathbb{V}}\left(|Y|^{\alpha p}\right) < \infty , by v > 2 , \alpha-2-(\alpha-1) v / 2 < -1 , we have
\begin{align} I_{22} & \leq c \sum\limits_{n = 1}^{\infty} n^{\alpha-2-v / p}\sum\limits_{i = -\infty}^{\infty}\left|a_{i}\right| \left(\sum\limits_{j = i+1}^{i+n} n^{(2-\alpha p)/p} \hat{\mathbb{E}}\left|Y_{j}^{\prime }\right|^{\alpha p}\right)^{v / 2} \\ & \leq c \sum\limits_{n = 1}^{\infty} n^{\alpha-2-v / p}\sum\limits_{i = -\infty}^{\infty}\left|a_{i}\right| \left(\sum\limits_{j = i+1}^{i+n} n^{(2-\alpha p)/p} \hat{\mathbb{E}}\left|Y_{j}\right|^{\alpha p}\right)^{v / 2} \\ & \leq c \sum\limits_{n = 1}^{\infty} n^{\alpha-2-v / p+v/2} \left(n^{(2-\alpha p)/p}\hat{\mathbb{E}}|Y|^{\alpha p}\right)^{v / 2}\\ & \leq c \sum\limits_{n = 1}^{\infty} n^{\alpha-2-(\alpha-1) v / 2} \\ & < \infty. \end{align} | (4.9) |
If \alpha p\geq 2 , it follows by v > \frac{2p(\alpha -1)}{2-p} , \alpha-2-v/p+v/2 < -1 , we have
\begin{align} I_{22} & \leq c \sum\limits_{n = 1}^{\infty} n^{\alpha-2-v/p} \sum\limits_{i = -\infty}^{\infty}\left|a_{i}\right| \left(\sum\limits_{j = i+1}^{i+n} \hat{\mathbb{E}}\left|Y_{j}\right|^{2}\right)^{v / 2}\\ & \leq c \sum\limits_{n = 1}^{\infty} n^{\alpha-2-v / p}\sum\limits_{i = -\infty}^{\infty}\left|a_{i}\right| \left(n \hat{\mathbb{E}}\left|Y\right|^{2}\right)^{v / 2} \\ & \leq c \sum\limits_{n = 1}^{\infty} n^{\alpha-2-v / p} \left(n \hat{\mathbb{E}}\left|Y\right|^{2}\right)^{v / 2} \\ & \leq c \sum\limits_{n = 1}^{\infty} n^{\alpha-2-v / p+v / 2} \\ & < \infty . \end{align} | (4.10) |
To prove I_{23} < \infty , we first estimate \sum\limits_{i = -\infty}^{\infty}\left|a_{i}\right|\left(\sum\limits_{j = i+1}^{i+n}\left|\hat{\mathbb{E}}\left(\pm Y_{j}^{\prime}\right)\right|\right)^{v} . In view of \hat{\mathbb{E}}\left(\pm Y_{j}\right) = 0 and \left|\hat{\mathbb{E}} X-\hat{\mathbb{E}} Y\right| \leq \hat{\mathbb{E}}\left|X-Y\right| . Noting \left|Y_{j}^{\prime\prime}\right|\leq \left|Y_{j}\right| I\left(\left|Y_{j}\right| > n^{1/p}\right) , and by Lemma 2.4, we obtain
\begin{align} \sum\limits_{i = -\infty}^{\infty}\left|a_{i}\right|\left(\sum\limits_{j = i+1}^{i+n}\left|\hat{\mathbb{E}}\left(\pm Y_{j}^{\prime}\right)\right|\right)^{v} & = \sum\limits_{i = -\infty}^{\infty}\left|a_{i}\right|\left(\sum\limits_{j = i+1}^{i+n}\left|\hat{\mathbb{E}}\left(\pm Y_{j}\right)-\hat{\mathbb{E}}\left(\pm Y_{j}^{\prime}\right)\right|\right)^{v} \\ & \leq \sum\limits_{i = -\infty}^{\infty}\left|a_{i}\right|\left(\sum\limits_{j = i+1}^{i+n} \hat{\mathbb{E}}\left|\left(\pm Y_{j}\right)-\left(\pm Y_{j}^{\prime}\right)\right|\right)^{v} \\ & = \sum\limits_{i = -\infty}^{\infty}\left|a_{i}\right|\left(\sum\limits_{j = i+1}^{i+n} \hat{\mathbb{E}}\left|\left(\pm Y_{j}^{\prime\prime}\right)\right|\right)^{v} \\ & \leq \sum\limits _{i = -\infty}^{\infty}\left|a_{i}\right|\left[\sum\limits _{j = i+1}^{i+n} \hat{\mathbb{E}}\left|Y_{j}\right|\left(1-g\left(\frac{\left|Y_{j}\right|}{n^{1 / p}}\right)\right)\right]^{v} \\ &\leq c \sum\limits _{i = -\infty}^{\infty}\left|a_{i}\right|\left[n \hat{\mathbb{E}}|Y|\left(1-g\left(\frac{|Y|}{n^{1 / p}}\right)\right)\right]^{v} \\ &\leq c\left[\frac{n \hat{\mathbb{E}}|Y \| Y|^{\alpha p-1}}{n^{(\alpha p-1) / p}}\left(1-g\left(\frac{|Y|}{n^{1 / p}}\right)\right)\right]^{v}\\ & \ll n^{v-\alpha v+v/p}. \end{align} | (4.11) |
Noting v > \max \left\{\alpha p, 2, \frac{2 p(\alpha-1)}{2-p}\right\} , such that \alpha-2-(\alpha-1)v < -1 , by (4.11), we have
\begin{align} I_{23} & = c \sum\limits_{n = 1}^{\infty} n^{\alpha-2-v/p} \sum\limits_{i = -\infty}^{\infty}\left|a_{i}\right|\left(\sum\limits_{j = i+1}^{i+n}\left|\hat{\mathbb{E}}\left(\pm Y_{j}^{\prime}\right)\right|\right)^{v} \\ & \leq c \sum\limits_{n = 1}^{\infty} n^{\alpha-2-v/p} \left({n^{v-\alpha v+v/p}}\right)\\ & \ll \sum\limits_{n = 1}^{\infty} n^{\alpha-2-(\alpha-1)v} \\ & < \infty. \end{align} | (4.12) |
From (4.8)–(4.10) and (4.12), it follows that I_{2} < \infty . Therefore (3.1) holds, the proof of Theorem 3.1 is completed.
For \forall \varepsilon > 0 , we have by Theorem 3.1 that
\begin{align*} &\sum\limits_{n = 1}^{\infty} n^{\alpha-2-r/p} C_{\mathbb{V}}\left(\left|S_{n}\right|-\varepsilon n^{1/p}\right)_{+}^{r } \\ = &\sum\limits_{n = 1}^{\infty} n^{\alpha-2-r/p} \int_{0}^{\infty} \mathbb{V}\left(\left|S_{n}\right|-\varepsilon n^{1/p} > x^{1/r}\right) \text{d} x \\ = &\sum\limits_{n = 1}^{\infty} n^{\alpha-2-r/p} \int_{0}^{n^{r /p}} \mathbb{V} \left(\left|S_{n}\right| > \varepsilon n^{1/p}+x^{1/r}\right) \text{d} x+\sum\limits_{n = 1}^{\infty} n^{\alpha-2-r /p} \int_{n^{r/p}}^{\infty} \mathbb{V}\left(\left|S_{n}\right| > \varepsilon n^{1/p}+x^{1/r}\right) \text{d} x \\ \leq &\sum\limits_{n = 1}^{\infty} n^{\alpha-2} \mathbb{V}\left(\left|S_{n}\right| > \varepsilon n^{1/p}\right)+\sum\limits_{n = 1}^{\infty} n^{\alpha-2-r/p} \int_{n^{r/p}}^{\infty} \mathbb{V}\left(\left|S_{n}\right| > x^{1/r}\right) \text{d} x \\ \leq & c\sum\limits_{n = 1}^{\infty} n^{\alpha-2-r/p} \int_{n^{r/p}}^{\infty} \mathbb{V}\left(\left|S_{n}\right| > x^{1/r}\right) \text{d} x. \end{align*} |
Hence, to prove (3.2), it suffices to show that
\begin{align} H: = \sum\limits_{n = 1}^{\infty} n^{\alpha-2-r/p} \int_{n^{r/p}}^{\infty} \mathbb{V}\left(\left|S_{n}\right| > x^{1/r}\right) \text{d} x < \infty. \end{align} | (4.13) |
Let x > n^{r/p} , denote that
\begin{align} &Y_{j}^{(1)}: = -x^{1/r} I\left(Y_{j} < -x^{1/r}\right)+Y_{j} I\left(\left|Y_{j}\right| \leq x^{1/r}\right)+x^{1/r} I\left(Y_{j} > x^{1/r}\right), \\ &Y_{j}^{(2)}: = Y_{j}-Y_{j}^{(1)} = \left(Y_{j}+x^{1/r}\right) I\left(Y_{j} < -x^{1/r}\right)+\left(Y_{j}-x^{1/r}\right) I\left(Y_{j} > x^{1/r}\right). \end{align} | (4.14) |
For H , note that \sum\limits_{k = 1}^{n} X_{k} = \sum\limits_{i = -\infty}^{\infty} a_{i} \sum\limits_{j = i+1}^{i+n} Y_{j} , we have
\begin{align*} H \leq & \sum\limits_{n = 1}^{\infty} n^{\alpha-2-r/p} \int_{n^{r/p}}^{\infty} \mathbb{V}\left(\left|\sum\limits_{i = -\infty}^{\infty} a_{i} \sum\limits_{j = i+1}^{i+n} Y_{j}^{(2)}\right| > \frac{x^{1/r}}{2}\right) \text{d} x+\sum\limits_{n = 1}^{\infty} n^{\alpha-2-r/p} \int_{n^{r/p}}^{\infty} \mathbb{V}\left(\left|\sum\limits_{i = -\infty}^{\infty} a_{i} \sum\limits_{j = i+1}^{i+n} Y_{j}^{(1)}\right| > \frac{x^{1/r}}{2}\right) \text{d} x \\ \leq & \sum\limits_{n = 1}^{\infty} n^{\alpha-2-r/p} \int_{n^{r/p}}^{\infty} \mathbb{V}\left(\left|\sum\limits_{i = -\infty}^{\infty} a_{i} \sum\limits_{j = i+1}^{i+n} Y_{j}^{(2)}\right| > \frac{x^{1/r}}{2}\right) \text{d} x \\ & +\sum\limits_{n = 1}^{\infty} n^{\alpha-2-r/p} \int_{n^{r/p}}^{\infty} \mathbb{V}\left(x^{-1/r}\left|\sum\limits_{i = -\infty}^{\infty} a_{i} \sum\limits_{j = i+1}^{i+n}\left(Y_{j}^{(1)}-\hat{\mathbb{E}} Y_{j}^{(1)}\right)\right| > \frac{1}{2}-x^{-1/r}\left|\sum\limits_{i = -\infty}^{\infty} a_{i} \sum\limits_{j = i+1}^{i+n}\hat{\mathbb{E}} Y_{j}^{(1)}\right|\right) \text{d} x\\ : = & H_{1}+H_{2}. \end{align*} |
For H_{1} , noting that g(y) is decreasing in y\geq 0 , by Markov inequality, (4.4), (4.2), (2.3) and (2.4), we get
\begin{align} H_{1} & \leq c \sum\limits_{n = 1}^{\infty} n^{\alpha-2-r/p} \int_{n^{r/p}}^{\infty} x^{-1/r} \hat{\mathbb{E}}\left|\sum\limits_{i = -\infty}^{\infty} a_{i} \sum\limits_{j = i+1}^{i+n} Y_{j}^{(2)}\right| \text{d} x \\ & \leq c \sum\limits_{n = 1}^{\infty} n^{\alpha-2-r/p} \int_{n^{r/p}}^{\infty} x^{-1/r} \sum\limits_{i = -\infty}^{\infty}\left|a_{i}\right| \sum\limits_{j = i+1}^{i+n} \hat{\mathbb{E}}\left|Y_{j}^{(2)}\right| \text{d} x \\ & \leq c \sum\limits_{n = 1}^{\infty} n^{\alpha-2-r/p} \int_{n^{r/p}}^{\infty} x^{-1/r} \sum\limits_{i = -\infty}^{\infty}\left|a_{i}\right| \sum\limits_{j = i+1}^{i+n} \hat{\mathbb{E}}|Y_{j}|\left(1-g\left(\frac{|Y_{j}|}{x^{1/r}}\right)\right) \text{d} x\\ & \leq c \sum\limits_{n = 1}^{\infty} n^{\alpha-1-r/p} \int_{n^{r/p}}^{\infty} x^{-1/r} \hat{\mathbb{E}}|Y|\left(1-g\left(\frac{|Y|}{x^{1/r}}\right)\right) \text{d} x \\ & \leq c \sum\limits_{n = 1}^{\infty} n^{\alpha-1-r/p} \sum\limits_{m = n}^{\infty} \int_{m^{r/p}}^{(m+1)^{r/p}} x^{-1/r} \hat{\mathbb{E}}|Y|\left(1-g\left(\frac{|Y|}{x^{1/r}}\right)\right) \text{d} x \\ & \leq c \sum\limits_{n = 1}^{\infty} n^{\alpha-1-r/p} \sum\limits_{m = n}^{\infty} m^{r/p-1/p-1} \hat{\mathbb{E}}|Y|\left(1-g\left(\frac{|Y|}{m^{1/p}}\right)\right) \\ & = c \sum\limits_{m = 1}^{\infty} m^{r/p-1/p-1} \hat{\mathbb{E}}|Y|\left(1-g\left(\frac{|Y|}{m^{1/p}}\right)\right) \sum\limits_{n = 1}^{m} n^{\alpha-1-r/p} \\ &\leq\left\{\begin{array}{lll} c \sum\limits_{m = 1}^{\infty} m^{\alpha-1-1/p} \hat{\mathbb{E}}|Y|\left(1-g\left(\frac{|Y|}{m^{1 / p}}\right)\right), & \text { if } r < \alpha p, \nonumber\\ c \sum\limits_{m = 1}^{\infty} m^{\alpha-1-1/p} \hat{\mathbb{E}}|Y|\left(1-g\left(\frac{|Y|}{m^{1 / p}}\right)\right) \log (1+m), & \text { if } r = \alpha p, \nonumber\\ c \sum\limits_{m = 1}^{\infty} m^{r/p-1-1/p} \hat{\mathbb{E}}|Y|\left(1-g\left(\frac{|Y|}{m^{1 / p}}\right)\right), & \text { if } r > \alpha p, \end{array}\right. \\ & = \left\{\begin{array}{lll} c \sum\limits_{k = 0}^{\infty} \sum\limits_{m = 2^{k}}^{2^{k+1}-1} m^{\alpha-1-1 / p} \hat{\mathbb{E}}|Y|\left(1-g\left(\frac{|Y|}{m^{1 / p}}\right)\right), & \text { if } r < \alpha p, \nonumber\\ c \sum\limits_{k = 0}^{\infty} \sum\limits_{m = 2^{k}}^{2^{k+1}-1} m^{\alpha-1-1 / p} \hat{\mathbb{E}}|Y|\left(1-g\left(\frac{|Y|}{m^{1 / p}}\right)\right) \log (1+m), & \text { if } r = \alpha p, \nonumber\\ c \sum\limits_{k = 0}^{\infty} \sum\limits_{m = 2^{k}}^{2^{k+1}-1} m^{r / p-1-1 / p} \hat{\mathbb{E}}|Y|\left(1-g\left(\frac{|Y|}{m^{1 / p}}\right)\right), & \text { if } r > \alpha p, \end{array}\right.\\ &\leq\left\{\begin{array}{lll} c \sum\limits_{k = 1}^{\infty} 2^{k(\alpha-1 / p)} \hat{\mathbb{E}}\left(\sum\limits_{j = k}^{\infty} \left|Y\right| g_{j}\left(\frac{|Y|}{2^{j / p}}\right)\right), & \text { if } r < \alpha p, \nonumber\\ c \sum\limits_{k = 1}^{\infty} 2^{k(\alpha-1 / p)} \hat{\mathbb{E}}\left(\sum\limits_{j = k}^{\infty} \left|Y\right| g_{j}\left(\frac{|Y|}{2^{j / p}}\right)\right) \log \left(1+2^{k}\right), & \text { if } r = \alpha p, \\ c \sum\limits_{k = 1}^{\infty} 2^{k(r-1)/p} \hat{\mathbb{E}}\left(\sum\limits_{j = k}^{\infty} \left|Y\right| g_{j}\left(\frac{|Y|}{2^{j / p}}\right)\right), & \text { if } r > \alpha p, \end{array}\right.\\ &\leq\left\{\begin{array}{lll} c \sum\limits_{j = 1}^{\infty} \hat{\mathbb{E}}|Y| g_{j}\left(\frac{|Y|}{2^{j / p}}\right) \sum\limits_{k = 1}^{j} 2^{k(\alpha-1 / p)}, & \text { if } r < \alpha p, \nonumber\\ c \sum\limits_{j = 1}^{\infty} \hat{\mathbb{E}}|Y| g_{j}\left(\frac{|Y|}{2^{j / p}}\right) \sum\limits_{k = 1}^{j} 2^{k(\alpha-1 / p)} \log \left(1+2^{k}\right), & \text { if } r = \alpha p, \nonumber\\ c \sum\limits_{j = 1}^{\infty} \hat{\mathbb{E}}|Y| g_{j}\left(\frac{|Y|}{2^{j / p}}\right) \sum\limits_{k = 1}^{j} 2^{k(r-1)/p}, & \text { if } r > \alpha p, \end{array}\right.\\ &\leq\left\{\begin{array}{lll} c \sum\limits_{j = 1}^{\infty} 2^{j \alpha} \mathbb{V}\left(|Y| > \mu 2^{-1 / p} 2^{j / p}\right), & \text { if } r < \alpha p, \nonumber\\ c \sum\limits_{j = 1}^{\infty} 2^{j \alpha} \log \left(1+2^{j}\right) \mathbb{V}\left(|Y| > \mu 2^{-1 / p} 2^{j / p}\right), & \text { if } r = \alpha p, \nonumber\\ c \sum\limits_{j = 1}^{\infty} 2^{r j/ p} \mathbb{V}\left(|Y| > \mu 2^{-1 / p} 2^{j / p}\right), & \text { if } r > \alpha p, \end{array}\right.\\ & < \infty. \end{align} | (4.15) |
In the following, we prove that H_{2} < \infty . First, we show that
\begin{align*} \sup _{x \geq n^{r/p}} x^{-1/r}\left|\sum\limits_{i = -\infty}^{\infty} a_{i} \sum\limits_{j = i+1}^{i+n}\hat{\mathbb{E}} Y_{j}^{(1)}\right| \rightarrow 0 \text { as } n \rightarrow \infty. \end{align*} |
By (4.14) and (4.1), we can imply
\begin{align} &\hat{\mathbb{E}}\left|Y_{j}^{(1)}\right| \ll\hat{\mathbb{E}}\left[|Y| g\left(\frac{\mu|Y|}{x^{1/r}}\right)\right]+x^{1/r} \hat{\mathbb{E}}\left[1-g\left(\frac{|Y|}{x^{1/r}}\right)\right] \leq \hat{\mathbb{E}}\left[|Y| g\left(\frac{\mu|Y|}{x^{1/r}}\right)\right]+x^{1/r} \mathbb{V}(|Y| > \mu x^{1/r}), \end{align} | (4.16) |
\begin{align} &\hat{\mathbb{E}}\left|Y_{j}^{(2)}\right| \ll \hat{\mathbb{E}}\left|Y\right|\left[1-g\left(\frac{|Y|}{x^{1/r}}\right)\right]. \end{align} | (4.17) |
If r\leq \alpha p , by (2.1) and \alpha > 1 , we can get
\begin{align*} \sum\limits_{n = 1}^{\infty} \mathbb{V}\left(|Y| > \mu n^{1/p}\right) \leq \sum\limits_{n = 1}^{\infty} n^{\alpha-1} \mathbb{V}\left(|Y| > \mu n^{1/p}\right) < \infty, \end{align*} |
and \mathbb{V}\left(|Y| > \mu n^{1/p}\right) \downarrow , so we get n \mathbb{V}\left(|Y| > \mu n^{1/p}\right) \rightarrow 0 as n \rightarrow \infty .
For x\geq n^{r/p} , note that \sum\limits_{i = -\infty}^{\infty} |a_{i}| < \infty , By (4.16), countably sub-additive of \hat{\mathbb{E}} and Lemma 2.4, we have
\begin{align*} \sup _{x \geq n^{r/p}} x^{-1/r}\left|\sum\limits_{i = -\infty}^{\infty} a_{i} \sum\limits_{j = i+1}^{i+n} \hat{\mathbb{E}} Y_{j}^{(1)}\right| &\leq \sup _{x \geq n^{r/p}} x^{-1/r}\sum\limits_{i = -\infty}^{\infty} |a_{i}|\sum\limits_{j = i+1}^{i+n} \left|\hat{\mathbb{E}} Y_{j}^{(1) }\right|\\ & \leq \sup _{x \geq n^{r/p}} x^{-1/r} n \left(\hat{\mathbb{E}}\left|Y\right| g\left(\frac{\mu \left|Y\right|}{x^{1/r}}\right)+x^{1/r} \mathbb{V}\left(\left|Y\right| > \mu x^{1/r}\right)\right)\\ & \leq n^{1-1/p} \hat{\mathbb{E}}|Y|g\left(\frac{\mu \left|Y\right|}{n^{1/p}}\right) +n \mathbb{V}\left(|Y| > \mu n^{1/p}\right)\\ & \leq c n^{1-\alpha}\hat{\mathbb{E}}|Y|^{\alpha p} \rightarrow 0 \quad \text { as } n \rightarrow \infty. \end{align*} |
If r > \alpha p , since \hat{\mathbb{E}}Y_{j} = 0 , by (4.17) and Lemma 2.4, we have
\begin{align*} \sup _{x \geq n^{r/p}} x^{-1/r}\left|\sum\limits_{i = -\infty}^{\infty} a_{i} \sum\limits_{j = i+1}^{i+n} \hat{\mathbb{E}} Y_{j}^{(1)}\right| &\leq \sup _{x \geq n^{r/p}} x^{-1/r}\sum\limits_{i = -\infty}^{\infty} |a_{i}|\sum\limits_{j = i+1}^{i+n} \left|\hat{\mathbb{E}} Y_{j}-\hat{\mathbb{E}} Y_{j}^{(1) }\right|\\ & \leq n^{-1/p}\sum\limits_{i = -\infty}^{\infty} |a_{i}| \sum\limits_{j = i+1}^{i+n}\hat{\mathbb{E}}\left|Y_{j}^{(2)}\right| \\ & \leq n^{1-1/p} \hat{\mathbb{E}}|Y|\left(1-g\left(\frac{|Y|}{n^{1/p}}\right)\right) \\ & \leq n^{1-1/p} \frac{{\mathbb{E}}|Y||Y|^{r-1}}{n^{(r-1)/p}} \left(1-g\left(\frac{|Y|}{n^{1/p}}\right)\right) \\ & \leq c n^{1-r/p } \hat{\mathbb{E}}|Y|^{r} \rightarrow 0 \quad \text { as } n \rightarrow \infty. \end{align*} |
It follows that for all n large enough, we get
\begin{align} \sup _{x \geq n^{r/p}} x^{-1/r}\left|\sum\limits_{i = -\infty}^{\infty} a_{i} \sum\limits_{j = i+1}^{i+n} \hat{\mathbb{E}} Y_{j}^{(1)}\right| < \frac{1}{4}, \end{align} | (4.18) |
which implies that
\begin{align*} H_{2} \leq c \sum\limits_{n = 1}^{\infty} n^{\alpha-2-r/p} \int_{n^{r/p}}^{\infty} \mathbb{V}\left(\left|\sum\limits_{i = -\infty}^{\infty} a_{i} \sum\limits_{j = i+1}^{i+n}\left(Y_{j}^{(1)}-\hat{\mathbb{E}} Y_{j}^{(1)}\right)\right| > \frac{x^{1/r}}{4}\right) \text{d} x. \end{align*} |
By Markov inequality, H {\rm \ddot{o}} lder inequality, C_{r} inequality and (2.5), similar to the proof of (4.6) and (4.7), taking v > \max \left\{\alpha p, r, 2, \frac{2 p(\alpha-1)}{2-p}\right\} , we have
\begin{align} H_{2} \leq & c \sum\limits_{n = 1}^{\infty} n^{\alpha-2-r/p}\int_{n^{r/p}}^{\infty} x^{-v/r} \hat{\mathbb{E}}\left|\sum\limits_{i = -\infty}^{\infty} a_{i} \sum\limits_{j = i+1}^{i+n}\left(Y_{j}^{(1)}-\hat{\mathbb{E}} Y_{j}^{(1)}\right)\right|^{v} \text{d} x \\ \leq& c \sum\limits_{n = 1}^{\infty} n^{\alpha-2-r/p} \int_{n^{r/p}}^{\infty} x^{-v/r} \hat{\mathbb{E}}\left\{\sum\limits_{i = -\infty}^{\infty}\left|a_{i}\right|\left|\sum\limits_{j = i+1}^{i+n}\left(Y_{j}^{(1)}-\hat{\mathbb{E}} Y_{j}^{(1)}\right)\right|\right\}^{v} \text{d} x \\ = &c \sum\limits_{n = 1}^{\infty} n^{\alpha-2-r/p} \int_{n^{r/p}}^{\infty} x^{-v/r} \hat{\mathbb{E}}\left\{\sum\limits_{i = -\infty}^{\infty}\left|a_{i}\right|^{1-1 / v}\left(\left|a_{i}\right|^{1 / v} \left|\sum\limits_{j = i+1}^{i+n}\left(Y_{j}^{(1)}-\hat{\mathbb{E}} Y_{j}^{(1)}\right)\right|\right)\right\}^{v} \text{d} x\\ \leq& c \sum\limits_{n = 1}^{\infty} n^{\alpha-2-r/p} \int_{n^{r/p}}^{\infty} x^{-v/r} \hat{\mathbb{E}}\left\{\left(\sum\limits_{i = -\infty}^{\infty}\left(\left|a_{i}\right|^{\frac{v-1}{v}}\right)^{\frac{v}{v-1}}\right)^{\frac{v-1}{v}}\left(\sum\limits_{i = -\infty}^{\infty}\left(\left|a_{i}\right|^{\frac{1}{v}} \right)^{v} \left| \sum\limits_{j = i+1}^{i+n}\left(Y_{j}^{(1)}-\hat{\mathbb{E}} Y_{j}^{(1)}\right)\right|^{v}\right)^{\frac{1}{v}}\right\}^{v} \text{d} x\\ \leq & c \sum\limits_{n = 1}^{\infty} n^{\alpha-2-r/p}\int_{n^{r/p}}^{\infty} x^{-v/r}\left(\sum\limits_{i = -\infty}^{\infty}\left|a_{i}\right|\right)^{v-1}\left(\sum\limits_{i = -\infty}^{\infty}\left|a_{i}\right| \hat{\mathbb{E}}\left|\sum\limits_{j = i+1}^{i+n}\left(Y_{j}^{(1)}-\hat{\mathbb{E}} Y_{j}^{(1)}\right)\right|^{v}\right) \text{d} x \\ \leq& c \sum\limits_{n = 1}^{\infty} n^{\alpha -2-r/p} \int_{n^{r/p}}^{\infty} x^{-v/r}\sum\limits_{i = -\infty}^{\infty}\left|a_{i}\right| \hat{\mathbb{E}}\left(\left|\left(\sum\limits_{j = i+1}^{i+n}\left(Y_{j}^{(1)}-\hat{\mathbb{E}} Y_{j}^{(1)}\right)\right)^{+}+\left(\sum\limits_{j = i+1}^{i+n}\left(Y_{j}^{(1)}-\hat{\mathbb{E}} Y_{j}^{(1)}\right)\right)^{-}\right|^{v}\right) \text{d} x \\ \leq & c \sum\limits_{n = 1}^{\infty} n^{\alpha -2-r/p} \int_{n^{r/p}}^{\infty} x^{-v/r} \sum\limits_{i = -\infty}^{\infty}\left|a_{i}\right| \left\{\hat{\mathbb{E}}\left(\left(\sum\limits_{j = i+1}^{i+n}\left(Y_{j}^{(1)}-\hat{\mathbb{E}} Y_{j}^{(1)}\right)\right)^{+}\right)^{v}+\hat{\mathbb{E}}\left(\left(\sum\limits_{j = i+1}^{i+n}\left(Y_{j}^{(1)}-\hat{\mathbb{E}} Y_{j}^{(1)}\right)\right)^{-}\right)^{v}\right\} \text{d} x.\\ \leq & c \sum\limits_{n = 1}^{\infty} n^{\alpha-2-r/p} \int_{n^{r/p}}^{\infty} x^{-v/r} \sum\limits_{i = -\infty}^{\infty}\left|a_{i}\right| \sum\limits_{j = i+1}^{i+n} \hat{\mathbb{E}}\left|Y_{j}^{(1)}\right|^{v} \; \text{ d} x+c \sum\limits_{n = 1}^{\infty} n^{\alpha-2-r/p}\int_{n^{r/p}}^{\infty} x^{-v/r}\sum\limits_{i = -\infty}^{\infty}\left|a_{i}\right| \left(\sum\limits_{j = i+1}^{i+n} \hat{\mathbb{E}}\left|Y_{j}^{(1)}\right|^{2}\right)^{v / 2} \; \text{ d} x \\ &+ c \sum\limits_{n = 1}^{\infty} n^{\alpha-2-r/p} \int_{n^{r/p}}^{\infty} x^{-v/r}\sum\limits_{i = -\infty}^{\infty}\left|a_{i}\right| \left(\sum\limits_{j = i+1}^{i+n}\left|\hat{\mathbb{E}}\left(\pm Y_{j}^{(1)}\right)\right|\right)^{v} \; \text{ d} x \\ : = &H_{21}+H_{22}+H_{23}. \end{align} | (4.19) |
For H_{21} , from \sum\limits_{i = -\infty}^{\infty}\left|a_{i}\right| < \infty and (4.16), we get
\begin{align*} H_{21} & \leq c \sum\limits_{n = 1}^{\infty} n^{\alpha-2-r/p}\int_{n^{r/p}}^{\infty} x^{-v/r} \sum\limits_{i = -\infty}^{\infty}\left|a_{i}\right|\sum\limits_{j = i+1}^{i+n}\left[x^{v/r} \hat{\mathbb{E}}\left(1-g\left(\frac{\left|Y_{j}\right|}{x^{1/r}}\right)\right)+\hat{\mathbb{E}}\left|Y_{j}\right|^{v} g\left(\frac{\mu\left|Y_{j}\right|}{x^{1/r}}\right)\right] \text{d} x \\ & \leq c \sum\limits_{n = 1}^{\infty} n^{\alpha-1-r/p} \int_{n^{r/p}}^{\infty} \sum\limits_{i = -\infty}^{\infty}\left|a_{i}\right|\hat{\mathbb{E}}\left(1-g\left(\frac{|Y|}{x^{1/r}}\right)\right) \text{d} x+c \sum\limits_{n = 1}^{\infty} n^{\alpha-1-r/p} \int_{n^{r/p}}^{\infty} \sum\limits_{i = -\infty}^{\infty}\left|a_{i}\right|x^{-v/r} \hat{\mathbb{E}}|Y|^{v} g\left(\frac{\mu|Y|}{x^{1/r}}\right) \text{d} x \\ & \leq c \sum\limits_{n = 1}^{\infty} n^{\alpha-1-r/p} \int_{n^{r/p}}^{\infty} \hat{\mathbb{E}}\left(1-g\left(\frac{|Y|}{x^{1/r}}\right)\right) \text{d} x+c \sum\limits_{n = 1}^{\infty} n^{\alpha-1-r/p} \int_{n^{r/p}}^{\infty} x^{-v/r} \hat{\mathbb{E}}|Y|^{v} g\left(\frac{\mu|Y|}{x^{1/r}}\right) \text{d} x \\ &: = H_{211}+H_{212}. \end{align*} |
Noting that g(y) is a decreasing function for y\geq 0 , by (4.1), (2.1) and (2.2), we have
\begin{align} H_{211} &\leq c \sum\limits_{n = 1}^{\infty} n^{\alpha-1-r/p}\sum\limits_{m = n}^{\infty} \int_{m^{r/p}}^{(m+1)^{r/p}} \hat{\mathbb{E}}\left(1-g\left(\frac{|Y|}{x^{1/r}}\right)\right) \text{d} x \\ & \leq c \sum\limits_{n = 1}^{\infty} n^{\alpha-1-r/p} \sum\limits_{m = n}^{\infty} \hat{\mathbb{E}}\left(1-g\left(\frac{|Y|}{m^{1/p}}\right)\right) \\ &\leq c \sum\limits_{m = 1}^{\infty} \mathbb{V}\left(|Y| > \mu m^{1/p}\right) \sum\limits_{n = 1}^{m} n^{\alpha-1-r/p} \\ &\leq\left\{\begin{array}{lll} c \sum\limits_{m = 1}^{\infty} m^{\alpha-1-r/p} \mathbb{V}\left(|Y| > \mu m^{1/p}\right), & \text { if } r < \alpha p, \nonumber\\ c \sum\limits_{m = 1}^{\infty} m^{\alpha-1-r/p} \log(1+m)\mathbb{V}\left(|Y| > \mu m^{1/p}\right), & \text { if } r = \alpha p, \nonumber\\ c \sum\limits_{m = 1}^{\infty} m^{\alpha-1-r/p} \mathbb{V}\left(|Y| > \mu m^{1/p}\right), & \text { if } r > \alpha p, \nonumber\\ \end{array}\right. \\ &\leq\left\{\begin{array}{lll} c \sum\limits_{m = 1}^{\infty} m^{\alpha-1} \mathbb{V}\left(|Y| > \mu m^{1/p}\right), & \text { if } r < \alpha p, \nonumber\\ c \sum\limits_{m = 1}^{\infty} m^{\alpha-1}\log(1+m) \mathbb{V}\left(|Y| > \mu m^{1/p}\right), & \text { if } r = \alpha p, \nonumber\\ c \sum\limits_{m = 1}^{\infty} m^{-1+r/p} \mathbb{V}\left(|Y| > \mu m^{1/p}\right), & \text { if } r > \alpha p, \nonumber\\ \end{array}\right. \\ & < \infty. \end{align} | (4.20) |
From v > \alpha p \vee r , by Lemma 2.4, we have
\begin{align} H_{212}& \leq c\sum\limits_{n = 1}^{\infty} n^{\alpha-1-r/p} \sum\limits_{m = n}^{\infty} \int_{m^{r/p }}^{(m+1)^{r/p}} x^{-v/r} \hat{\mathbb{E}}|Y|^{v} g\left(\frac{\mu|Y|}{x^{1/r}}\right) \text{d} x \\ & \leq c\sum\limits_{n = 1}^{\infty} n^{\alpha-1-r/p} \sum\limits_{m = n}^{\infty} m^{r/p-v/p-1} \hat{\mathbb{E}}|Y|^{v} g\left(\frac{\mu|Y|}{m^{1/p}}\right) \\ & \leq c\sum\limits_{m = 1}^{\infty} m^{r/p-v/p-1} \hat{\mathbb{E}}|Y|^{v} g\left(\frac{\mu|Y|}{m^{1/p}}\right) \sum\limits_{n = 1}^{m} n^{\alpha-1-r/p} \\ &\leq\left\{\begin{array}{lll} c \sum\limits_{m = 1}^{\infty} m^{\alpha-v / p-1} \hat{\mathbb{E}}|Y|^{v} g\left(\frac{\mu|Y|}{m^{1 / p}}\right), & \text { if } r < \alpha p, \nonumber\\ c \sum\limits_{m = 1}^{\infty} m^{\alpha-v / p-1} \log m \hat{\mathbb{E}}|Y|^{v} g\left(\frac{\mu|Y|}{m^{1 / p}}\right), & \text { if } r = \alpha p, \nonumber\\ c \sum\limits_{m = 1}^{\infty} m^{r / p-v / p-1} \hat{\mathbb{E}}|Y|^{v} g\left(\frac{\mu|Y|}{m^{1 / p}}\right), & \text { if } r > \alpha p, \end{array}\right. \\ &\leq\left\{\begin{array}{lll} \int_{1}^{\infty} x^{\alpha-v / p-1} \hat{\mathbb{E}}\left[|Y|^{v} I\left(|Y| \leq c x^{1 / p}\right)\right] \text{d} x, & \text { if } r < \alpha p, \nonumber\\ \int_{1}^{\infty} x^{\alpha-v / p-1} \log x \hat{\mathbb{E}}\left[|Y|^{v} I\left(|Y| \leq c x^{1 / p}\right)\right] \text{d} x, & \text { if } r = \alpha p, \nonumber\\ \int_{1}^{\infty} x^{r / p-v / p-1} \hat{\mathbb{E}}\left[|Y|^{v} I\left(|Y| \leq c x^{1 / p}\right)\right] \text{d} x, & \text { if } r > \alpha p, \end{array}\right.\\ &\leq\left\{\begin{array}{lll} c C_{\mathbb{V}}\left(|Y|^{\alpha p}\right) < \infty, & \text { if } r < \alpha p, \\ c C_{\mathbb{V}}\left(|Y|^{\alpha p} \log (1+|Y|)\right) < \infty, & \text { if } r = \alpha p, \\ c C_{\mathbb{V}}\left(|Y|^{r}\right) < \infty, & \text { if } r > \alpha p . \end{array}\right. \end{align} | (4.21) |
Combing (4.20) and (4.21), we conclude H_{21} < \infty . Next, we prove H_{22} < \infty .
If 1 < \alpha p < 2 , noting \hat{\mathbb{E}}\left|Y_{j}^{(1)}\right|\leq \hat{\mathbb{E}}\left|Y_{j}\right| and \hat{\mathbb{E}}\left(|Y|^{\alpha p}\right)\leq C_{\mathbb{V}}\left(|Y|^{\alpha p}\right) < \infty , by v > 2 , \alpha-2-\frac{v(\alpha -1)}{2} < -1 , we can obtain
\begin{align*} H_{22} & \leq c \sum\limits_{n = 1}^{\infty} n^{\alpha-2-r / p} \int_{n^{r/ p}}^{\infty} x^{-v / r}\sum\limits_{i = -\infty}^{\infty}\left|a_{i}\right|\left(\sum\limits_{j = i+1}^{i+n}x^\frac{2-\alpha p} {r} \hat{\mathbb{E}}\left|Y_{j}^{(1)}\right|^{\alpha p}\right)^{v / 2} \; \text{ d} x \\ & \leq c \sum\limits_{n = 1}^{\infty} n^{\alpha-2-r / p} \int_{n^{r/ p}}^{\infty} x^{-v / r}\sum\limits_{i = -\infty}^{\infty}\left|a_{i}\right|\left(\sum\limits_{j = i+1}^{i+n}x^\frac{2-\alpha p} {r} \hat{\mathbb{E}}\left|Y_{j}\right|^{\alpha p}\right)^{v / 2} \; \text{ d} x \\ & \leq c \sum\limits_{n = 1}^{\infty} n^{\alpha-2-r / p} \int_{n^{r/ p}}^{\infty} x^{-v / r}\left(n x^\frac{2-\alpha p} {r}\hat{\mathbb{E}}|Y|^{\alpha p} \right)^{v / 2} \; \text{ d} x \\ & \leq c \sum\limits_{n = 1}^{\infty} n^{\alpha-2-r/p+v/2} \int_{n^{r/ p}}^{\infty} x^\frac{-\alpha v p}{2r}\; \text{ d} x \\ & \leq c \sum\limits_{n = 1}^{\infty} n^{\alpha-2-\frac{v(\alpha -1)}{2}}\\ & < \infty. \end{align*} |
If \alpha p\geq 2 , by v > \frac{2p(\alpha -1)}{2-p} , \alpha-2-v/p+v/2 < -1 and Lemma 2.5, we have
\begin{align*} H_{22} & \leq c \sum\limits_{n = 1}^{\infty} n^{\alpha-2-r / p} \int_{n^{r/ p}}^{\infty} x^{-v / r}\sum\limits_{i = -\infty}^{\infty}\left|a_{i}\right| \left(\sum\limits_{j = i+1}^{i+n} \hat{\mathbb{E}}|Y_{j}|^{2}\right)^{v / 2} \; \text{ d} x \\ & \leq c \sum\limits_{n = 1}^{\infty} n^{\alpha-2-r / p} \int_{n^{r/ p}}^{\infty} x^{-v / r}\sum\limits_{i = -\infty}^{\infty}\left|a_{i}\right|\left(n \hat{\mathbb{E}}|Y|^{2}\right)^{v / 2} \; \text{ d} x \\ & \leq c \sum\limits_{n = 1}^{\infty} n^{\alpha-2-r / p} \int_{n^{r/ p}}^{\infty} x^{-v / r}\left(n \hat{\mathbb{E}}|Y|^{2}\right)^{v / 2} \; \text{ d} x \\ & \leq c \sum\limits_{n = 1}^{\infty} n^{\alpha-2-r / p+v/2} \int_{n^{r/ p}}^{\infty}x^{-v / r}\; \text{ d} x\\ & \leq c \sum\limits_{n = 1}^{\infty} n^{\alpha-2-v / p+v / 2} \\ & < \infty. \end{align*} |
Finally, we show H_{23} < \infty . For x > n^{r/p} , noting \sum\limits_{i = -\infty}^{\infty}\left|a_{i}\right| < \infty , similar to the proof of (4.11), we get
\begin{align} \sum\limits_{i = -\infty}^{\infty}\left|a_{i}\right|\left(\sum\limits_{j = i+1}^{i+n}\left|\hat{\mathbb{E}}\left(\pm Y_{j}^{(1)}\right)\right|\right)^{v} & = \sum\limits_{i = -\infty}^{\infty}\left|a_{i}\right|\left(\sum\limits_{j = i+1}^{i+n}\left|\hat{\mathbb{E}}\left(\pm Y_{j}\right)-\hat{\mathbb{E}}\left(\pm Y_{j}^{(1)}\right)\right|\right)^{v} \\ & \leq \sum\limits_{i = -\infty}^{\infty}\left|a_{i}\right|\left(\sum\limits_{j = i+1}^{i+n} \hat{\mathbb{E}}\left|\left(\pm Y_{j}\right)-\left(\pm Y_{j}^{(1)}\right)\right|\right)^{v} \\ & = \sum\limits_{i = -\infty}^{\infty}\left|a_{i}\right|\left(\sum\limits_{j = i+1}^{i+n} \hat{\mathbb{E}}\left|\left(\pm Y_{j}^{(2)}\right)\right|\right)^{v} \\ & \leq \sum\limits_{i = -\infty}^{\infty}\left|a_{i}\right|\left[\sum\limits_{j = i+1}^{i+n} \hat{\mathbb{E}}\left|Y_{j}\right|\left(1-g\left(\frac{\left|Y_{j}\right|}{x^{1/r}}\right)\right) \right]^{v}\\ & \leq c \left[n\hat{\mathbb{E}}|Y|\left(1-g\left(\frac{|Y|}{n^{1/p}}\right)\right)\right]^{v} \\ &\leq\left\{\begin{array}{lll} c \left[ \frac{n\hat{\mathbb{E}}|Y \| Y|^{\alpha p-1}}{n^{(\alpha p-1)/ p}}\left(1-g\left(\frac{|Y|}{n^{1 / p}}\right)\right)\right]^{v}, & \text { if } r < \alpha p, \nonumber\\ c \left[\frac{n\hat{\mathbb{E}}|Y \| Y|^{\alpha p-1}}{n^{(\alpha p-1) /p}} \frac{\log \left(1+|Y|^{p}\right)}{\log (1+n)}\left(1-g\left(\frac{|Y|}{n^{1 / p}}\right)\right)\right]^{v}, & \text { if } r = \alpha p, \nonumber\\ c \left[\frac{n\hat{\mathbb{E}}|Y \| Y|^{r-1}}{n^{(r-1)/ p}}\left(1-g\left(\frac{|Y|}{n^{1 / p}}\right)\right)\right]^{v}, & \text { if } r > \alpha p, \end{array}\right. \\ &\ll\left\{\begin{array}{lll} n^{v-\alpha v+v / p}, & \text { if } r < \alpha p, \\ n^{v-\alpha v+v / p}\left(\log (1+n)\right)^{-v}, & \text { if } r = \alpha p, \\ n^{v-r v / p+v / p}, & \text { if } r > \alpha p . \end{array}\right. \end{align} | (4.22) |
From (4.19) and (4.22), by v > \max \left\{\alpha p, r, 2, \frac{2 p(\alpha-1)}{2-p}\right\} , such that \alpha-2+v-\alpha v < -1 and \alpha-2+v-r v / p < -1 , we have that
\begin{align*} H_{23}& \leq c \sum\limits_{n = 1}^{\infty} n^{\alpha-2-r / p} \int_{n^{r/p}}^{\infty} x^{-v / r}\sum\limits_{i = -\infty}^{\infty}\left|a_{i}\right|\left(\sum\limits_{j = i+1}^{i+n}\left| \hat{\mathbb{E}}\left(\pm Y_{j}^{(1)}\right)\right|\right)^{v} \; \text{ d} x \\ &\leq \left\{\begin{array}{lll} c \sum\limits_{n = 1}^{\infty} n^{\alpha-2-r / p} \int_{r^{r/p}}^{\infty} x^{-v / r}\left(n^{v-\alpha v+v/ p}\right) \; \text{ d} x, & \text { if } r < \alpha p, \\ c \sum\limits_{n = 1}^{\infty} n^{\alpha-2-r / p} \int_{n^{r/p}}^{\infty} x^{-v / r}\left[n^{v-\alpha v+v/ p}{\left(\log (1+n)\right)^{-v}}\right] \; \text{ d} x, & \text { if } r = \alpha p, \\ c \sum\limits_{n = 1}^{\infty} n^{\alpha-2-r / p} \int_{n^{r/p}}^{\infty} x^{-v / r}\left(n^{v-r v/p+v / p}\right) \; \text{ d} x, & \text { if } r > \alpha p, \end{array}\right.\\ &\leq\left\{\begin{array}{ll} c \sum\limits_{n = 1}^{\infty} n^{\alpha-2-r / p+v+v / p-\alpha v} \int_{n^{r / p}}^{\infty} x^{-v / r} \; \text{ d} x, & \text { if } r < \alpha p, \\ c \sum\limits_{n = 1}^{\infty} n^{\alpha-2-r / p+v+v / p-\alpha v}(\log (1+n))^{-v} \int_{n^{r / p}}^{\infty} x^{-v / r} \; \text{ d} x, & \text { if } r = \alpha p, \\ c \sum\limits_{n = 1}^{\infty} n^{\alpha-2-r / p+v+v / p-r v / p} \int_{n^{r / p}}^{\infty} x^{-v / r} \; \text{ d} x, & \text { if } r > \alpha p, \end{array}\right. \\ &\leq\left\{\begin{array}{ll} c \sum\limits_{n = 1}^{\infty} n^{\alpha-2+v-\alpha v}, & \text { if } r < \alpha p, \\ c \sum\limits_{n = 1}^{\infty} n^{\alpha-2+v-\alpha v}(\log (1+n))^{-v}, & \text { if } r = \alpha p, \\ c \sum\limits_{n = 1}^{\infty} n^{\alpha-2+v-r v / p}, & \text { if } r > \alpha p, \end{array}\right.\\ & < \infty . \end{align*} |
It follows that H_{2} < \infty , together with (4.15), we conclude that (4.13) holds. Therefore the proof of Theorem 3.2 is completed.
We have obtained the new results of complete convergence and complete integral convergence for moving average process under sub-linear expectations. Theorems of this paper are the extension of convergence properties of moving average process under the classical linear expectation space.
This paper was supported by the National Natural Science Foundation of China (12061028), the Support Program of the Guangxi China Science Foundation (2018GXNSFAA281011), and Guangxi Colleges and Universities Key Laboratory of Applied Statistics.
All authors declare no conflict of interest in this paper.
[1] |
S. G. Peng, G-expectation, G-Brownian motion and related stochastic calculus of Ito type, Sto. Anal. Appl., 2 (2006), 541–567. https://doi.org/10.1007/978-3-540-70847-6_25 doi: 10.1007/978-3-540-70847-6_25
![]() |
[2] |
S. G. Peng, Multi-dimensional G-Brownian motion and related stochastic calculus under gexpectation, Stoch. Proc. Appl., 118 (2008), 2223–2253. https://doi.org/10.1016/j.spa.2007.10.015 doi: 10.1016/j.spa.2007.10.015
![]() |
[3] |
S. G. Peng, Survey on normal distributions, central limit theorem, Brownian motion and the related stochastic calculus under sublinear expectations, Sci. China Ser. A-Math., 52 (2009), 1391–1411. https://doi.org/10.1007/s11425-009-0121-8 doi: 10.1007/s11425-009-0121-8
![]() |
[4] | L. X. Zhang, Strong limit theorems for extended independent and extended negatively dependent random variables under non-linear expectations, 2016. https://doi.org/10.48550/arXiv.1608.00710 |
[5] |
L. X. Zhang, Rosenthal's inequalities for independent and negatively dependent random variables under sub-linear expectations with applications, Sci. China Math., 59 (2016), 751–768. https://doi.org/10.1007/s11425-015-5105-2 doi: 10.1007/s11425-015-5105-2
![]() |
[6] |
L. X. Zhang, Exponential inequalities under sub-linear expectations with applications to laws of the iterated logarithm, Sci. China Math., 59 (2016), 2503–2526. https://doi.org/10.1007/s11425-016-0079-1 doi: 10.1007/s11425-016-0079-1
![]() |
[7] |
P. L. Hsu, H. Robbins, Complete convergence and the law of large numbers, Proc. Natl. Acad. Sci. USA, 33 (1947), 25–31. https://doi.org/10.1086/bullnattax41787752 doi: 10.1086/bullnattax41787752
![]() |
[8] | Y. S. Chow, On the rate of moment convergence of sample sums and extremes, Bull. Inst. Math. Acad. Sin., 16 (1988), 177–201. |
[9] |
S. H. Sung, A note on the complete convergence for arrays of rowwise independent random elements, Stat. Probab. Lett., 78 (2008), 1283–1289. https://doi.org/10.1016/j.spl.2007.11.018 doi: 10.1016/j.spl.2007.11.018
![]() |
[10] |
Q. Y. Wu, Complete convergence for negatively dependent sequences of random variables, J. Inequal. Appl., 2010 (2010), 1–10. https://doi.org/10.1155/2010/507293 doi: 10.1155/2010/507293
![]() |
[11] |
Q. Y. Wu, A complete convergence theorem for weighted sums of arrays of rowwise negatively dependent random variables, J. Inequal. Appl., 2012 (2012), 1–10. https://doi.org/10.1186/1029-242X-2012-50 doi: 10.1186/1029-242X-2012-50
![]() |
[12] |
X. H. Bao, J. J. Lin, X. J. Wang, Y. Wu, On complete convergence for weighted sums of arrays of rowwise END random variables and its statistical applications, Math. Slovaca, 69 (2019), 223–232. https://doi.org/10.1515/ms-2017-0216 doi: 10.1515/ms-2017-0216
![]() |
[13] |
X. Deng, X. J. Wang, On complete convergence for extended independent random variables under sub-linear expectations, J. Korean Math. Soc., 57 (2020), 553–570. https://doi.org/10.4134/JKMS.j190093 doi: 10.4134/JKMS.j190093
![]() |
[14] |
J. Li, Q. Y. Wu, Complete integral convergence for arrays of row-wise extended independent random variables under Sub-linear expectations, Commun. Stat.-Theor. M., 49 (2020), 5613–5626. https://doi.org/10.1080/03610926.2019.1620954 doi: 10.1080/03610926.2019.1620954
![]() |
[15] |
C. Lu, R. Wang, X. J. Wang, Y. Wu, Complete f-moment convergence for extended negatively dependent random variables under sub-linear expectations, J. Korean Math. Soc., 57 (2020), 1485–1508. https://doi.org/10.4134/JKMS.j190756 doi: 10.4134/JKMS.j190756
![]() |
[16] |
H. Y. Zhong, Q. Y. Wu, Complete convergence and complete moment convergence for weighted sums of extended negatively dependent random variables under sub-linear expectation, J. Inequal. Appl., 2017 (2017), 1–14. https://doi.org/10.1186/s13660-017-1538-1 doi: 10.1186/s13660-017-1538-1
![]() |
[17] |
M. Z. Xu, K. Cheng, Convergence for sums of i.i.d. random variables under sublinear expectations, J. Inequal. Appl., 2021 (2021), 1–14. https://doi.org/10.1186/s13660-021-02692-x doi: 10.1186/s13660-021-02692-x
![]() |
[18] |
X. Ding, A general form for precise asymptotics for complete convergence under sublinear expectation, AIMS Math., 7 (2022), 1664–1677. https://doi.org/10.3934/math.2022096 doi: 10.3934/math.2022096
![]() |
[19] |
L. X. Zhang, The convergence of the sums of independent random variables under the sub-linear expectations, Acta Math. Sin.-E., 36 (2020), 224–244. https://doi.org/10.1007/s10114-020-8508-0 doi: 10.1007/s10114-020-8508-0
![]() |
[20] |
I. A. Ibragimov, Some limit theorems for stationary processes, Theor. Probab. Appl., 7 (1962), 349–382. https://doi.org/10.1137/1107036 doi: 10.1137/1107036
![]() |
[21] |
R. M. Burton, H. Dehling, Large deviations for some weakly dependent random processes, Stat. Probab. Lett., 9 (1990), 397–401. https://doi.org/10.1016/0167-7152(90)90031-2 doi: 10.1016/0167-7152(90)90031-2
![]() |
[22] |
D. L. Li, M. B. Rao, X. C. Wang, Complete convergence of moving average processes, Stat. Probab. Lett., 14 (1992), 111–114. https://doi.org/10.1016/0167-7152(92)90073-E doi: 10.1016/0167-7152(92)90073-E
![]() |
[23] |
L. X. Zhang, Complete convergence of moving average processes under dependence assumptions, Stat. Probab. Lett., 30 (1996), 165–170. https://doi.org/10.1016/0167-7152(95)00215-4 doi: 10.1016/0167-7152(95)00215-4
![]() |
[24] |
W. Z. Yang, X. J. Wang, N. X. Ling, S. H. Hu, On complete convergence of moving average process for AANA sequence, Discrete Dyn. Nat. Soc., 2012 (2012), 1–24. https://doi.org/10.1155/2012/863931 doi: 10.1155/2012/863931
![]() |
[25] |
W. Z. Yang, S. H. Hu, Complete moment convergence of pairwise NQD random variables, Stochastics, 87 (2015), 199–208. https://doi.org/10.1080/17442508.2014.939975 doi: 10.1080/17442508.2014.939975
![]() |
[26] | D. H. Qiu, P. Y. Chen, Convergence for moving average process under END set-up, Acta Math. Sci. Ser. A, 35 (2018), 756–768. |
[27] |
X. R. Tao, Y. Wu, H. Xia, X. J. Wang, Complete moment convergence of moving average process generated by a class of random variables, Commun. Stat. Theor. Method., 46 (2017), 10903–10913. https://doi.org/10.1080/03610926.2016.1252401 doi: 10.1080/03610926.2016.1252401
![]() |
[28] |
M. Z. Song, Q. X. Zhu, Convergence properties of the maximum partial sums for moving average process under \rho^{-}-mixing assumption, J. Inequal. Appl., 2019 (2019), 1–16. https://doi.org/10.1186/s13660-019-2038-2 doi: 10.1186/s13660-019-2038-2
![]() |
[29] |
W. Liu, Y. Zhang, Central limit theorem for linear processes generated by IID random variables under the sub-linear expectation, Appl. Math. Ser. B, 36 (2021), 243–255. https://doi.org/10.1007/s11766-021-3882-7 doi: 10.1007/s11766-021-3882-7
![]() |
[30] |
W. Liu, Y. Zhang, The law of the iterated logarithm for linear processes generated by stationary independent random variables under the sub-linear expectation, Entropy, 23 (2021), 1–11. https://doi.org/10.3390/e23101313 doi: 10.3390/e23101313
![]() |
[31] | W. Liu, Y. Zhang, Large deviation principle for linear processes generated by real stationary sequences under the sub-linear expectation, Commun. Stat. Theor. Method., 2021. https://doi.org/10.1080/03610926.2021.2018462 |
1. | Mingzhou Xu, Xuhang Kong, Note on complete convergence and complete moment convergence for negatively dependent random variables under sub-linear expectations, 2023, 8, 2473-6988, 8504, 10.3934/math.2023428 | |
2. | Mingzhou Xu, Kun Cheng, Wangke Yu, Complete convergence for weighted sums of negatively dependent random variables under sub-linear expectations, 2022, 7, 2473-6988, 19998, 10.3934/math.20221094 | |
3. | Xiaocong Chen, Qunying Wu, Complete convergence theorems for moving average process generated by independent random variables under sub-linear expectations, 2024, 53, 0361-0926, 5378, 10.1080/03610926.2023.2220449 | |
4. | Lunyi Liu, Qunying Wu, Complete integral convergence for weighted sums of negatively dependent random variables under sub-linear expectations, 2023, 8, 2473-6988, 22319, 10.3934/math.20231138 | |
5. | Mengmei Xi, Fei Zhang, Xuejun Wang, Complete Moment Convergence and L_q Convergence for AANA Random Variables Under Sub-linear Expectations, 2024, 47, 0126-6705, 10.1007/s40840-023-01636-6 | |
6. | Xiaocong Chen, Qunying Wu, Further research on complete integral convergence for moving average process of ND random variables under sub-linear expectations, 2024, 53, 0361-0926, 7102, 10.1080/03610926.2023.2258428 | |
7. | Xue Ding, Complete convergence for moving average process generated by extended negatively dependent random variables under sub-linear expectations, 2024, 53, 0361-0926, 8166, 10.1080/03610926.2023.2279924 | |
8. | Mingzhou Xu, Kun Cheng, Wangke Yu, Convergence of linear processes generated by negatively dependent random variables under sub-linear expectations, 2023, 2023, 1029-242X, 10.1186/s13660-023-02990-6 | |
9. | Mingzhou Xu, Complete convergence and complete moment convergence for maximal weighted sums of extended negatively dependent random variables under sub-linear expectations, 2023, 8, 2473-6988, 19442, 10.3934/math.2023992 | |
10. | Lizhen Huang, Qunying Wu, Complete convergence for weighted sums of widely negative orthant dependent random variables under the sub-linear expectations, 2024, 0361-0926, 1, 10.1080/03610926.2024.2307454 | |
11. | Mingzhou Xu, Complete convergence of moving average processes produced by negatively dependent random variables under sub-linear expectations, 2023, 8, 2473-6988, 17067, 10.3934/math.2023871 | |
12. | Mingzhou Xu, On the complete moment convergence of moving average processes generated by negatively dependent random variables under sub-linear expectations, 2024, 9, 2473-6988, 3369, 10.3934/math.2024165 |