Research article

Magnetohydrodynamics approximation of the compressible full magneto- micropolar system

  • Received: 23 May 2022 Revised: 14 June 2022 Accepted: 20 June 2022 Published: 30 June 2022
  • MSC : 35B25, 35Q60, 76W05

  • In this paper, we will use the Banach fixed point theorem to prove the uniform-in-ϵ existence of the compressible full magneto-micropolar system in a bounded smooth domain, where ϵ is the dielectric constant. Consequently, the limit as ϵ0 can be established. This approximation is usually referred to as the magnetohydrodynamics approximation and is equivalent to the neglect of the displacement current.

    Citation: Jishan Fan, Tohru Ozawa. Magnetohydrodynamics approximation of the compressible full magneto- micropolar system[J]. AIMS Mathematics, 2022, 7(9): 16037-16053. doi: 10.3934/math.2022878

    Related Papers:

    [1] Mingyu Zhang . Regularity and uniqueness of 3D compressible magneto-micropolar fluids. AIMS Mathematics, 2024, 9(6): 14658-14680. doi: 10.3934/math.2024713
    [2] Ru Bai, Tiantian Chen, Sen Liu . Global stability solution of the 2D incompressible anisotropic magneto-micropolar fluid equations. AIMS Mathematics, 2022, 7(12): 20627-20644. doi: 10.3934/math.20221131
    [3] Muhammad Naqeeb, Amjad Hussain, Ahmad Mohammed Alghamdi . Blow-up criteria for different fluid models in anisotropic Lorentz spaces. AIMS Mathematics, 2023, 8(2): 4700-4713. doi: 10.3934/math.2023232
    [4] Xue-li Song, Yuan-yuan Liu, Xiao-tian Xie . The existence of uniform attractors for the 3D micropolar equations with nonlinear damping term. AIMS Mathematics, 2024, 9(4): 9608-9630. doi: 10.3934/math.2024470
    [5] Mingyu Zhang . On the Cauchy problem of compressible Micropolar fluids subjected to Hall current. AIMS Mathematics, 2024, 9(12): 34147-34183. doi: 10.3934/math.20241627
    [6] Dayong Huang, Guoliang Hou . Blowup criterion for the Cauchy problem of 2D compressible viscous micropolar fluids with vacuum. AIMS Mathematics, 2024, 9(9): 25956-25965. doi: 10.3934/math.20241268
    [7] Abdulaziz H. Alharbi, Ahmed G. Salem . Analytical and numerical investigation of viscous fluid-filled spherical slip cavity in a spherical micropolar droplet. AIMS Mathematics, 2024, 9(6): 15097-15118. doi: 10.3934/math.2024732
    [8] Li Lu . One new blow-up criterion for the two-dimensional full compressible magnetohydrodynamic equations. AIMS Mathematics, 2023, 8(7): 15876-15891. doi: 10.3934/math.2023810
    [9] Mingyu Zhang . On the Cauchy problem of 3D nonhomogeneous micropolar fluids with density-dependent viscosity. AIMS Mathematics, 2024, 9(9): 23313-23330. doi: 10.3934/math.20241133
    [10] Ahmed G. Salem, Turki D. Alharbi, Abdulaziz H. Alharbi, Anwar Ali Aldhafeeri . Impact of a spherical interface on a concentrical spherical droplet. AIMS Mathematics, 2024, 9(10): 28400-28420. doi: 10.3934/math.20241378
  • In this paper, we will use the Banach fixed point theorem to prove the uniform-in-ϵ existence of the compressible full magneto-micropolar system in a bounded smooth domain, where ϵ is the dielectric constant. Consequently, the limit as ϵ0 can be established. This approximation is usually referred to as the magnetohydrodynamics approximation and is equivalent to the neglect of the displacement current.



    In this paper, we consider the compressible full magneto-micropolar system [1]

    tρ+div(ρu)=0, (1.1)
    t(ρu)+div(ρuu)+(ρθ)(μ+μr)Δu(λ+μμr)divu=2μrrotw+(E+u×b)×b, (1.2)
    t(ρw)+div(ρuw)(ca+cd)Δw(c0+cdca)divw+4μrw=2μrrotu, (1.3)
    t(ρθ)+div(ρuθ)kΔθ+ρθdivu=μ2(u+uT):(u+uT)+λ(divu)2+4μr|12rotuw|2+c0(divw)2+(ca+cd)w:w+(cdca)w:wT+|E+u×b|2, (1.4)
    ϵtErotb+E+u×b=0, (1.5)
    tb+rotE=0,divb=0, (1.6)

    in QT:=Ω×(0,T) for any T>0, with the initial and boundary conditions

    (ρ,u,w,θ,E,b)(,0)=(ρ0,u0,w0,θ0,E0,b0)  in  ΩR3, (1.7)
    u=0, w=0, θ=0, E×n=0, bn=0  on  Ω×(0,T). (1.8)

    Here, ρ is the density of the fluid, u is the fluid velocity field, w is the micro-rotational velocity, θ is the temperature, E is the electric field, and b is the magnetic field. Ω is a bounded domain in R3 with smooth boundary Ω, whose outward normal vector is denoted by n. The positive constant k is the heat conductivity, the physical constants μ and λ are the shear viscosity and bulk viscosity and satisfy μ>0 and λ+23μ0. ϵ>0 is the dielectric constant. The positive constant μr represents the dynamic microrotation viscosity. c0,ca,cd are constants called coefficients of angular viscosities, which satisfy λ+μμr>0,c0+cdca>0.

    When w=0, the above system is symmetric hyperbolic-parabolic. Kawashima-Shizuta [2,3,4] proved the local existence of smooth solutions for large data and global existence of smooth solutions for small data and studied the limit as ϵ0 when Ω:=R2. Jiang-Li [5,6] studied the limit of ϵ0 when Ω:=T3. Similar results have been obtained in [7,8,9,10,11,12,13]. Li-Mu [14] studied the low Mach number limit of the problem (1.1)–(1.6) when Ω:=R3.

    When ϵ=0 and the entropy is a constant, Wei-Guo-Li [15] and Wu-Wang [16] studied the long-time behavior of smooth solutions. Zhang [17] showed the local well-posedness (without proof) and a blow-up criterion.

    The well-posedness of the problem has been studied in [18,19,20,21]. The numerical analysis of some related problems has been considered in [22,23,24,25,26,27,28,29].

    The aim of this paper is to prove the uniform-in-ϵ existence of unique local strong solutions to the problem (1.1)–(1.8) when Ω is a bounded domain.

    Here, we impose the following regularity conditions on the initial data:

    θ00, 0<1Cρ0C, ρ0W1,6, divb0=0  in  Ω,E0×n=0, b0n=0  on  Ω, E0,b0H2, u0,w0,θ0H10H2. (1.9)

    Theorem 1.1. Let (1.9) hold true and 0<ϵ<1, and let k=1. Then, there exist a small time ˜T>0 independent of ϵ>0 and a unique strong solution (ρ,u,w,θ,E,b) to the initial boundary value problem (1.1)–(1.8) such that

    θ0, 1CρC, ρL(0,˜T;W1,6), tρL(0,˜T;L6),u,wL(0,˜T;H2)L2(0,˜T;W2,6), θL(0,˜T;H2),ut,wt,θtL(0,˜T;L2)L2(0,˜T;H1),bL(0,˜T;H2),btL(0,˜T;H1),EL(0,˜T;H1)L2(0,˜T;H2), EtL2(0,˜T;H1), (1.10)

    with the corresponding norms that are uniformly bounded with respect to ϵ>0.

    We will prove Theorem 1.1. by the Banach fixed point theorem. We define the nonempty closed set

    A:={(˜u,˜w)A;˜u(,0)=u0,˜w(,0)=w0,(˜u,˜w)AA}

    with the norm

    (˜u,˜w)A:=(˜u,˜w)L(0,T;H2)+(˜u,˜w)L2(0,T;W2,6)+t(˜u,˜w)L(0,T;L2)+t(˜u,˜w)L2(0,T;H1).

    Let ˜uA be given, and we consider the following linear problems:

    tρ+div(ρ˜u)=0, (1.11)
    ρ(,0)=ρ0; (1.12)
    ϵtErotb+E+˜u×b=0, (1.13)
    tb+rotE=0, (1.14)
    divb=0, (1.15)
    (E,b)(,0)=(E0,b0), (1.16)
    E×n=0, bn=0  on  Ω×(0,T); (1.17)
    ρtθ+ρ˜uθΔθ+ρθdiv˜u=μ2(˜u+˜uT):(˜u+˜uT)+λ(div˜u)2+4μr|12rot˜u˜w|2+c0(div˜w)2+(ca+cd)˜w:˜w+(cdca)˜w:˜wT+|E+˜u×b|2, (1.18)
    θ(,0)=θ0, (1.19)
    θ=0  on  Ω×(0,T). (1.20)
    ρtu+ρ˜uu+(ρθ)(μ+μr)Δu(λ+μμr)divu=2μrrot˜w+(E+u×b)×b, (1.21)
    u(,0)=u0, (1.22)
    u=0  on  Ω×(0,T). (1.23)
    ρtw+ρ˜uw(ca+cd)Δw(c0+cdca)divw+4μrw=2μrrotu, (1.24)
    w(,0)=w0, (1.25)
    w=0  on  Ω×(0,T). (1.26)

    Let (u,w) be the unique strong solution to the above problem, and we define the fixed point map F:(˜u,˜w)A(u,w)A with ˜u=˜w=0 on Ω×(0,T). We will prove that the map F maps A into A for suitable constant A and small T, and F is a contraction mapping on A, and thus F has a unique fixed point in A. This proves Theorem 1.1.

    This section is devoted to the proof of Theorem 1.1.

    Lemma 2.1. Let (˜u,˜w)A be given. Then, the problem (1.11) and (1.12) has a unique solution ρ satisfying

    1CρC, ρL(0,T;W1,6)C, ρtL(0,T;L6)CA

    for some small 0<T1.

    Here and later on, C will denote a constant independent of ϵ and A.

    Proof. Since Eq (1.11) is linear with regular ˜u, the existence and uniqueness are well-known, and we only need to establish a priori estimates.

    Let

    dx(X,t)dt=˜u(x(X,t),t)  and  x(X,0)=X,

    and we see that

    dρ(x(X,t),t)dt=ρdiv˜u,

    whence

    ρ(x,t)=ρ0exp(t0div˜uds). (2.1)

    It follows from (2.1) that

    ρ(x,t)ρexp(T0div˜uLdt)ρ0exp(T0C˜uW2,6dt)ρ0exp(CAT)Cρ0L

    if AT1;

    ρ(x,t)ρ0exp(T0div˜uLdt)infρ0exp(CAT)Cinfρ0

    if AT1;

    ρ=ρ0exp(t0div˜uds)ρ0exp(t0div˜uds)t0div˜uds,

    whence

    ρL(0,T;L6)exp(T0div˜uLdt)(ρ0L6+ρ0LT0div˜uL6dt)Cexp(CAT)(1+AT)C

    if AT1.

    It follows from (1.11) that

    ρt=˜uρρdiv˜u,

    and

    ρtL(0,T;L6)˜uL(0,T;L)ρL(0,T;L6)+ρL(0,T;L)div˜uL(0,T;L6)CA

    if AT1.

    This completes the proof.

    Lemma 2.2. Let (˜u,˜w)A be given. Then, the problem (1.13)–(1.17) has a unique solution (E,b) satisfying (2.2), (2.4), (2.6), (2.8), (2.9), (2.10), (2.11) and (2.12) for some 0<T1.

    Proof. Since Eqs (1.13)–(1.15) are linear with regular (ρ,˜u), the existence and uniqueness are well- known, and we only need to establish the a priori estimates.

    Testing (1.13) and (1.14) by E and b and summing up the result, we see that

    12ddt(ϵE2+b2)dx+E2dx=(˜u×b)Edx˜uLbL2EL2CAbL2EL212E2L2+CA2b2L2,

    which gives

    (ϵE2+b2)dx+T0E2dxdtC (2.2)

    if A2T1.

    Note that (1.13), (1.17) and (1.23) give the boundary condition

    rotb×n=0  on  Ω×(0,T). (2.3)

    Taking rot to (1.13) and (1.14), testing by rotE and rotb and using (2.3), summing up the result and integrating by parts, we find that

    12ddt(ϵ|rotE|2+|rotb|2)dx+|rotE|2dx=rot(˜u×b)rotEdxC˜uH2rotbL2rotEL212|rotE|2dx+CA2rotb2L2,

    which yields

    (ϵ|rotE|2+|rotb|2)dx+T0|rotE|2dxdtC (2.4)

    if A2T1.

    Here, we have used the Poincaré inequality

    bL2CrotbL2. (2.5)

    Taking t to (1.13) and (1.14), testing by tE and tb and summing up the result and using (2.4), we infer that

    12ddt(ϵ|Et|2+|tb|2)+|Et|2dx=t(bטu)tEdx(tbL2˜uL+bL6t˜uL3)EtL212|Et|2dx+CA2tb2L2+Ct˜uL2t˜uL2,

    which implies

    (ϵ|Et|2+|bt|2)dx+T0|Et|2dxdtC (2.6)

    if A2T1.

    (1.14) and (2.3) give the boundary condition

    rot2E×n=0  on  Ω×(0,T). (2.7)

    Taking rot2 to (1.13) and (1.14), testing by rot2E and rot2b and using (2.7) and summing up the result, we derive

    12ddt(|ϵrot2E|2+|rot2b|2)dx+|rot2E|2dx=rot2(bטu)rot2EdxC˜uH2rot2bL2rot2EL212|rot2E|2dx+CA2rot2b2L2,

    which implies

    (ϵ|rot2E|2+|rot2b|2)dx+T0|rot2E|2dxdtC (2.8)

    if A2T1.

    Taking div to (1.13), testing by divE and using (2.8), we get

    ϵ2ddt|divE|2dx+|divE|2dx=div(bטu)divEdxC˜uH2rot2bL2divEL212|divE|2dx+CA2,

    which leads to

    ϵ|divE|2dx+T0|divE|2dxdtC (2.9)

    if A2T1.

    Taking trot to (1.13) and (1.14), testing by trotE and trotb and using (2.3) and (2.8), we obtain

    12ddt(ϵ|rotEt|2+|rotbt|2)dx+|rotEt|2dx=rot(btטu+bטut)rotEtdx12|rotEt|2dx+Cbt2L6˜u2L3+C˜u2Lrotbt2L2+Cb2L˜ut2L2+Crotb2L6˜ut2L312|rotEt|2dx+CA2rotbt2L2+C˜ut2L2,

    which yields

    (ϵ|rotEt|2+|rotbt|2)dx+T0|rotEt|2dxdtCA2 (2.10)

    if A2T1.

    Applying tdiv to (1.13), testing by tdivE, and using (2.10) and (2.8), we have

    ϵ2ddt|divEt|2dx+|divEt|2dx=div(btטu+bטut)tdivEdx=(˜urotbtbtrot˜u+˜utrotbbrot˜ut)tdivEdx(˜uLrotbtL2+btL6rot˜uL3+˜utL6rotbL3+bLrot˜utL2)divEtL2C(A2+˜utL2)divEtL212divEt2L2+CA4+C˜ut2L2,

    which gives

    ϵ(divEt)2dx+T0(divEt)2dxdtCA2 (2.11)

    if A2T1.

    (2.6), (2.10) and (2.11) imply

    ddt(E2+(divE)2+|rotE|2)dx=2(EEt+divEdivEt+rotErotEt)dx((E2+(divE)2+|rotE|2))12((E2t+(divEt)2+(rotEt)2)dx)12,

    whence

    dydtC(EtL2+divEtL2+rotEtL2),

    with

    y(t):=((E2+(divE)2+(rotE)2)dx)12.

    Integrating the above inequality, we have

    y(t)y(0)+CATC (2.12)

    if AT1.

    This completes the proof.

    Lemma 2.3. Let (˜u,˜w)A be given. Then, the problem (1.18) and (1.19) has a unique solution θ satisfying θ0, (2.14), (2.15) and (2.16).

    Proof. Since Eq (1.18) is linear with regular (ρ,˜u,˜w,E,b), the existence and uniqueness are well- known, and we only need to establish a priori estimates.

    Testing (1.18) by θ and using (1.11) and Lemmas 2.1–2.2, we infer that

    12ddtρθ2dx+|θ|2dx=ρθ2div˜udx+[μ2(˜u+˜uT):(˜u+˜uT)+λ(div˜u)2+4μr|12rot˜u˜w|2+c0(div˜w)2+(ca+cd)˜w:˜w+(cdca)˜w:˜wT+|E+˜u×b|2]θdxdiv˜uLρθ2dx+C˜uL6˜uL3θL2+C˜wL6˜wL3θL2+C˜wL6˜wL3θL2+CEL3EL6θL2+C˜u2Lb2L4θL2div˜uLρθ2dx+CA2θL2+CθL2,

    which yields

    θ2dx+T0|θ|2dxdtC (2.13)

    if A2T1.

    Testing (1.18) by θt and using Lemmas 2.1–2.2, we deduce that

    12ddt|θ|2dx+ρθ2tdx=(ρθdiv˜u+ρ˜uθ)θtdx+[μ2(˜u+˜uT):(˜u+˜uT)+λ(div˜u)2+4μr|12rot˜u˜w|2+c0(div˜w)2+(ca+cd)˜w:˜w+(cdca)˜w:˜wT+|E+˜u×b|2]θtdxdiv˜uL6θL3ρθtL2ρL+˜uLθL2ρθtL2ρL+C(˜u2L4+˜w2L4+˜w2L4+E2L4+˜u2Lb2L4)θtL212ρθ2tdx+CA2(θ2L3+θ2L2)+CA4+C,

    which gives

    |θ|2dx+T0θ2tdxdtC (2.14)

    if A4T1.

    Taking t to (1.18), testing by θt, and using (1.11) and Lemmas 2.1–2.2, we have

    12ddtρθ2tdx+|θt|2dxρtθ2tdxt(ρ˜u)θθtdxt(ρθdiv˜u)θtdx+C|˜u||˜ut||θt|dx+C|˜w||˜wt||θt|dx+C|˜w||˜wt||θt|dx+C|EEtθt|dx+C|(˜u×b)(˜ut×b+˜u×bt)θtdx|ρtL6θtL2θtL3+ρtL6˜uLθL2θtL3+C˜utL3θL2θtL6+CρtL6θL6div˜uL6θtL2+Cρθt2L2div˜uL+CθL6˜utL2θtL3+C˜uL6˜utL2θtL3+C˜wL6˜wtL2θtL3+C˜wL6˜wtL2θtL3+CEL6EtL2θtL3+C˜uLb2L˜utL2θtL2+C˜u2LbLbtL2θtL2CAθt32L2θt12L2+CA2θt12L2θt12L2+C˜ut12L2˜ut12L2θtL2+CA2θtL2+Cdiv˜uLρθ2tdx+CA˜utL2θt12L2θt12L2+CA˜wtL2θt12L2θt12L2+CEtL2θtL3,

    which yields

    θ2tdx+T0|θt|2dxdtC (2.15)

    if (A4+A3+A2)T1. Here, we bound

    CA˜utL2θt12L2θt12L2116θt2L2+CA43˜ut43L2θt23L2116θt2L2+CA43˜ut43L2(1+θt2L2)CA˜wtL2θt12L2θt12L2116θt2L2+CA43˜wt43L2θt23L2116θt2L2+CA43˜wt43L2(1+θt2L2),CEtL2θtL3CEtL2θt12L2θt12L2116θt2L2+CEt43L2(1+θt2L2).

    It follows from (1.18), (2.15) and (2.14) that

    θL(0,T;H2)CA2+C. (2.16)

    This completes the proof.

    Lemma 2.4. Let (˜u,˜w)A be given. Then, the problem (1.21)–(1.23) has a unique solution u satisfying

    uL(0,T;H2)+uL2(0,T;W2,6)+utL(0,T;L2)+utL2(0,T;H1)C1 (2.17)

    for some small 0<T1. Here, C1 is a positive constant independent of ϵ and A.

    Proof. Since Eq (1.21) is linear with regular (ρ,˜u,˜w,θ,E,b), the existence and uniqueness are well- known, and we only need to establish (2.17).

    Testing (1.21) by u and using (1.11) and Lemmas 2.1–2.3, we see that

    12ddtρ|u|2dx+((μ+μr)|u|2+(λ+μμr)(divu)2)dx+|u×b|2dx=ρθdivudx+2μrurot˜wdx+(E×b)udxρLθL2divuL2+CuL2rot˜wL2+EL6bL3uL2CdivuL2+CuL2+CAuL2λ+μμr2divu2L2+CuL2+C+CAuL2,

    which gives

    |u|2dx+T0|u|2dxdtC (2.18)

    if A2T1.

    Testing (1.21) by ut and using Lemmas 2.1–2.3, we find that

    12ddt[(μ+μr)|u|2+(λ+μμr)(divu)2]dx+ρ|ut|2dx=ρ˜uuutdx(ρθ)utdx+2μrutrot˜wdx+[(E+u×b)×b]utdx12ρ|ut|2dx+C˜u2Lu2L2+Cρ2Lθ2L2+Cθ2L3ρ2L6+Crot˜w2L2+CE2L6b2L3+Cu2Lb2L412ρ|ut|2dx+CA2u2L2+C+CA2,

    which implies

    |u|2dx+T0|ut|2dxdtC (2.19)

    if A2T1.

    Applying t to (1.21), testing by ut, and using (1.11), Lemmas 2.1–2.3 and (2.19), we have

    12ddtρ|ut|2dx+[(μ+μr)|ut|2+(λ+μμr)(divut)2]dx+|ut×b|2dx=ρtu2tdx(ρ˜u)tuutdx+(ρθ)tdivutdx+2μr˜wtrotutdx+(Et×b+E×bt)utdx+[(u×bt)×b+(u×b)×bt]utdxρtL6utL3utL2+ρtL6˜uLuL2utL3+ρL˜utL3uL2utL6+ρtL6θL3divutL2+ρLθtL2divutL2+2μr˜wtL2rotutL2+EtL2|bLutL2+EL6btL3utL2+uL6btL3bLutL2CutL2utL3+CAutL3+C˜utL3utL6+CdivutL2+CArotutL2+CEtL2utL2+CbtL3utL2μ2|ut|2dx+Cut2L2+CA2+C˜utL2˜utL2+C+CEtL2utL2+CbtL3utL2,

    which gives

    |ut|2dx+T0|ut|2dxdtC1 (2.20)

    if A2T1.

    Since

    ˜u(x,t)=u0(x)+t0t˜uds,

    and

    ˜uL(0,T;L2)C+T0t˜uL2dtC+CTAC (2.21)

    if A2T1.

    Similarly, we have

    ˜wL(0,T;L2)C (2.22)

    if A2T1.

    We rewrite (1.21) as

    μΔu(λ+μ)divu=f:=2μrrot˜w+(E+u×b)×bρtuρ˜uu(ρθ).

    By the H2-theory of the elliptic system, we get

    uH2CfL2C˜wL2+CEL6bL3+CuL6b2L6+CρtuL2+C˜uL6uL3+CρθL2+CθL3ρL6C+CuL3,

    which yields

    uL(0,T;H2)C1. (2.23)

    Similarly, by the W2,6-theory of the elliptic system, we have

    uW2,6CfL6Crot˜wL6+CEL6bL+CuLbLbL6+CutL6+C˜uL6uL+CθL6+CρL6C+CuL+CA2+CutL6C+Cu14L2u34W2,6+CA2+CutL2,

    whence

    uW2,6C+CA2+CutL2,

    which yields

    uL2(0,T;W2,6)C1 (2.24)

    if A4T1.

    This completes the proof.

    Similarly to Lemma 2.4, we have the following.

    Lemma 2.5. Let (˜u,˜w)A be given. Then, the problem (1.24)–(1.26) has a unique solution w satisfying (2.17) with u:=w.

    Proof. Since the proof is very similar to that of Lemma 2.4, we omit the details here.

    Due to the above Lemmas 2.1–2.5, we can take A:=C1, and thus F maps A into A. The following lemma tells us that F is a contraction mapping in the sense of weaker norm.

    Lemma 2.6. There is a constant 0<δ<1 such that for any ˜ui (i=1,2),

    F(˜u1,˜w1)F(˜u2,˜w2)L2(0,T;H1)δ(˜u1˜u2,˜w1˜w2)L2(0,T;H1) (2.25)

    for some small 0<T1.

    Proof. Suppose (ρi,ui,wi,θi,Ei,bi) (i=1,2) are the solutions to the problem (1.11)–(1.26) corresponding to ˜ui (i=1,2). Define

    ρ:=ρ1ρ2,u:=u1u2,w:=w1w2,θ:=θ1θ2,E:=E1E2,b:=b1b2,˜u:=˜u1˜u2,˜w:=˜w1˜w2.

    Then, we have

    ρt+div(ρ˜u1)=div(ρ2˜u), (2.26)
    ϵtErotb+E+˜u×b1+˜u2×b=0, (2.27)
    tb+rotE=0,divb=0, (2.28)
    ρ1tθ+ρ1˜u1θΔθ+ρ1θ1div˜u1ρ2θ2div˜u2+ρtθ2+(ρ1˜u1ρ2˜u2)θ2=Q1Q2, (2.29)
    ρ1tu+ρ1˜u1u+(ρ1θ1ρ2θ2)(μ+μr)Δu(λ+μμr)divu+ρtu2+(ρ1˜u1ρ2˜u2)u2=2μrrot˜w+(E1+u1×b1)×b1(E2+u2×b2)×b2, (2.30)

    with

    Qi:=μ2(˜ui+˜uTi):(˜ui+˜uTi)+λ(div˜ui)2+4μr|12rot˜ui˜wi|2+c0(div˜wi)2+(ca+cd)˜wi:˜wi+(cdca)˜wi:˜wTi+|Ei+˜ui×bi|2  (i=1,2)
    ρ1tw+ρ1˜u1w(ca+cd)Δw(c0+cdca)divw+4μrw=2μrrotuρtw2(ρ1˜u1ρ2˜u2)w2. (2.31)

    Testing (2.26) by ρ, we see that

    ddtρ2dxC˜u1Lρ2dx+C(ρ2L˜uL2+˜uL6ρ2L3ρL2C˜u1W2,6ρ2dx+C˜uL2ρL2η1˜u2L2+C(1+˜u1W2,6)ρ2L2 (2.32)

    for any 0<η1<1.

    Testing (2.27) and (2.28) by E and b and summing up the result, we find that

    12ddt(ϵE2+b2)dx+E2dx=(b1טu+bטu2)Edx14E2dx+Cb12L˜u2L2+C˜u22Lb2L214E2dx+C˜u2L2+Cb2L2. (2.33)

    Testing (2.29) by θ and using tρ1+div(ρ1˜u1)=0, we infer that

    12ddtρ1θ2dx+|θ|2dx=[ρθ1div˜u1+ρ2θdiv˜u1+ρ2θ2div˜u+ρtθ2+(ρ˜u1+ρ2˜u)θ2]θdx+(Q1Q2)θdxρL2θ1Ldiv˜u1LθL2+ρ2Ldiv˜u1Lθ2L2+ρ2Lθ2Ldiv˜uL2θL2+ρL2tθ2L3θL6+ρL2˜u1Lθ2L6θL3+ρ2L˜uL2θ2L6θL3+C(˜w1W1,6+˜w2W1,6)˜wL2θL3+C(˜u1L6+˜u2L6)˜uL2θL3+C(E1L6+E2L6)EL2θL3+C(˜u1Lb1L+˜u2Lb2L)(˜uL2b1L+˜u2LbL2)θL2Cdiv˜u1L(ρ2L2+θ2L2)+η1˜u2L2+η1˜w2L2+Cθ2L2+124θ2L2+Ctθ22L3ρ2L2+Cρ2L2+η1˜u2L2+η2E2L2+η1b2L2 (2.34)

    for any 0<η1,η2<1.

    Testing (2.30) by u and using tρ1+div(ρ1˜u1)=0, we deduce that

    12ddtρ1|u|2dx+[(μ+μr)|u|2+(λ+μμr)(divu)2]dx+(u×b1)2dx=[ρtu2+(ρ˜u1+ρ2˜u)u2]udx+(ρ1θ1ρ2θ2)divudx+2μrrot˜wudx+[(E1+u1×b1)×b1(E2+u2×b2)×b2]udxρL2tu2L3uL6+(ρL2˜u1L+ρ2L˜uL2)u2L6uL3+(ρL2θ1L+ρ2LθL2)divuL2+Crot˜wL2uL2+EL2b1LuL2+bL2E2L6uL3+(u2LbL2b1L+u2Lb2LbL2)uL2μ16u2L2+Ctu22L3ρ2L2+C(ρL2+˜uL2)uL3+Cρ2L2+Cθ2L2+CEL2uL2+CbL2uL3+CbL2uL2+Crot˜wL2uL2μ8u2L2+Ctu22L3ρ2L2+η1˜u2L2+Cu2L2+Cρ2L2+Cθ2L2+Cη2E2L2+η1b2L2+η1rot˜w2L2 (2.35)

    for any 0<η1,η2<1.

    Testing (2.31) by w and using tρ1+div(ρ1˜u1)=0, we compute

    12ddtρ1|w|2dx+(ca+cd)|w|2dx+(c0+cdca)(divw)2dx+4μr|w|2dx=2μrwrotudx[ρtw2+(ρ˜u1+ρ2˜u)w2]wdxCw2L2+μ8u2L2+ρL2tw2L3wL6+(ρL2˜u1L+ρ2L˜uL2)w2L6wL3Cw2L2+μ8u2L2+ca+cd8w2L2+Ctw22L3ρ2L2+Cρ2L2+η1˜u2L2. (2.36)

    Taking (2.32)+η1×(2.33)+(2.34)+(2.35)+(2.36), taking η2<<η1 and using the Gronwall inequality, we arrive at (2.25) for small 0<T1.

    This completes the proof.

    Proof of Theorem 1.1.

    By Lemmas 2.1–2.6 and the Banach fixed point theorem, we finish the proof.

    J. Fan is partially supported by NSFC (No. 11971234).

    The authors declare no conflict of interest.



    [1] G. Łukaszewicz, Micropolar fluids: theory and applications, Boston: Birkhäuser, 1999.
    [2] S. Kawashima, Smooth global solutions for two-dimensional equations of electro-magneto-fluid dynamics, Japan J. Appl. Math., 1 (1984), 207. https://doi.org/10.1007/BF03167869 doi: 10.1007/BF03167869
    [3] S. Kawashima, Y. Shizuta, Magnetohydrodynamic approximation of the complete equations for an electromagnetic fluid, Tsukuba J. Math., 10 (1986), 131–149. https://doi.org/10.21099/tkbjm/1496160397 doi: 10.21099/tkbjm/1496160397
    [4] S. Kawashima, Y. Shizuta, Magnetohydrodynamic approximation of the complete equations for an electromagnetic fluid II, Proc. Japan Acad. Ser. A Math. Sci., 62 (1986), 181–184. https://doi.org/10.3792/pjaa.62.181 doi: 10.3792/pjaa.62.181
    [5] S. Jiang, F. C. Li, Rigorous derivation of the compressible magnetohydrodynamic equations from the electromagnetic fluid system, Nonlinearity, 25 (2012), 1735–1752. https://doi.org/10.1088/0951-7715/25/6/1735 doi: 10.1088/0951-7715/25/6/1735
    [6] S. Jiang, F. C. Li, Convergence of the complete electromagnetic fluid system to the full compressible magnetohydrodynamic equations, 2013, arXiv: 1309.3668.
    [7] A. Milani, On a singular perturbation problem for the linear Maxwell equations, Rend. Sem. Mat. Univ. Politec. Torino, 38 (1980), 99–110.
    [8] A. Milani, Local in time existence for the complete Maxwell equations with monotone characteristic in a bounded domain, Annali di Matematica pura ed applicata, 131 (1982), 233–254. https://doi.org/10.1007/BF01765154 doi: 10.1007/BF01765154
    [9] A. Milani, The quasi-stationary Maxwell equations as singular limit of the complete equations: the quasi-linear case, J. Math. Anal. Appl., 102 (1984), 251–274. https://doi.org/10.1016/0022-247X(84)90218-X doi: 10.1016/0022-247X(84)90218-X
    [10] M. Stedry, O. Vejvoda, Small time-periodic solutions of equations of magnetohydrodynamics as a singularity perturbed problem, Aplikace matematiky, 28 (1983), 344–356. https://doi.org/10.21136/am.1983.104046 doi: 10.21136/am.1983.104046
    [11] M. Stedry, O. Vejvoda, Equations of magnetohydrodynamics of compressible fluid: periodic solutions, Aplikace matematiky, 30 (1985), 77–91. https://doi.org/10.21136/am.1985.104130 doi: 10.21136/am.1985.104130
    [12] M. Stedry, O. Vejvoda, Equations of magnetohydrodynamics: periodic solutions, Časopis pro pěstováni matematiky, 111 (1986), 177–184. https://doi.org/10.21136/cpm.1986.118275
    [13] D. Lauerová, The Rothe method and time periodic solutions to the Navier-Stokes equations and equations of magnetohydrodynamics, Aplikace matematiky, 35 (1990), 89–98. https://doi.org/10.21136/am.1990.104392 doi: 10.21136/am.1990.104392
    [14] F. Li, Y. Mu, Low Mach number limit of the full compressible Navier-Stokes-Maxwell system, J. Math. Anal. Appl., 412 (2014), 334–344. https://doi.org/10.1016/j.jmaa.2013.10.064 doi: 10.1016/j.jmaa.2013.10.064
    [15] R. Wei, B. Guo, Y. Li, Global existence and optimal convergence rates of solutions for 3D compressible magneto-micropolar fluid equations, J. Differ. Equations, 263 (2017), 2457–2480. https://doi.org/10.1016/j.jde.2017.04.002 doi: 10.1016/j.jde.2017.04.002
    [16] Z. Wu, W. Wang, The pointwise estimates of diffusion wave of the compressible micropolar fluids, J. Differ. Equations, 265 (2018), 2544–2576. https://doi.org/10.1016/j.jde.2018.04.039 doi: 10.1016/j.jde.2018.04.039
    [17] P. Zhang, Blow-up criterion for 3D compressible viscous magneto-micropolar fluids with initial vacuum, Bound. Value Probl., 2013 (2013), 160. https://doi.org/10.1186/1687-2770-2013-160 doi: 10.1186/1687-2770-2013-160
    [18] C. Jia, Z. Tan, J. Zhou, Well-posedness of compressible magneto-micropolar fluid equations, 2019, arXiv: 1906.06848v2.
    [19] Z. Song, The global well-posedness for the 3-D compressible micropolar system in the critical Besov space, Z. Angew. Math. Phys., 72 (2021), 160. https://doi.org/10.1007/s00033-021-01591-x doi: 10.1007/s00033-021-01591-x
    [20] T. Tang, J. Sun, Local well-posedness for the density-dependent incompressible magneto-micropolar system with vacuum, Discrete Contin. Dyn. Syst. B, 26 (2021), 6017–6026. https://doi.org/10.3934/dcdsb.2020377 doi: 10.3934/dcdsb.2020377
    [21] J. Fan, Z. Zhang, Y. Zhou, Local well-posedness for the incompressible full magneto-micropolar system with vacuum, Z. Angew. Math. Phys., 71 (2020), 42. https://doi.org/10.1007/s00033-020-1267-z doi: 10.1007/s00033-020-1267-z
    [22] M. A. Fahmy, A new boundary element algorithm for a general solution of nonlinear space-time fractional dual phase-lag bio-heat transfer problems during electromagnetic radiation, Case Stud. Therm. Eng., 25 (2021), 100918. https://doi.org/10.1016/j.csite.2021.100918 doi: 10.1016/j.csite.2021.100918
    [23] M. A. Fahmy, A new boundary element formulation for modeling and simulation of three-temperature distributions in carbon nanotube fiber reinforced composites with inclusions, Math. Method. Appl. Sci., in press. https://doi.org/10.1002/mma.7312
    [24] M. A. Fahmy, A new BEM modeling algorithm for size-dependent thermopiezoelectric problems in smart nanostructures, Comput. Mater. Con., 69 (2021), 931–944. https://doi.org/10.32604/cmc.2021.018191 doi: 10.32604/cmc.2021.018191
    [25] M. A. Fahmy, Boundary element modeling of 3T nonlinear transient magneto-thermoviscoelastic wave propagation problems in anisotropic circular cylindrical shells, Compos. Struct., 277 (2021), 114655. https://doi.org/10.1016/j.compstruct.2021.114655 doi: 10.1016/j.compstruct.2021.114655
    [26] M. A. Fahmy, M. M. Almehmadi, F. M. Al Subhi, A. Sohail, Fractional boundary element solution of three-temperature thermoelectric problems, Sci. Rep., 12 (2022), 6760. https://doi.org/10.1038/s41598-022-10639-5 doi: 10.1038/s41598-022-10639-5
    [27] M. A. Fahmy, 3D Boundary element model for ultrasonic wave propagation fractional order boundary value problems of functionally graded anisotropic fiber-reinforced plates, Fractal Fract., 6 (2022), 247. https://doi.org/10.3390/fractalfract6050247 doi: 10.3390/fractalfract6050247
    [28] M. A. Fahmy, Boundary element and sensitivity analysis of anisotropic thermoelastic metal and alloy discs with holes, Materials, 15 (2022), 1828. https://doi.org/10.3390/ma15051828 doi: 10.3390/ma15051828
    [29] M. A. Fahmy, M. M. Almehmadi, Boundary element analysis of rotating functionally graded anisotropic fiber-reinforced magneto-thermoelastic composites, Open Eng., 12 (2022), 313–322. https://doi.org/10.1515/eng-2022-0036 doi: 10.1515/eng-2022-0036
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1831) PDF downloads(89) Cited by(0)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog