Processing math: 100%
Research article

Complete convergence and complete moment convergence for maximal weighted sums of extended negatively dependent random variables under sub-linear expectations

  • Received: 10 April 2023 Revised: 17 May 2023 Accepted: 28 May 2023 Published: 09 June 2023
  • MSC : 60F05, 60F15

  • In this article, we study the complete convergence and complete moment convergence for maximal weighted sums of extended negatively dependent random variables under sub-linear expectations. We also give some sufficient assumptions for the convergence. Moreover, we get the Marcinkiewicz-Zygmund type strong law of large numbers for weighted sums of extended negatively dependent random variables. The results obtained in this paper generalize the relevant ones in probability space.

    Citation: Mingzhou Xu. Complete convergence and complete moment convergence for maximal weighted sums of extended negatively dependent random variables under sub-linear expectations[J]. AIMS Mathematics, 2023, 8(8): 19442-19460. doi: 10.3934/math.2023992

    Related Papers:

    [1] Yipeng Qiu, Yingying Xiao, Yan Zhao, Shengyue Xu . Normalized ground state solutions for the Chern–Simons–Schrödinger equations with mixed Choquard-type nonlinearities. AIMS Mathematics, 2024, 9(12): 35293-35307. doi: 10.3934/math.20241677
    [2] Yanhua Wang, Min Liu, Gongming Wei . Existence of ground state for coupled system of biharmonic Schrödinger equations. AIMS Mathematics, 2022, 7(3): 3719-3730. doi: 10.3934/math.2022206
    [3] Xiaojie Guo, Zhiqing Han . Existence of solutions to a generalized quasilinear Schrödinger equation with concave-convex nonlinearities and potentials vanishing at infinity. AIMS Mathematics, 2023, 8(11): 27684-27711. doi: 10.3934/math.20231417
    [4] Xionghui Xu, Jijiang Sun . Ground state solutions for periodic Discrete nonlinear Schrödinger equations. AIMS Mathematics, 2021, 6(12): 13057-13071. doi: 10.3934/math.2021755
    [5] Liang Xue, Jiafa Xu, Donal O'Regan . Positive solutions for a critical quasilinear Schrödinger equation. AIMS Mathematics, 2023, 8(8): 19566-19581. doi: 10.3934/math.2023998
    [6] Yin Deng, Xiaojing Zhang, Gao Jia . Positive solutions for a class of supercritical quasilinear Schrödinger equations. AIMS Mathematics, 2022, 7(4): 6565-6582. doi: 10.3934/math.2022366
    [7] Yang Pu, Hongying Li, Jiafeng Liao . Ground state solutions for the fractional Schrödinger-Poisson system involving doubly critical exponents. AIMS Mathematics, 2022, 7(10): 18311-18322. doi: 10.3934/math.20221008
    [8] Yonghang Chang, Menglan Liao . Global well-posedness and scattering of the four dimensional cubic focusing nonlinear Schrödinger system. AIMS Mathematics, 2024, 9(9): 25659-25688. doi: 10.3934/math.20241254
    [9] Rui Sun . Soliton solutions for a class of generalized quasilinear Schrödinger equations. AIMS Mathematics, 2021, 6(9): 9660-9674. doi: 10.3934/math.2021563
    [10] Fugeng Zeng, Peng Shi, Min Jiang . Global existence and finite time blow-up for a class of fractional p-Laplacian Kirchhoff type equations with logarithmic nonlinearity. AIMS Mathematics, 2021, 6(3): 2559-2578. doi: 10.3934/math.2021155
  • In this article, we study the complete convergence and complete moment convergence for maximal weighted sums of extended negatively dependent random variables under sub-linear expectations. We also give some sufficient assumptions for the convergence. Moreover, we get the Marcinkiewicz-Zygmund type strong law of large numbers for weighted sums of extended negatively dependent random variables. The results obtained in this paper generalize the relevant ones in probability space.



    We recall that an interval χR is convex if for all x, yχ, we have tx+(1t)yχ, where t[0,1] and a function f:χR is convex if for all x, yχ, the inequality

    f(tx+(1t)y)tf(x)+(1t)f(y) (1.1)

    holds. A function f:χR is concave if the inequality (1.1) holds in opposite direction.

    Convexity is essential to understanding and solving problems pertaining to fractional integral inequalities because of its properties and definition, and it has recently gained in importance. Convex functions have yielded several new integral inequalities, as evidenced by [2,3,8,11,14,15,21,24,43,45,46,47,48]. Hermite-integral Hadamard's inequalities are most commonly encountered when searching for comprehensive inequalities:

    f(u+v2)1vuvuf(x)dxf(u)+f(v)2, (1.2)

    where the function f:χR is convex on χ and fL1([u,v]).

    There are the following two classical fractional integral inequalities which are defined by Hermite-Hadamard type inequalities:

    f(u+v2)Γ(ν+1)2(v+u)ν[Jνu+f(v)+Jνvf(u)]f(u)+f(v)2, (1.3)

    where the function f:χR is positive, convex on χ and fL1([u,v]).

    The left-sided and right-sided Riemann-Liouville fractional integrals Jνu+f(v) and Jνvf(u) of order ν>0 in (1.3), are defined respectively as (see [5,22]):

    Jνu+f(x):=1Γ(ν)xu(xt)ν1f(t)dt,0u<x<v

    and

    Jνvf(x):=1Γ(ν)vx(tx)ν1f(t)dt0u<x<v.

    The extended inequalities for (1.2) and (1.5) are fractional integral inequalities of the Fejér and Hermite-Hadamard-Fejér types, and the results are as follows:

    f(u+v2)vuζ(x)dxvuf(x)ζ(x)dxf(u)+f(v)2vuζ(x)dx (1.4)

    and

    f(u+v2)[Jνu+ζ(v)+Jνvζ(u)]Γ(ν+1)2(v+u)ν[Jνu+(fζ)(v)+Jνv(fζ)(u)]f(u)+f(v)2[Jνu+ζ(v)+Jνvζ(u)] (1.5)

    respectively, where f is as defined above, the function ζ:[u,v][0,) is integrable symmetric with respect to u+v2, that is

    ζ(u+vx)=ζ(x) for all x[u,v]

    and Γ(ν) is the Gamma function defined as Γ(ν)=0xν1exdx, Re(ν)>0.

    In addition to being able to be generalized, convexity and convex functions have several generalizations. One of those generalizations is the concept of harmonic convexity and harmonic convex functions, which can be defined as follows:

    Definition 1.1. Define χR{0} as an interval of real numbers. A function f from χ to the real numbers is considered to be harmonically convex, if

    f(xytx+(1t)y)tf(y)+(1t)f(x) (1.6)

    for all x,yχ and t[0,1]. Harmonically concave f is defined as the inequality in (1.6) reversed.

    Using harmonic-convexity, the Hermite-Hadamard type yields the following result.

    Theorem 1.2. Let f:χR{0}R be a harmonically convex function and u,vχ with u<v.If fL([u,v]) then the followinginequalities hold:

    f(2uvu+v)uvvuuvf(x)x2dxf(u)+f(v)2. (1.7)

    Harmonic symmetricity of a function is given in the definition below.

    Definition 1.3. A function ζ:[u,v]R{0}R is harmonically symmetric with respect to 2uvu+v if

    ζ(x)=ζ(11u+1v1x)

    holds for all x[u,v].

    Fejér type inequalities using harmonic convexity and the notion of harmonic symmetricity were presented in Chan and Wu [7].

    Theorem 1.4. Let f:χR{0}R be a harmonically convex function and u,vχ with u<v.If fL([u,v]) and ζ:[u,v]R{0}R is nonnegative, integrable and harmonically symmetric withrespect to 2uvu+v, then

    f(2uvu+v)uvζ(x)dxuvvuuvf(x)ζ(x)x2dxf(u)+f(v)2uvζ(x)dx. (1.8)

    Hermite-Hadamard's inequalities for harmonically convex functions in fractional integral form were proved in [19].

    Theorem 1.5. Let f:χ(0,)R be afunction such that fL([u,v]), whereu,vχ with u<v. If f is a harmonically convex function on [u,v], then the following inequalities for fractional integrals hold:

    f(2uvu+v)Γ(ν+1)2(uvvu)ν{Jν1u(fg)(1v)+Jν1v+(fg)(1u)}f(u)+f(v)2 (1.9)

    with ν>0 and g(x)=1x.

    Hermite-Hadamard-Fejér inequality for harmonically convex function in fractional integral form were obtained by İşcan et al. in [18].

    Theorem 1.6. Let f:[u,v]R be a harmonically convexfunction with u<v and fL([u,v]). Ifζ:[u,v]R is nonnegative, integrableand harmonically symmetric with respect to 2uvu+v, then thefollowing inequalities for fractional integrals holds:

    f(2uvu+v){Jν1u(ζg)(1v)+Jν1v+(fg)(1u)}Jν1u(fζg)(1v)+Jν1v+(fζg)(1u)f(u)+f(v)2{Jν1u(ζg)(1v)+Jν1v+(fg)(1u)} (1.10)

    with ν>0 and g(x)=1x, x[1v,1u].

    Left-sided and right-sided Riemann-Liouville fractional integrals are generalized in the definition given below:

    Definition 1.7. [20] Let τ(x) be an increasing positive and monotonic function on the interval (u,v] with a continuous derivative τ(x) on the interval (u,v) with τ(x)=0, 0[u,v]. Then, the left-side and right-side of the weighted fractional integrals of a function f with respect to another function τ(x) on [u,v] of order ν>0 are defined by:

    (ζJν;τu+f)(x)=ζ1(x)Γ(ν)xuτ(t)(τ(x)τ(t))ν1f(t)ζ(t)dt (1.11)

    and

    (ζJν;τvf)(x)=ζ1(x)Γ(ν)vxτ(t)(τ(t)τ(x))ν1f(t)ζ(t)dt, (1.12)

    where ζ1(x)=1ζ(x),ζ(x)0.

    The following observations are obvious from the above definition:

    ● If τ(x)=x and ζ(x)=1, then the weighted fractional integral operators in the Definition 1.7 reduce to the classical Riemann-Liouville fractional integral operators.

    ● If ζ(x)=1, we get the fractional integral operators of a function f with respect to another function τ(x) of order ν>0, defined in [1,38] as follows:

    (Jν;τu+f)(x)=1Γ(ν)xuτ(t)(τ(x)τ(t))ν1f(t)dt

    and

    (Jν;τvf)(x)=1Γ(ν)vxτ(t)(τ(t)τ(x))ν1f(t)dt.

    The study analyzes several inequalities of the Hermite-Hadamard-Fejér type through weighted fractional operators with positive symmetric weight function in the kernel.

    Throughout this paper, R denotes the set of all real numbers, χR denotes an interval. In addition. for u,vJ with u<v, the functions θu,v,θv,u:[0,1]R are defined as:

    θu,v(t)=uvtu+(1t)v,θv,u(t)=uvtv+(1t)u.

    We start this section with the following Lemma which will be used repeatedly in the sequel.

    Lemma 2.1. The following results hold:

    (i) If ζ:[u,v](0,)[0,) be an integrable function and symmetric with respect to2uvu+v, then we have

    ζ(θu,v(t))=ζ(θv,u(t)) (2.1)

    for each t[0,1],

    (ii) If ζ:[u,v](0,)[0,) be an integrable and symmetric function with respect to2uvu+v, then we have for ν>0

    Jν;ττ1(1v)+(ζhτ)(τ1(1u))=Jν;ττ1(1u)(ζhτ)(τ1(1v))=12[Jν;ττ1(1v)+(ζhτ)(τ1(1u))+Jν;ττ1(1u)(ζhτ)(τ1(1v))]. (2.2)

    where h(x)=1x, x[1v,1u].

    Proof. (ⅰ) Let x=θu,v(t)=uvtu+(1t)v. It is clear that x[u,v] for each t[0,1] and then

    11u+1v1x=uvtv+(1t)u=θv,u(t).

    Hence by the definition of harmonic symmetry, we obtain

    ζ(θu,v(t))=ζ(x)=ζ(11u+1v1x)=ζ(θv,u(t)).

    (ⅱ) By using the harmonic symmetric property of ζ, we have

    (ζτ)(t)=ζ(τ(t))=ζ(11u+1v1τ(t)),

    for all t[τ1(1v),τ1(1u)].

    From this and by setting 1τ(x)=11u+1vτ(t), it follows that

    Jν;ττ1(1v)+(ζhτ)(τ1(1u))=1Γ(ν)τ1(1u)τ1(1v)(τ(x)1v)ν1(ζhτ)(x)τ(x)dx=1Γ(ν)τ1(1u)τ1(1v)(τ(x)1v)ν1(ζhτ)(1u+1vt)τ(t)dt=1Γ(ν)τ1(1u)τ1(1v)(1uτ(t))ν1(ζhτ)(t)τ(t)dt=Jν;ττ1(1v)(ζhτ)(τ1(1v)).

    Theorem 2.2. Let f:I(0,)R be an L1 convex function with 0<u<v, u,vI andζ:[u,v]R be an integrable, positiveand weighted symmetric function with respect to 2uvu+v. If τis an increasing and positive function on [u,v) andτ(x) is continuous on (u,v), then, wehave for ν>0:

    f(2uvu+v)[(Jν;ττ1(1v)+(ζhτ))(τ1(1u))+(Jν;ττ1(1u)(ζhτ))(τ1(1v))]ζ(1u)(ζτJν;ττ1(1v)+(fhτ)(τ1(1u)))+ζ(1v)(ζτJν;ττ1(1u)(fhτ)(τ1(1v)))f(u)+f(v)2[Jν;ττ1(1v)+(ζhτ)(τ1(1u))+Jν;ττ1(1u)(ζhτ)(τ1(1v))]. (2.3)

    Proof. Since f is a harmonic convex function on [u,v], we have

    f(2xyx+y)f(x)+f(y)2,x,y[u,v].

    Choosing x=ζ(θu,v(t)) and y=ζ(θv,u(t)), we obtain

    2f(2uvu+v)f(ζ(θu,v(t)))+f(ζ(θv,u(t))).

    Multiplying both the sides by tν1ζ(θu,v(t)) and then integrating the resultant with respect to "t" over [0,1], we obtain

    2f(2uvu+v)10tν1ζ(θu,v(t))dt10tν1f(ζ(θu,v(t)))ζ(θu,v(t))dt+10tν1f(ζ(θv,u(t)))ζ(θu,v(t))dt. (2.4)

    To prove the first inequality in (2.3), we need to use (2.2)

    Γ(ν)2(1u1v)ν[Jν;ττ1(1v)+(ζhτ)(τ1(1u))+Jν;ττ1(1u)(ζhτ)(τ1(1v))]=Γ(ν)(uvvu)ν(Jν;ττ1(1v)+(ζhτ)(τ1(1u)))=(uvvu)ντ1(1u)τ1(1v)(1uτ(x))ν1(ζhτ)(x)τ(x)dx=τ1(1u)τ1(1v)(1uτ(x)1u1v)ν1(ζhτ)(x)τ(x)dx1u1v=10tν1ζ(θu,v(t))dt, (2.5)

    where t=1uτ(x)1u1v.

    By evaluating the weighted fractional operator, one can observe that

    ζ(1u)(ζτJν;ττ1(1v)+(fhτ)(τ1(1u)))+ζ(1v)(ζτJν;ττ1(1u)(fhτ))(τ1(1v))=ζ(1u)(ζτ)1(τ1(1u))Γ(ν)×τ1(1u)τ1(1v)(1uτ(x))ν1(fhτ)(x)(ζhτ)(x)τ(x)dx+ζ(1v)(ζτ)1(τ1(1v))Γ(ν)×τ1(1u)τ1(1v)(τ(x)1v)ν1(fhτ)(x)(ζhτ)(x)τ(x)dx=1Γ(ν)τ1(1u)τ1(1v)(1uτ(x))ν1(fhτ)(x)(ζhτ)τ(x)dx+1Γ(ν)τ1(1u)τ1(1v)(τ(x)1v)ν1(fhτ)(x)(ζhτ)τ(x)dx=(1u1v)νΓ(ν)τ1(1u)τ1(1v)(1uτ(x)1u1v)ν1×(fhτ)(x)(ζhτ)τ(x)dx1u1v+(1u1v)νΓ(ν)×τ1(1u)τ1(1v)(τ(x)1v1u1v)ν1(fhτ)(x)(ζhτ)τ(x)dx1u1v.

    Setting t1=1uτ(x)1u1vand t2=τ(x)1v1u1v and using (2.1)

    ζ(1u)(ζτJν;ττ1(1v)+(fhτ)(τ1(1u)))+ζ(1v)(ζτJν;ττ1(1u)(fhτ)(τ1(1v)))=(1u1v)νΓ(ν)10tν11f(ζ(θu,v(t1)))ζ(θu,v(t1))dt1+(1u1v)νΓ(ν)10tν12f(ζ(θv,u(t2)))ζ(θv,u(t2))dt2=(1u1v)νΓ(ν)10tν1f(ζ(θu,v(t)))ζ(θu,v(t))dt+(1u1v)νΓ(ν)10tν1f(ζ(θv,u(t)))ζ(θu,v(t))dt. (2.6)

    Using (2.5) and (2.6) in (2.4), we obtain

    f(2uvu+v)[Jν;ττ1(1v)+(ζτ)(τ1(1u))+Jν;ττ1(1u)(ζτ)(τ1(1v))]ζ(1u)(ζτJν;ττ1(1v)+(fτ))(τ1(1u))+ζ(1v)(ζτJν;ττ1(1u)(fτ))(τ1(1v)). (2.7)

    Thus the first inequality is proved.

    To prove the second inequality we use the convexity of f

    f(ζ(θu,v(t)))+f(ζ(θv,u(t)))f(u)+f(v). (2.8)

    Multiplying both the sides by tν1ζ(θu,v(t)) and then integrating the resultant with respect to "t" over [0,1], we obtain

    10tν1f(ζ(θu,v(t)))ζ(θu,v(t))dt+10tν1f(ζ(θv,u(t)))ζ(θu,v(t))dt[f(u)+f(v)]10tν1ζ(θu,v(t))dt. (2.9)

    Then by using (2.1) and (2.5) in (2.8), we obtain (2.3).

    Remark 1. (more specifically), if we utilize Theorem 1 in Theorem 2.2, then

    (1) τ(x)=x, then (2.3) takes the form

    f(2uvu+v)[Jν1v+(ζh)(1u)+Jν1u(ζh)(1v)]ζ(1u)(ζJν1v+(fh)(1u))+ζ(1v)(ζJν1u(fh)(1v))f(u)+f(v)2[Jν1v+(ζh)(1u)+Jν1u(ζh)(1v)], (2.10)

    where ζJνu+ and ζJνv are the left and right weighted Riemann-Liouville fractional operators of order ν>0, defined by

    (ζJνu+f)(x)=1Γ(ν)xu(xt)ν1f(t)ζ(t)dt

    and

    (ζJνvf)(x)=1Γ(ν)vx(tx)ν1f(t)ζ(t)dt.

    (2) τ(x)=x and ν=1, then inequality (2.3) transforms into inequality (1.8).

    (3) τ(x)=x and ζ(x)=1, then inequality (2.3) reduces to the inequality (1.9).

    (4) τ(x)=x, ζ(x)=1 and ν=1, then inequality (2.3) becomes the inequality (1.7).

    Lemma 2.3. Let f:I(0,)R be an L1 function with fL1 for0<u<v, u,vI and ζ:[u,v]R be an integrable, positive and weighted symmetric function withrespect to 2uvu+v. If τ is an increasing and positive functionon [u,v) and τ(x) is continuous on(u,v), then, we have for ν>0:

    1Γ(ν)τ1(1u)τ1(1v)[tτ1(1v)τ(x)(1uτ(x))ν1(ζhτ)(x)dx]×(fhτ)(t)τ(t)dt1Γ(ν)τ1(1u)τ1(1v)[τ1(1u)tτ(x)(τ(x)1v)ν1(ζhτ)(x)dx]×(fhτ)(t)τ(t)dt=[f(u)+f(v)2][Jν;ττ1(1v)+(ζhτ)(τ1(1u))+Jν;ττ1(1u)+(ζhτ)(τ1(1v))][ζ(1u)(ζτJν;ττ1(1v)+(fhτ)(τ1(1u)))+ζ(1v)(ζτJν;ττ1(1u)(fhτ)(τ1(1v)))] (2.11)

    where h(x)=1x, x[1v,1u].

    Proof. Setting

    1Γ(ν)τ1(1u)τ1(1v)[tτ1(1v)τ(x)(1uτ(x))ν1(ζhτ)(x)dx]×(fhτ)(t)τ(t)dt1Γ(ν)τ1(1u)τ1(1v)[τ1(1u)tτ(x)(τ(x)1v)ν1(ζhτ)(x)dx]×(fhτ)(t)τ(t)dt=χ1+χ2. (2.12)

    By integration by parts, making use of Lemma 2.1, and definitions (1.11) and (1.12), we obtain

    χ1=1Γ(ν)τ1(1u)τ1(1v)[tτ1(1v)τ(x)(1uτ(x))ν1(ζhτ)(x)dx]×d[(fhτ)(t)]=f(u)Γ(ν)τ1(1u)τ1(1v)τ(x)(1uτ(x))ν1(ζhτ)(x)τ(x)dx1Γ(ν)τ1(1u)τ1(1v)τ(t)(1uτ(t))ν1(ζhτ)(t)(fhτ)(t)dt=f(u)Γ(ν)τ1(1u)τ1(1v)τ(x)(1uτ(x))ν1(ζhτ)(x)dxζ(1u)(ζτ)1(τ1(1u))Γ(ν)×τ1(1u)τ1(1v)τ(t)(1uτ(t))ν1(ζhτ)(t)(fhτ)(t)dt=f(u)(Jν;ττ1(1v)+(ζhτ))(τ1(1u))ζ(1u)(ζτJν;ττ1(1v)+(fhτ))(τ1(1u)),

    and

    χ2=1Γ(ν)τ1(1u)τ1(1v)[τ1(1u)tτ(x)(τ(x)1v)ν1(ζhτ)(x)dx]×d[(fhτ)(t)]=f(v)(Jν;ττ1(1u)(ζhτ))(τ1(1v))ζ(1v)(ζτJν;ττ1(1u)(fhτ))(τ1(1v)).

    Now

    χ1+χ2=f(u)(Jν;ττ1(1v)+(ζhτ)(τ1(1u)))ζ(1u)(ζτJν;ττ1(1v)+(fhτ))(τ1(1u))+f(v)(Jν;ττ1(1u)(ζhτ)(τ1(1v)))ζ(1v)(ζτJν;ττ1(1u)(fhτ)(τ1(1v))). (2.13)

    Since

    Jν;ττ1(1v)+(ζhτ)(τ1(1u))=Jν;ττ1(1u)(ζhτ)(τ1(1v))=12[Jν;ττ1(1v)+(ζhτ)(τ1(1u))+Jν;ττ1(1u)(ζhτ)(τ1(1v))].

    Thus, we obtain from (2.13) that

    χ1+χ2=[f(u)+f(v)2][Jν;ττ1(1v)+(ζhτ)(τ1(1u))+[Jν;ττ1(1u)+(ζhτ)(τ1(1v))][ζ(1u)(ζτJν;ττ1(1v)+(fhτ)(τ1(1u)))+ζ(1v)(ζτJν;ττ1(1u)(fhτ)(τ1(1v)))]. (2.14)

    Which is the required result.

    Remark 2. Particularly, in Lemma 2.3, if we take:

    (1) τ(x)=x, then equality (2.11) becomes

    1Γ(ν)1u1v[t1v(1ux)ν1(ζh)(x)dx](fh)(t)dt1Γ(ν)1u1v[1ut(x1v)ν1(ζh)(x)dx](fh)(t)dt=[f(u)+f(v)2][Jν1v+(ζh)(1u)+Jν1u+(ζh)(1v)][ζ(1u)(ζJν1v+(fh)(1u))+ζ(1v)(ζJν1u(fh)(1v))]. (2.15)

    where ζJνu+ and ζJνv are defined in Remark 1.

    (2) τ(x)=x and ζ(x)=1, then equality (2.11) becomes

    12(uvvu)[10(1tν)(fh)(tu+(1t)vuv)dt10(1tν)(fh)(tv+(1t)uuv)dt]=f(u)+f(v)2Γ(ν+1)2(uvvu)ν[Jν1v+(fh)(1u)+Jν1u(fh)(1v)]. (2.16)

    (3) τ(x)=x, ζ(x)=1 and ν=1, we obtain

    uv(vu)210(12t)(t+u(1t)v)2f(uvt+u(1t)v)dt=f(u)+f(v)2(uvvu)vuf(x)x2dx. (2.17)

    We will use the following notations for the rest of this section:

    ζχν;τ(u,v)=[f(u)+f(v)2][Jν;ττ1(1v)+(ζhτ)(τ1(1u))+Jν;ττ1(1u)+(ζhτ)(τ1(1v))][ζ(1u)(ζτJν;ττ1(1v)+(fhτ)(τ1(1u)))+ζ(1v)(ζτJν;ττ1(1u)(fhτ)(τ1(1v)))]. (2.18)

    Theorem 2.4. Let f:I(0,)R be an L1 function with fL1 for0<u<v, u,vI and ζ:[u,v]R be an integrable, positive and weighted symmetric function withrespect to 2uvu+v. If |(fh)| is harmonic convex on [u,v], τis an increasing and positive function on [u,v), andτ(x) is continuous on (u,v), then, wehave for ν>0:

    |ζχν;τ(u,v)|ζhτ[uτ(ν,u,v)|(fh)(1u)|+vτ(ν,u,v)|(fh)(1v)|]Γ(ν+1), (2.19)

    where h(x)=1x, x[1v,1u],

    uτ(ν,u,v)=τ1(1u)+τ1(1v)2τ1(1v)u(τ(t)v)τ(t)(vu)×[(1uτ(t))ν(1uτ(τ1(1u)+τ1(1v)τ(t)))ν]τ(t)dt+τ1(1u)τ1(1u)+τ1(1v)2u(τ(t)v)τ(t)(vu)×[(1uτ(τ1(1u)+τ1(1v)t))ν(1uτ(t))ν]τ(t)dt

    and

    vτ(ν,u,v)=τ1(1u)+τ1(1v)2τ1(1v)v(uτ(t))τ(t)(vu)×[(1uτ(t))ν(1uτ(τ1(1u)+τ1(1v)t))ν]τ(t)dt+τ1(1u)τ1(1u)+τ1(1v)2v(uτ(t))τ(t)(vu)×[(1uτ(τ1(1u)+τ1(1v)t))ν(1uτ(t))ν]τ(t)dt.

    Proof. According to (2.11) of Lemma 2.3, we obtain

    |ζχν;τ(u,v)|1Γ(ν)τ1(1u)τ1(1v)|tτ1(1v)τ(x)(1uτ(x))ν1×(ζhτ)(x)dxτ1(1u)tτ(x)(τ(x)1v)ν1(ζhτ)(x)dx|×|(fhτ)(t)|τ(t)dt (2.20)

    We know that ζ is a harmonic symmetric with respect to 2uvu+v, we observed that

    τ1(1u)tτ(x)(τ(x)1v)ν1(ζhτ)(x)dx=τ1(1u)tτ(x)(τ(x)1v)ν1(ζhτ)(τ1(1u)+τ1(1v)x)dx=τ1(1u)+τ1(1v)tτ1(1v)τ(x)(1uτ(x))ν1(ζhτ)(x)dx.

    Hence

    |tτ1(1v)τ(x)(1uτ(x))ν1(ζhτ)(x)dxτ1(1u)tτ(x)(τ(x)1v)ν1(ζhτ)(x)dx|=|τ1(1u)+τ1(1v)ttτ(x)(1uτ(x))ν1(ζhτ)(x)dx|. (2.21)

    From (2.21) we get

    |tτ1(1v)τ(x)(1uτ(x))ν1(ζhτ)(x)dxτ1(1u)tτ(x)(τ(x)1v)ν1(ζhτ)(x)dx|=|τ1(1u)+τ1(1v)ttτ(x)(1uτ(x))ν1(ζhτ)(x)dx|τ1(1u)+τ1(1v)ttτ(x)(1uτ(x))ν1(ζhτ)(x)dx (2.22)

    for t[τ1(1v),τ1(1u)+τ1(1v)2] or

    |tτ1(1v)τ(x)(1uτ(x))ν1(ζhτ)(x)dxτ1(1u)t|τ(x)|(τ(x)1v)ν1(ζhτ)(x)dx|=|τ1(1u)+τ1(1v)ttτ(x)(1uτ(x))ν1(ζhτ)(x)dx|tτ1(1u)+τ1(1v)tτ(x)(1uτ(x))ν1(ζhτ)(x)dx (2.23)

    for t[τ1(1u)+τ1(1v)2,τ1(1u)].

    By applying the harmonic convexity of |f| on [u,v] for t[τ1(1v),τ1(1u)], we get

    |(fhτ)(t)|u(τ(t)v)τ(t)(vu)|(fh)(1u)|+v(uτ(t))τ(t)(vu)|(fh)(1u)|. (2.24)

    Applying (2.22)–(2.24) in (2.20), we obtain

    |ζχν;τ(u,v)|ζhτΓ(ν)×τ1(1u)+τ1(1v)2τ1(1v)(τ1(1u)+τ1(1v)ttτ(x)(1uτ(x))ν1dx)×(u(τ(t)v)τ(t)(vu)|(fh)(u)|+v(uτ(t))τ(t)(vu)|(fh)(v)|)τ(t)dt+ζhτΓ(ν)τ1(1u)τ1(1u)+τ1(1v)2(tτ1(1u)+τ1(1v)tτ(x)(1uτ(x))ν1dx)×(u(τ(t)v)τ(t)(vu)|(fh)(1u)|+v(uτ(t))τ(t)(vu)|(fh)(1u)|)τ(t)dt. (2.25)

    Let us evaluate the first integral in (2.25)

    τ1(1u)+τ1(1v)2τ1(1v)(τ1(1u)+τ1(1v)tt(1uτ(x))ν1d(τ(x)))×(u(τ(t)v)τ(t)(vu)|(fh)(u)|+v(uτ(t))τ(t)(vu)|(fh)(v)|)τ(t)dt=1ντ1(1u)+τ1(1v)2τ1(1v)[(1uτ(t))ν(1uτ(τ1(1u)+τ1(1v)t))ν]×(u(τ(t)v)τ(t)(vu)|(fh)(1u)|+v(uτ(t))τ(t)(vu)|(fh)(1u)|)τ(t)dt (2.26)

    and the value of the second integral in (2.25) is given below

    τ1(1u)τ1(1u)+τ1(1v)2(tτ1(1u)+τ1(1v)tτ(x)(1uτ(x))ν1dx)×(u(τ(t)v)τ(t)(vu)|(fh)(u)|+v(uτ(t))τ(t)(vu)|(fh)(v)|)τ(t)dt=1ντ1(1u)τ1(1u)+τ1(1v)2[(1uτ(τ1(1u)+τ1(1v)t))ν(1uτ(t))ν]×(u(τ(t)v)τ(t)(vu)|(fh)(1u)|+v(uτ(t))τ(t)(vu)|(fh)(1u)|)τ(t)dt. (2.27)

    Applying (2.21)–(2.27) in (2.20) to obtain the desired inequality (2.19).

    Remark 3. Particularly, in Theorem 2.4, if we take

    (1) τ(x)=x, we have

    |ζχν(u,v)|=|[f(u)+f(v)2][Jν1v+(ζh)(1u)+Jν1u+(ζh)(1v)][ζ(1u)(ζJν1v+(fh)(1u))+ζ(1v)(ζJν1u(fh)(1v))]|ζh[u(ν,u,v)|(fh)(1u)|+v(ν,u,v)|(fh)(1v)|]Γ(ν+1), (2.28)

    where

    u(ν,u,v)=u+v2uv1vu(tv)t(vu)[(1ut)ν(t1v)ν]dt+1uu+v2uvu(tv)t(vu)[(t1v)ν(1ut)ν]dt

    and

    v(ν,u,v)=u+v2uv1vv(ut)t(vu)[(1ut)ν(t1v)ν]dt+1uu+v2uvv(ut)t(vu)[(t1v)ν(1uτ(t))ν]dt.

    (2) τ(x)=x and ζ(x)=1, we get

    |χν(u,v)|=|f(u)+f(v)2Γ(ν+1)2(uvvu)ν×[Jν1v+(fh)(1u)+Jν1u(fh)(1v)]|(uvvu)ν[u(ν,u,v)|(fh)(1u)|+v(ν,u,v)|(fh)(1v)|]2, (2.29)

    where u(ν,u,v) and v(ν,u,v) are defined as above.

    (3) τ(x)=x, ζ(x)=1 and ν=1, we obtain

    |χ(u,v)|=|f(u)+f(v)2(uvvu)1u1vf(x)dx|(uvvu)[u(u,v)|(fh)(1u)|+v(u,v)|(fh)(1v)|]2, (2.30)
    u(u,v)=vu2uv2+log[4uv(u+v)2]

    and

    v(u,v)=uv2u2v+log[4uv(u+v)2].

    Theorem 2.5. Let f:I(0,)R be an L1 function with fL1 for0<u<v, u,vI and ζ:[u,v]R be an integrable, positive and weighted symmetric function withrespect to u+v2. If |f|q isharmonic convex on [u,v] for q1, τ is anincreasing and positive function on [u,v), and τ(x) is continuous on (u,v), then, we have for ν>0:

    |ζχν;τ(u,v)|ζhτΓ(ν+1)(Cτ(ν,u,v))11q[uτ(ν,u,v)|(fh)(1u)|q+vτ(ν,u,v)|(fh)(1v)|q]1q, (2.31)

    where h(x)=1x, x[1v,1u],

    Cτ(ν,u,v)=2ν+1[(1u1v)ν+1(1uτ(τ1(1u)+τ1(1v)2))ν+1]τ1(1u)+τ1(1v)2τ1(1v)(1uτ(τ1(1u)+τ1(1v)t))ντ(t)dt+τ1(1u)τ1(1u)+τ1(1v)2(1uτ(τ1(1u)+τ1(1v)t))ντ(t)dt

    and uτ(ν,u,v), vτ(ν,u,v) aredefined as in Theorem 2.4.

    Proof. Applying power-mean inequality to(2.20) and then using (2.22)–(2.24), we get

    |ζχν;τ(u,v)|1Γ(ν)(τ1(1u)τ1(1v)|tτ1(1v)τ(x)(1uτ(x))ν1)×(ζhτ)(x)dxτ1(1u)tτ(x)(τ(x)1v)ν1(ζhτ)(x)dx|×|(fhτ)(t)|τ(t)dt1Γ(ν)(τ1(1u)τ1(1v)|τ1(1u)+τ1(1v)ttτ(x)(1uτ(x))ν1(ζhτ)(x)dx|τ(t)dt)11q×(τ1(1u)τ1(1v)|τ1(1u)+τ1(1v)ttτ(x)(1uτ(x))ν1(ζhτ)(x)dx||(fhτ)(t)|qτ(t)dt)1q. (2.32)

    Since |(ζhτ)(x)|ζhτ, hence it is easy to observe that

    τ1(1u)τ1(1v)|τ1(1u)+τ1(1v)ttτ(x)(1uτ(x))ν1(ζhτ)(x)dx|τ(t)dtτ1(1u)τ1(1v)(τ1(1u)+τ1(1v)ttτ(x)(1uτ(x))ν1|(ζhτ)(x)|dx)τ(t)dtζhτ[τ1(1u)+τ1(1v)2τ1(1v)(τ1(1u)+τ1(1v)ttτ(x)(1uτ(x))ν1dx)τ(t)dt+τ1(1u)τ1(1u)+τ1(1v)2(tτ1(1u)+τ1(1v)tτ(x)(1uτ(x))ν1dx)τ(t)dt]=ζhτν{2ν+1[(1u1v)ν+1(1uτ(τ1(1u)+τ1(1v)2))ν+1]τ1(1u)+τ1(1v)2τ1(1v)(1uτ(τ1(1u)+τ1(1v)t))ντ(t)dt+τ1(1u)τ1(1u)+τ1(1v)2(1uτ(τ1(1u)+τ1(1v)t))ντ(t)dt}. (2.33)

    Since for q1 and t[τ1(1u),τ1(1v)], |f|q is convex on [u,v], we get

    |(fhτ)(t)|u(τ(t)v)τ(t)(vu)|(fh)(1u)|q+v(uτ(t))τ(t)(vu)|(fh)(1v)|q.

    Thus, now we are able to evaluate the second integral in (2.32)

    τ1(1u)τ1(1v)|τ1(1u)+τ1(1v)ttτ(x)(1uτ(x))ν1(ζhτ)(x)dx|×|(fhτ)(t)|qτ(t)dtτ1(1u)τ1(1v)|τ1(1u)+τ1(1v)ttτ(x)(1uτ(x))ν1(ζhτ)(x)dx|×(u(τ(t)v)τ(t)(vu)|(fh)(1u)|q+v(uτ(t))τ(t)(vu)|(fh)(1v)|q)τ(t)dtζhτν[|(fh)(1u)|q{τ1(1u)+τ1(1u)2τ1(1v)u(τ(t)v)τ(t)(vu)×[(1uτ(t))ν(1uτ(τ1(1u)+τ1(1v)t))ν]τ(t)dt+τ1(1u)τ1(1u)+τ1(1u)2u(τ(t)v)τ(t)(vu)[(1uτ(τ1(1u)+τ1(1v)t))ν(1uτ(t))ν]τ(t)dt}+|(fh)(1v)|q{τ1(1u)+τ1(1u)2τ1(1v)v(uτ(t))τ(t)(vu)×[(1uτ(t))ν(1uτ(τ1(1u)+τ1(1v)t))ν]τ(t)dt+τ1(1u)τ1(1u)+τ1(1u)2v(uτ(t))τ(t)(vu)×[(1uτ(τ1(1u)+τ1(1v)t))ν(1uτ(t))ν]τ(t)dt}]. (2.34)

    Applying (2.33), (2.34) in (2.32), we get (2.31).

    Remark 4. In Theorem 2.5, especially when we take

    (1) τ(x)=x, we have

    |ζχν(u,v)|=|[f(u)+f(v)2][Jν1v+(ζh)(1u)+Jν1u+(ζh)(1v)][ζ(1u)(ζJν1v+(fh)(1u))+ζ(1v)(ζJν1u(fh)(1v))]|ζhΓ(ν+1)(C(ν,u,v))11q[u(ν,u,v)|(fh)(1u)|q+v(ν,u,v)|(fh)(1v)|q]1q, (2.35)

    where h(x)=1x, x[1v,1u],

    C(ν,u,v)=(2ν1)2ν(ν+1)(vuuv)ν+1

    u(ν,u,v) and v(ν,u,v) are defined in (1) of Remark 3.

    (2) τ(x)=x and ζ(x)=1, we get

    |χν(u,v)|=|f(u)+f(v)2Γ(ν+1)2(uvvu)ν×[Jν1v+(fh)(1u)+Jν1u(fh)(1v)]|1Γ(ν+1)(C(ν,u,v))11q[u(ν,u,v)|(fh)(1u)|q+v(ν,u,v)|(fh)(1v)|q]1q, (2.36)

    where h(x)=1x, x[1v,1u], u(ν,u,v), v(ν,u,v) are defined in (1) of Remark 3 and C(ν,u,v) is as defined above.

    (3) τ(x)=x, ζ(x)=1 and ν=1, we obtain

    |χ(u,v)|=|f(u)+f(v)2(uvvu)1u1vf(x)dx|1Γ(ν+1)(C(u,v))11q[u(u,v)|(fh)(1u)|q+v(u,v)|(fh)(1v)|q]1q, (2.37)

    where h(x)=1x, x[1v,1u], u(u,v), v(u,v) are defined in (3) of Remark 3 and C(u,v)=(vu2uv)2.

    In this study, we proved very important and interesting inequalities of Fejér type for a very fascinating generalized class of functions, namely, harmonic convex functions by using general weighted fractional integral operator which depends upon an increasing function. The results of our study not only generalize a number of findings obtained in [17,18,19] but one can obtain a number of new results by choosing a increasing function involved. The results can also be an inspiration for young researchers as well as researcher already working in the field of fractional integral inequalities and can further open up new directions of research in mathematical sciences.

    Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2022R8), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

    The authors declare that they have no conflicts of interest in this paper.



    [1] S. Peng, G-expectation, G-Brownian motion and related stochastic calculus of Itô type, In: Stochastic analysis and applications, Berlin: Springer, 2007,541–567. https://doi.org/10.1007/978-3-540-70847-6_25
    [2] S. Peng, Nonlinear expectations and stochastic calculus under uncertainty, 1 Eds., Berlin: Springer, 2019. https://doi.org/10.1007/978-3-662-59903-7
    [3] L. Zhang, Exponential inequalities under the sub-linear expectations with applications to laws of the iterated logarithm, Sci. China Math., 59 (2016), 2503–2526. https://doi.org/10.1007/s11425-016-0079-1 doi: 10.1007/s11425-016-0079-1
    [4] L. Zhang, Rosenthal's inequalities for independent and negatively dependent random variables under sub-linear expectations with applications, Sci. China Math., 59 (2016), 751–768. https://doi.org/10.1007/s11425-015-5105-2 doi: 10.1007/s11425-015-5105-2
    [5] M. Xu, K. Cheng, W. Yu, Complete convergence for weighted sums of negatively dependent random variables under sub-linear expectations, AIMS Mathematics, 7 (2022), 19998–20019. https://doi.org/10.3934/math.20221094 doi: 10.3934/math.20221094
    [6] M. Xu, X. Kong, Note on complete convergence and complete moment convergence for negatively dependent random variables under sub-linear expectations, AIMS Mathematics, 8 (2023), 8504–8521. https://doi.org/10.3934/math.2023428 doi: 10.3934/math.2023428
    [7] L. Zhang, Donsker's invariance principle under the sub-linear expectation with an application to Chung's law of the iterated logarithm, Commun. Math. Stat., 3 (2015), 187–214. https://doi.org/10.1007/s40304-015-0055-0 doi: 10.1007/s40304-015-0055-0
    [8] J. Xu, L. Zhang, Three series theorem for independent random variables under sub-linear expectations with applications, Acta. Math. Sin.-English Ser., 35 (2019), 172–184. https://doi.org/10.1007/s10114-018-7508-9 doi: 10.1007/s10114-018-7508-9
    [9] J. Xu, L. Zhang, The law of logarithm for arrays of random variables under sub-linear expectations, Acta. Math. Sin.-English Ser., 36 (2020), 670–688. https://doi.org/10.1007/s10255-020-0958-8 doi: 10.1007/s10255-020-0958-8
    [10] Q. Wu, Y. Jiang, Strong law of large numbers and Chover's law of the iterated logarithm under sub-linear expectations, J. Math. Anal. Appl., 460 (2018), 252–270. https://doi.org/10.1016/j.jmaa.2017.11.053 doi: 10.1016/j.jmaa.2017.11.053
    [11] L. Zhang, J. Lin, Marcinkiewicz's strong law of large numbers for nonlinear expectations, Stat. Probabil. Lett., 137 (2018), 269–276. https://doi.org/10.1016/j.spl.2018.01.022 doi: 10.1016/j.spl.2018.01.022
    [12] H. Zhong, Q. Wu, Complete convergence and complete moment convergence for weighted sums of extended negatively dependent random variables under sub-linear expectation, J. Inequal. Appl., 2017 (2017), 261. https://doi.org/10.1186/s13660-017-1538-1 doi: 10.1186/s13660-017-1538-1
    [13] F. Hu, Z. Chen, D. Zhang, How big are the increments of G-Brownian motion? Sci. China Math., 57 (2014), 1687–1700. https://doi.org/10.1007/s11425-014-4816-0 doi: 10.1007/s11425-014-4816-0
    [14] F. Gao, M. Xu, Large deviations and moderate deviations for independent random variables under sublinear expectations (Chinese), Scientia Sinica Mathematica, 41 (2011), 337–352. https://doi.org/10.1360/012009-879 doi: 10.1360/012009-879
    [15] A. Kuczmaszewska, Complete convergence for widely acceptable random variables under the sublinear expectations, J. Math. Anal. Appl., 484 (2020), 123662. https://doi.org/10.1016/j.jmaa.2019.123662 doi: 10.1016/j.jmaa.2019.123662
    [16] M. Xu, K. Cheng, Convergence for sums of iid random variables under sublinear expectations, J. Inequal. Appl., 2021 (2021), 157. https://doi.org/10.1186/s13660-021-02692-x doi: 10.1186/s13660-021-02692-x
    [17] M. Xu, K. Cheng, How small are the increments of G-Brownian motion, Stat. Probabil. Lett., 186 (2022), 109464. https://doi.org/10.1016/j.spl.2022.109464 doi: 10.1016/j.spl.2022.109464
    [18] L. Zhang, Strong limit theorems for extended independent random variables and extended negatively dependent random variables under sub-linear expectations, Acta Math. Sci., 42 (2022), 467–490. https://doi.org/10.1007/s10473-022-0203-z doi: 10.1007/s10473-022-0203-z
    [19] Z. Chen, Strong laws of large numbers for sub-linear expectations, Sci. China Math., 59 (2016), 945–954. https://doi.org/10.1007/s11425-015-5095-0 doi: 10.1007/s11425-015-5095-0
    [20] L. Zhang, On the laws of the iterated logarithm under sub-linear expectations, Probab. Uncertain. Qua., 6 (2021), 409–460. https://doi.org/10.3934/puqr.2021020 doi: 10.3934/puqr.2021020
    [21] X. Chen, Q. Wu, Complete convergence and complete integral convergence of partial sums for moving average process under sub-linear expectations, AIMS Mathematics, 7 (2022), 9694–9715. https://doi.org/10.3934/math.2022540 doi: 10.3934/math.2022540
    [22] J. Yan, Complete convergence and complete moment convergence for maximal weighted sums of extended negatively dependent random variables, Acta. Math. Sin.-English Ser., 34 (2018), 1501–1516. https://doi.org/10.1007/s10114-018-7133-7 doi: 10.1007/s10114-018-7133-7
    [23] P. Hsu, H. Robbins, Complete convergence and the law of large numbers, PNAS, 33 (1947), 25–31. https://doi.org/10.1073/pnas.33.2.25 doi: 10.1073/pnas.33.2.25
    [24] Y. Chow, On the rate of moment convergence of sample sums and extremes, Bull. Inst. Math. Acad. Sin., 16 (1988), 177–201.
    [25] S. Hosseini, A. Nezakati, Complete moment convergence for the dependent linear processes with random coefficients, Acta. Math. Sin.-English Ser., 35 (2019), 1321–1333. https://doi.org/10.1007/s10114-019-8205-z doi: 10.1007/s10114-019-8205-z
    [26] B. Meng, D. Wang, Q. Wu, Complete convergence and complete moment convergence for weighted sums of extended negatively dependent random variables, Commun. Stat.-Theor. M., 51 (2022), 3847–3863. https://doi.org/10.1080/03610926.2020.1804587 doi: 10.1080/03610926.2020.1804587
  • This article has been cited by:

    1. Shulin Zhang, Existence of nontrivial positive solutions for generalized quasilinear elliptic equations with critical exponent, 2022, 7, 2473-6988, 9748, 10.3934/math.2022543
    2. Joshua Warigue Ndiaye, Iterative reconstruction algorithms for solving the Schrödinger equations on conical spaces, 2022, 12, 1664-2368, 10.1007/s13324-021-00645-7
    3. Jiameng Li, Huiwen Chen, Zhimin He, Zigen Ouyang, Infinitely many solutions for quasilinear Schrödinger equation with general superlinear nonlinearity, 2023, 2023, 1687-2770, 10.1186/s13661-023-01755-w
    4. Liang Xue, Jiafa Xu, Donal O'Regan, Positive solutions for a critical quasilinear Schrödinger equation, 2023, 8, 2473-6988, 19566, 10.3934/math.2023998
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1480) PDF downloads(36) Cited by(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog