Research article

Magnetohydrodynamics approximation of the compressible full magneto- micropolar system

  • In this paper, we will use the Banach fixed point theorem to prove the uniform-in-ϵ existence of the compressible full magneto-micropolar system in a bounded smooth domain, where ϵ is the dielectric constant. Consequently, the limit as ϵ0 can be established. This approximation is usually referred to as the magnetohydrodynamics approximation and is equivalent to the neglect of the displacement current.

    Citation: Jishan Fan, Tohru Ozawa. Magnetohydrodynamics approximation of the compressible full magneto- micropolar system[J]. AIMS Mathematics, 2022, 7(9): 16037-16053. doi: 10.3934/math.2022878

    Related Papers:

    [1] Piyapat Dangpat, Teerapong Suksumran . Regularity of extended conjugate graphs of finite groups. AIMS Mathematics, 2022, 7(4): 5480-5498. doi: 10.3934/math.2022304
    [2] Yuni Listiana, Liliek Susilowati, Slamin Slamin, Fadekemi Janet Osaye . A central local metric dimension on acyclic and grid graph. AIMS Mathematics, 2023, 8(9): 21298-21311. doi: 10.3934/math.20231085
    [3] Meiqin Wei, He Zhang, Zhao Wang, Yaping Mao . Generalized (edge-)connectivity of join, corona and cluster graphs. AIMS Mathematics, 2022, 7(9): 16775-16786. doi: 10.3934/math.2022921
    [4] Shuangliang Tian, Ping Chen . Edge-coloring of generalized lexicographic product of graphs. AIMS Mathematics, 2024, 9(6): 15988-15995. doi: 10.3934/math.2024774
    [5] Sara Pouyandeh, Amirhossein Morovati Moez, Ali Zeydi Abdian . The spectral determinations of connected multicone graphs KwmCP(n). AIMS Mathematics, 2019, 4(5): 1348-1356. doi: 10.3934/math.2019.5.1348
    [6] Tariq A. Alraqad, Hicham Saber . On the structure of finite groups associated to regular non-centralizer graphs. AIMS Mathematics, 2023, 8(12): 30981-30991. doi: 10.3934/math.20231585
    [7] Rashid Farooq, Laiba Mudusar . Non-self-centrality number of some molecular graphs. AIMS Mathematics, 2021, 6(8): 8342-8351. doi: 10.3934/math.2021483
    [8] Ningge Huang, Lily Chen . AVD edge-colorings of cubic Halin graphs. AIMS Mathematics, 2023, 8(11): 27820-27839. doi: 10.3934/math.20231423
    [9] Igal Sason . Observations on graph invariants with the Lovász ϑ-function. AIMS Mathematics, 2024, 9(6): 15385-15468. doi: 10.3934/math.2024747
    [10] Baolin Ma, Chao Yang . Distinguishing colorings of graphs and their subgraphs. AIMS Mathematics, 2023, 8(11): 26561-26573. doi: 10.3934/math.20231357
  • In this paper, we will use the Banach fixed point theorem to prove the uniform-in-ϵ existence of the compressible full magneto-micropolar system in a bounded smooth domain, where ϵ is the dielectric constant. Consequently, the limit as ϵ0 can be established. This approximation is usually referred to as the magnetohydrodynamics approximation and is equivalent to the neglect of the displacement current.



    Henkin and Skolem introduced Hilbert algebras in the fifties for investigations in intuitionistic and other non-classical logics. Diego [4] proved that Hilbert algebras form a variety which is locally finite. Bandaru et al. introduced the notion of GE-algebras which is a generalization of Hilbert algebras, and investigated several properties (see [1,2,7,8,9]). The notion of interior operator is introduced by Vorster [12] in an arbitrary category, and it is used in [3] to study the notions of connectedness and disconnectedness in topology. Interior algebras are a certain type of algebraic structure that encodes the idea of the topological interior of a set, and are a generalization of topological spaces defined by means of topological interior operators. Rachůnek and Svoboda [6] studied interior operators on bounded residuated lattices, and Svrcek [11] studied multiplicative interior operators on GMV-algebras. Lee et al. [5] applied the interior operator theory to GE-algebras, and they introduced the concepts of (commutative, transitive, left exchangeable, belligerent, antisymmetric) interior GE-algebras and bordered interior GE-algebras, and investigated their relations and properties. Later, Song et al. [10] introduced the notions of an interior GE-filter, a weak interior GE-filter and a belligerent interior GE-filter, and investigate their relations and properties. They provided relations between a belligerent interior GE-filter and an interior GE-filter and conditions for an interior GE-filter to be a belligerent interior GE-filter is considered. Given a subset and an element, they established an interior GE-filter, and they considered conditions for a subset to be a belligerent interior GE-filter. They studied the extensibility of the belligerent interior GE-filter and established relationships between weak interior GE-filter and belligerent interior GE-filter of type 1, type 2 and type 3. Rezaei et al. [7] studied prominent GE-filters in GE-algebras. The purpose of this paper is to study by applying interior operator theory to prominent GE-filters in GE-algebras. We introduce the concept of a prominent interior GE-filter, and investigate their properties. We discuss the relationship between a prominent GE-filter and a prominent interior GE-filter and the relationship between an interior GE-filter and a prominent interior GE-filter. We find and provide examples where any interior GE-filter is not a prominent interior GE-filter and any prominent GE-filter is not a prominent interior GE-filter. We provide conditions for an interior GE-filter to be a prominent interior GE-filter. We provide conditions under which an internal GE-filter larger than a given internal GE filter can become a prominent internal GE-filter, and give an example describing it. We also introduce the concept of a prominent interior GE-filter of type 1 and type 2, and investigate their properties. We discuss the relationship between a prominent interior GE-filter and a prominent interior GE-filter of type 1. We give examples to show that A and B are independent of each other, where A and B are:

    (1) { A: prominent interior GE-filter of type 1. B: prominent interior GE-filter of type 2.

    (2) { A: prominent interior GE-filter. B: prominent interior GE-filter of type 2.

    (3) { A: interior GE-filter. B: prominent interior GE-filter of type 1.

    (4) { A: interior GE-filter. B: prominent interior GE-filter of type 2.

    Definition 2.1. [1] By a GE-algebra we mean a non-empty set X with a constant 1 and a binary operation satisfying the following axioms:

    (GE1) uu=1,

    (GE2) 1u=u,

    (GE3) u(vw)=u(v(uw))

    for all u,v,wX.

    In a GE-algebra X, a binary relation "" is defined by

    (x,yX)(xyxy=1). (2.1)

    Definition 2.2. [1,2,8] A GE-algebra X is said to be transitive if it satisfies:

    (x,y,zX)(xy(zx)(zy)). (2.2)

    Proposition 2.3. [1] Every GE-algebra X satisfies the following items:

    (uX)(u1=1). (2.3)
    (u,vX)(u(uv)=uv). (2.4)
    (u,vX)(uvu). (2.5)
    (u,v,wX)(u(vw)v(uw)). (2.6)
    (uX)(1uu=1). (2.7)
    (u,vX)(u(vu)u). (2.8)
    (u,vX)(u(uv)v). (2.9)
    (u,v,wX)(uvwvuw). (2.10)

    If X is transitive, then

    (u,v,wX)(uvwuwv,vwuw). (2.11)
    (u,v,wX)(uv(vw)(uw)). (2.12)

    Lemma 2.4. [1] In a GE-algebra X, the following facts are equivalent each other.

    (x,y,zX)(xy(zx)(zy)). (2.13)
    (x,y,zX)(xy(yz)(xz)). (2.14)

    Definition 2.5. [1] A subset F of a GE-algebra X is called a GE-filter of X if it satisfies:

    1F, (2.15)
    (x,yX)(xyF,xFyF). (2.16)

    Lemma 2.6. [1] In a GE-algebra X, every filter F of X satisfies:

    (x,yX)(xy,xFyF). (2.17)

    Definition 2.7. [7] A subset F of a GE-algebra X is called a prominent GE-filter of X if it satisfies (2.15) and

    (x,y,zX)(x(yz)F,xF((zy)y)zF). (2.18)

    Note that every prominent GE-filter is a GE-filter in a GE-algebra (see [7]).

    Definition 2.8. [5] By an interior GE-algebra we mean a pair (X,f) in which X is a GE-algebra and f:XX is a mapping such that

    (xX)(xf(x)), (2.19)
    (xX)((ff)(x)=f(x)), (2.20)
    (x,yX)(xyf(x)f(y)). (2.21)

    Definition 2.9. [10] Let (X,f) be an interior GE-algebra. A GE-filter F of X is said to be interior if it satisfies:

    (xX)(f(x)FxF). (2.22)

    Definition 3.1. Let (X,f) be an interior GE-algebra. Then a subset F of X is called a prominent interior GE-filter in (X,f) if F is a prominent GE-filter of X which satisfies the condition (2.22).

    Example 3.2. Let X={1,2,3,4,5} be a set with the Cayley table which is given in Table 1.

    Table 1.  Cayley table for the binary operation "".
    1 2 3 4 5
    1 1 2 3 4 5
    2 1 1 1 4 4
    3 1 1 1 5 5
    4 1 2 3 1 1
    5 1 2 2 1 1

     | Show Table
    DownLoad: CSV

    Then X is a GE-algebra. If we define a mapping f on X as follows:

    f:XX,x{1if x{1,4,5},2if x{2,3},

    then (X,f) is an interior GE-algebra and F={1,4,5} is a prominent interior GE-filter in (X,f).

    It is clear that every prominent interior GE-filter is a prominent GE-filter. But any prominent GE-filter may not be a prominent interior GE-filter in an interior GE-algebra as seen in the following example.

    Example 3.3. Let X={1,2,3,4,5} be a set with the Cayley table which is given in Table 2,

    Table 2.  Cayley table for the binary operation "".
    1 2 3 4 5
    1 1 2 3 4 5
    2 1 1 3 4 1
    3 1 2 1 4 5
    4 1 2 3 1 5
    5 1 1 3 4 1

     | Show Table
    DownLoad: CSV

    and define a mapping f on X as follows:

    f:XX,x{1if x{1,2,3,5},4if x=4.

    Then (X,f) is an interior GE-algebra and F:={1} is a prominent GE-filter of X. But it is not a prominent interior GE-filter in (X,f) since f(2)=1F but 2F.

    We discuss relationship between interior GE-filter and prominent interior GE-filter.

    Theorem 3.4. In an interior GE-algebra, every prominent interior GE-filter is an interior GE-filter.

    Proof. It is straightforward because every prominent GE-filter is a GE-filter in a GE-algebra.

    In the next example, we can see that any interior GE-filter is not a prominent interior GE-filter in general.

    Example 3.5. Let X={1,2,3,4,5} be a set with the Cayley table which is given in Table 3.

    Table 3.  Cayley table for the binary operation "".
    1 2 3 4 5
    1 1 2 3 4 5
    2 1 1 1 4 4
    3 1 2 1 4 4
    4 1 1 3 1 1
    5 1 1 1 1 1

     | Show Table
    DownLoad: CSV

    Then X is a GE-algebra. If we define a mapping f on X as follows:

    f:XX,x{1if x=1,2if x{2,4,5},3if x=3,

    then (X,f) is an interior GE-algebra and F={1} is an interior GE-filter in (X,f). But it is not a prominent interior GE-filter in (X,f) since 1(23)=1F but ((32)2)3=3F.

    Proposition 3.6. Every prominent interior GE-filter F in an interior GE-algebra (X,f) satisfies:

    (x,yX)(f(xy)F((yx)x)yF). (3.1)

    Proof. Let F be a prominent interior GE-filter in (X,f). Let x,yX be such that f(xy)F. Then xyF by (2.22), and so 1(xy)=xyF by (GE2). Since 1F, it follows from (2.18) that ((yx)x)yF.

    Corollary 3.7. Every prominent interior GE-filter F in an interior GE-algebra (X,f) satisfies:

    (x,yX)(xyF((yx)x)yF). (3.2)

    Proof. Let F be a prominent interior GE-filter in (X,f). Then F is an interior GE-filter in (X,f) by Theorem 3.4. Let x,yX be such that xyF. Since xyf(xy) by (2.19), it follows from Lemma 2.6 that f(xy)F. Hence ((yx)x)yF by Proposition 3.6.

    Corollary 3.8. Every prominent interior GE-filter F in an interior GE-algebra (X,f) satisfies:

    (x,yX)(xyFf(((yx)x)y)F).

    Proof. Straightforward.

    Corollary 3.9. Every prominent interior GE-filter F in an interior GE-algebra (X,f) satisfies:

    (x,yX)(f(xy)Ff(((yx)x)y)F).

    Proof. Straightforward.

    In the following example, we can see that any interior GE-filter F in an interior GE-algebra (X,f) does not satisfy the conditions (3.1) and (3.2).

    Example 3.10. Consider the interior GE-algebra (X,f) in Example 3.4. The interior GE-filter F:={1} does not satisfy conditions (3.1) and (3.2) since f(23)=f(1)=1F and 23=1F but ((32)2)3=3F.

    We provide conditions for an interior GE-filter to be a prominent interior GE-filter.

    Theorem 3.11. If an interior GE-filter F in an interior GE-algebra (X,f) satisfies the condition (3.1), then F is a prominent interior GE-filter in (X,f).

    Proof. Let F be an interior GE-filter in (X,f) that satisfies the condition (3.1). Let x,y,zX be such that x(yz)F and xF. Then yzF. Since yzf(yz) by (2.19), it follows from Lemma 2.6 that f(yz)F. Hence ((zy)y)zF by (3.1), and therefore F is a prominent interior GE-filter in (X,f).

    Lemma 3.12. [10] In an interior GE-algebra, the intersection of interior GE-filters is also an interior GE-filter.

    Theorem 3.13. In an interior GE-algebra, the intersection of prominent interior GE-filters is also a prominent interior GE-filter.

    Proof. Let {FiiΛ} be a set of prominent interior GE-filters in an interior GE-algebra (X,f) where Λ is an index set. Then {FiiΛ} is a set of interior GE-filters in (X,f), and so {FiiΛ} is an interior GE-filter in (X,f) by Lemma 3.12. Let x,yX be such that f(xy){FiiΛ}. Then f(xy)Fi for all iΛ. It follows from Proposition 3.6 that ((yx)x)yFi for all iΛ. Hence ((yx)x)y{FiiΛ} and therefore {FiiΛ} is a prominent interior GE-filter in (X,f) by Theorem 3.11.

    Theorem 3.14. If an interior GE-filter F in an interior GE-algebra (X,f) satisfies the condition (3.2), then F is a prominent interior GE-filter in (X,f).

    Proof. Let F be an interior GE-filter in (X,f) that satisfies the condition (3.2). Let x,y,zX be such that x(yz)F and xF. Then yzF and thus ((zy)y)zF. Therefore F is a prominent interior GE-filter in (X,f).

    Given an interior GE-filter F in an interior GE-algebra (X,f), we consider an interior GE-filter G which is greater than F in (X,f), that is, we take two interior GE-filters F and G such that FG in an interior GE-algebra (X,f). We are now trying to find the condition that G can be a prominent interior GE-filter in (X,f).

    Theorem 3.15. Let (X,f) be an interior GE-algebra in which X is transitive. Let F and G be interior GE-filters in (X,f). If FG and F is a prominent interior GE-filter in (X,f), then G is also a prominent interior GE-filter in (X,f).

    Proof. Assume that F is a prominent interior GE-filter in (X,f). Then it is an interior GE-filter in (X,f) by Theorem 3.4. Let x,yX be such that f(xy)G. Then xyG by (2.22), and so 1=(xy)(xy)x((xy)y) by (GE1) and (2.6). Since 1F, it follows from Lemma 2.6 that x((xy)y)F. Hence ((((xy)y)x)x)((xy)y)FG by Corollary 3.7. Since

    ((((xy)y)x)x)((xy)y)(xy)(((((xy)y)x)x)y)

    by (2.6), we have (xy)(((((xy)y)x)x)y)G by Lemma 2.6. Hence

    ((((xy)y)x)x)yG.

    Since y(xy)y, it follows from (2.11) that

    ((((xy)y)x)x)y((yx)x)y.

    Thus ((yx)x)yG by Lemma 2.6. Therefore G is a prominent interior GE-filter in (X,f). by Theorem 3.11.

    The following example describes Theorem 3.15.

    Example 3.16. Let X={1,2,3,4,5} be a set with the Cayley table which is given in Table 4,

    Table 4.  Cayley table for the binary operation "".
    1 2 3 4 5
    1 1 2 3 4 5
    2 1 1 1 5 5
    3 1 1 1 5 5
    4 1 3 3 1 1
    5 1 3 3 1 1

     | Show Table
    DownLoad: CSV

    and define a mapping f on X as follows:

    f:XX,x{1if x=1,3if x{2,3},5if x{4,5}.

    Then (X,f) is an interior GE-algebra in which X is transitive, and F:={1} and G:={1,4,5} are interior GE-filters in (X,f) with FG. Also we can observe that F and G are prominent interior GE-filters in (X,f).

    In Theorem 3.15, if F is an interior GE-filter which is not prominent, then G is also not a prominent interior GE-filter in (X,f) as shown in the next example.

    Example 3.17. Let X={1,2,3,4,5} be a set with the Cayley table which is given in Table 5,

    Table 5.  Cayley table for the binary operation "".
    1 2 3 4 5
    1 1 2 3 4 5
    2 1 1 1 4 1
    3 1 5 1 4 5
    4 1 1 1 1 1
    5 1 1 1 4 1

     | Show Table
    DownLoad: CSV

    and define a mapping f on X as follows:

    f:XX,x{1if x=1,3if x=3,4if x=4,2if x{2,5}.

    Then (X,f) is an interior GE-algebra in which X is transitive, and F:={1} and G:={1,3} are interior GE-filters in (X,f) with FG. We can observe that F and G are not prominent interior GE-filters in (X,f) since 23=1F but ((32)2)3=(52)3=13=3F, and 42=1G but ((24)4)2=(44)2=12=2G.

    In Theorem 3.15, if X is not transitive, then Theorem 3.15 is false as seen in the following example.

    Example 3.18. Let X={1,2,3,4,5,6} be a set with the Cayley table which is given in Table 6.

    Table 6.  Cayley table for the binary operation "".
    1 2 3 4 5 6
    1 1 2 3 4 5 6
    2 1 1 1 6 6 6
    3 1 1 1 5 5 5
    4 1 1 3 1 1 1
    5 1 2 3 2 1 1
    6 1 2 3 2 1 1

     | Show Table
    DownLoad: CSV

    If we define a mapping f on X as follows:

    f:XX,x{1if x=1,4if x=4,5if x=5,6if x=6,2if x{2,3},

    then (X,f) is an interior GE-algebra in which X is not transitive. Let F:={1} and G:={1,5,6}. Then F is a prominent interior GE-filter in (X,f) and G is an interior GE-filter in (X,f) with FG. But G is not prominent interior GE-filter since 5(34)=55=1G and 5G but ((43)3)4=(33)4=14=4G.

    Definition 3.19. Let (X,f) be an interior GE-algebra and let F be a subset of X which satisfies (2.15). Then F is called:

    A prominent interior GE-filter of type 1 in (X,f) if it satisfies:

    (x,y,zX)(x(yf(z))F,f(x)F((f(z)y)y)f(z)F). (3.3)

    A prominent interior GE-filter of type 2 in (X,f) if it satisfies:

    (x,y,zX)(x(yf(z))F,f(x)F((zf(y))f(y))zF). (3.4)

    Example 3.20. (1). Let X={1,2,3,4,5} be a set with the Cayley table which is given in Table 7,

    Table 7.  Cayley table for the binary operation "".
    1 2 3 4 5
    1 1 2 3 4 5
    2 1 1 1 1 1
    3 1 2 1 2 2
    4 1 1 1 1 1
    5 1 1 1 1 1

     | Show Table
    DownLoad: CSV

    and define a mapping f on X as follows:

    f:XX,x{1if x{1,3}2if x=2,4if x=4,5if x=5.

    Then (X,f) is an interior GE-algebra and F:={1,3} is a prominent interior GE-filter of type 1 in (X,f).

    (2). Let X={1,2,3,4,5} be a set with the Cayley table which is given in Table 8,

    Table 8.  Cayley table for the binary operation "".
    1 2 3 4 5
    1 1 2 3 4 5
    2 1 1 1 1 1
    3 1 1 1 4 1
    4 1 1 1 1 5
    5 1 1 3 4 1

     | Show Table
    DownLoad: CSV

    and define a mapping f on X as follows:

    f:XX,x{1if x=1,2if x{2,3,4,5}.

    Then (X,f) is an interior GE-algebra and F:={1,3} is a prominent interior GE-filter of type 2 in (X,f).

    Theorem 3.21. In an interior GE-algebra, every prominent interior GE-filter is of type 1.

    Proof. Let F be a prominent interior GE-filter in an interior GE-algebra (X,f). Let x,y,zX be such that x(yf(z))F and f(x)F. Then xF by (2.22). It follows from (2.18) that ((f(z)y)y)f(z)F. Hence F is a prominent interior GE-filter of type 1 in (X,f).

    The following example shows that the converse of Theorem 3.21 may not be true.

    Example 3.22. Let X={1,2,3,4,5} be a set with the Cayley table which is given in Table 9,

    Table 9.  Cayley table for the binary operation "".
    1 2 3 4 5
    1 1 2 3 4 5
    2 1 1 1 1 1
    3 1 1 1 1 5
    4 1 1 3 1 1
    5 1 1 1 1 1

     | Show Table
    DownLoad: CSV

    and define a mapping f on X as follows:

    f:XX,x{1if x=1,2if x{2,3},5if x{4,5}.

    Then (X,f) is an interior GE-algebra and F:={1} is a prominent interior GE-filter of type 1 in (X,f). But it is not a prominent interior GE-filter in (X,f) since 1(34)=1F but (43)3)4=4F.

    The following example shows that prominent interior GE-filter and prominent interior GE-filter of type 2 are independent of each other, i.e., prominent interior GE-filter is not prominent interior GE-filter of type 2 and neither is the inverse.

    Example 3.23. (1). Let X={1,2,3,4,5} be a set with the Cayley table which is given in the following Table 10,

    Table 10.  Cayley table for the binary operation "".
    1 2 3 4 5
    1 1 2 3 4 5
    2 1 1 1 1 1
    3 1 5 1 1 5
    4 1 1 1 1 1
    5 1 3 3 1 1

     | Show Table
    DownLoad: CSV

    and define a mapping f on X as follows:

    f:XX,x{1if x=1,4if x{3,4}5if x{2,5}.

    Then (X,f) is an interior GE-algebra and F:={1} F is a prominent interior GE-filter in (X,f). But it is not a prominent interior GE-filter of type 2 since 1(5f(2))=55=1F and f(1)=1F but ((2f(5))f(5))2=((25)5)2=(15)2=52=3F.

    (2). Let X={1,2,3,4,5} be a set with the Cayley table which is given in the following Table 11,

    Table 11.  Cayley table for the binary operation "".
    1 2 3 4 5
    1 1 2 3 4 5
    2 1 1 1 1 1
    3 1 2 1 1 1
    4 1 1 1 1 1
    5 1 1 1 1 1

     | Show Table
    DownLoad: CSV

    and define a mapping f on X as follows:

    f:XX,x{1if x=1,5if x{2,3,4,5}.

    Then (X,f) is an interior GE-algebra and F:={1} is a prominent interior GE-filter of type2 in (X,f). But it is not a prominent interior GE-filter in (X,f) since 1(23)=11=1F and 1F but ((32)2)3=(22)3=13=3F.

    The following example shows that prominent interior GE-filter of type 1 and prominent interior GE-filter of type 2 are independent of each other.

    Example 3.24. (1). Let X={1,2,3,4,5} be a set with the Cayley table which is given in the following Table 12,

    Table 12.  Cayley table for the binary operation "".
    1 2 3 4 5
    1 1 2 3 4 5
    2 1 1 1 5 5
    3 1 1 1 1 1
    4 1 1 1 1 1
    5 1 1 1 1 1

     | Show Table
    DownLoad: CSV

    and define a mapping f on X as follows:

    f:XX,x{1if x=1,3if x{2,3},5if x{4,5}.

    Then (X,f) is an interior GE-algebra and F:={1,2,4} is a prominent interior GE-filter of type 1 in (X,f). But it is not a prominent interior GE-filter of type 2 since 1(5f(2))=1(53)=11=1F and f(1)=1F but ((2f(5))f(5))2=((25)5)2=(55)2=12=2F.

    (2). Let X={1,2,3,4,5} be a set with the Cayley table which is given in the following Table 13,

    Table 13.  Cayley table for the binary operation "".
    1 2 3 4 5
    1 1 2 3 4 5
    2 1 1 4 4 5
    3 1 1 1 1 1
    4 1 2 2 1 5
    5 1 1 1 1 1

     | Show Table
    DownLoad: CSV

    and define a mapping f on X as follows:

    f:XX,x{1if x=1,2if x=2,4if x=4,3if x{3,5}.

    Then (X,f) is an interior GE-algebra and F:={1} is a prominent interior GE-filter of type 2 in (X,f). But it is not a prominent interior GE-filter of type 1 in (X,f) since 1(5f(2))=1(52)=11=1F and f(1)F but ((f(2)5)5)f(2)=((25)5)2=(55)2=12=2F.

    The following example shows that interior GE-filter and prominent interior GE-filter of type 1 are independent of each other.

    Example 3.25. (1). Let X={1,2,3,4,5} be a set with the Cayley table which is given in the following Table 14,

    Table 14.  Cayley table for the binary operation "".
    1 2 3 4 5
    1 1 2 3 4 5
    2 1 1 5 5 5
    3 1 1 1 1 1
    4 1 1 1 1 1
    5 1 1 1 1 1

     | Show Table
    DownLoad: CSV

    and define a mapping f on X as follows:

    f:XX,x{1if x=1,2if x=2,5if x{3,4,5}.

    Then (X,f) is an interior GE-algebra and F:={1} is an interior GE-filter in (X,f). But F is not prominent interior GE-filter of type 1 since 1(5f(2))=1(52)=11=1F and f(1)=1F but ((f(2)5)5)2=((25)5)2=(55)2=12=2F.

    (2). Let X={1,2,3,4,5} be a set with the Cayley table which is given in the following Table 15,

    Table 15.  Cayley table for the binary operation "".
    1 2 3 4 5
    1 1 2 3 4 5
    2 1 1 5 1 5
    3 1 2 1 1 1
    4 1 1 3 1 5
    5 1 1 1 1 1

     | Show Table
    DownLoad: CSV

    and define a mapping f on X as follows:

    f:XX,x{1if x{1,2,4},5if x{3,5}.

    Then (X,f) is an interior GE-algebra and F:={1,2} is a prominent interior GE-filter of type 1 in (X,f). But it is not an interior GE-filter in (X,f) since 24=1 and 2F but 4F.

    The following example shows that interior GE-filter and prominent interior GE-filter of type 2 are independent of each other.

    Example 3.26. (1). Let X={1,2,3,4,5} be a set with the Cayley table which is given in the following Table 16,

    Table 16.  Cayley table for the binary operation "".
    1 2 3 4 5
    1 1 2 3 4 5
    2 1 1 1 1 1
    3 1 2 1 1 2
    4 1 2 3 1 5
    5 1 1 1 1 1

     | Show Table
    DownLoad: CSV

    and define a mapping f on X as follows:

    f:XX,x{1if x{1,4}2if x=2,3if x=3,5if x=5.

    Then (X,f) is an interior GE-algebra and F:={1,4} is an interior GE-filter in (X,f). But F is not prominent interior GE-filter of type 2 since 4(2f(3))=4(23)=41=1F and f(4)=1F but ((3f(2))f(2))3=((32)2)3=(22)3=13=3F.

    (2). Let X={1,2,3,4,5} be a set with the Cayley table which is given in the following Table 17,

    Table 17.  Cayley table for the binary operation "".
    1 2 3 4 5
    1 1 2 3 4 5
    2 1 1 1 1 5
    3 1 1 1 1 1
    4 1 1 1 1 5
    5 1 1 1 1 1

     | Show Table
    DownLoad: CSV

    and define a mapping f on X as follows:

    f:XX,x{1if x=1,3if x{2,3,4,5}.

    Then (X,f) is an interior GE-algebra and F:={1,2,5} is a prominent interior GE-filter of type 2 in (X,f). But it is not an interior GE-filter in (X,f) since 54=1 and 5F but 4F.

    Before we conclude this paper, we raise the following question.

    Question. Let (X,f) be an interior GE-algebra. Let F and G be interior GE-filters in (X,f). If FG and F is a prominent interior GE-filter of type 1 (resp., type 2) in (X,f), then is G also a prominent interior GE-filter of type 1 (resp., type 2) in (X,f)?

    We have introduced the concept of a prominent interior GE-filter (of type 1 and type 2), and have investigated their properties. We have discussed the relationship between a prominent GE-filter and a prominent interior GE-filter and the relationship between an interior GE-filter and a prominent interior GE-filter. We have found and provide examples where any interior GE-filter is not a prominent interior GE-filter and any prominent GE-filter is not a prominent interior GE-filter. We have provided conditions for an interior GE-filter to be a prominent interior GE-filter. We have given conditions under which an internal GE-filter larger than a given internal GE filter can become a prominent internal GE-filter, and have provided an example describing it. We have considered the relationship between a prominent interior GE-filter and a prominent interior GE-filter of type 1. We have found and provide examples to verify that a prominent interior GE-filter of type 1 and a prominent interior GE-filter of type 2, a prominent interior GE-filter and a prominent interior GE-filter of type 2, an interior GE-filter and a prominent interior GE-filter of type 1, and an interior GE-filter and a prominent interior GE-filter of type 2 are independent each other. In future, we will study the prime and maximal prominent interior GE-filters and their topological properties. Moreover, based on the ideas and results obtained in this paper, we will study the interior operator theory in related algebraic systems such as MV-algebra, BL-algebra, EQ-algebra, etc. It will also be used for pseudo algebra systems and further to conduct research related to the very true operator theory.

    This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2016R1D1A1B02006812).

    The authors wish to thank the anonymous reviewers for their valuable suggestions.

    All authors declare no conflicts of interest in this paper.



    [1] G. Łukaszewicz, Micropolar fluids: theory and applications, Boston: Birkhäuser, 1999.
    [2] S. Kawashima, Smooth global solutions for two-dimensional equations of electro-magneto-fluid dynamics, Japan J. Appl. Math., 1 (1984), 207. https://doi.org/10.1007/BF03167869 doi: 10.1007/BF03167869
    [3] S. Kawashima, Y. Shizuta, Magnetohydrodynamic approximation of the complete equations for an electromagnetic fluid, Tsukuba J. Math., 10 (1986), 131–149. https://doi.org/10.21099/tkbjm/1496160397 doi: 10.21099/tkbjm/1496160397
    [4] S. Kawashima, Y. Shizuta, Magnetohydrodynamic approximation of the complete equations for an electromagnetic fluid II, Proc. Japan Acad. Ser. A Math. Sci., 62 (1986), 181–184. https://doi.org/10.3792/pjaa.62.181 doi: 10.3792/pjaa.62.181
    [5] S. Jiang, F. C. Li, Rigorous derivation of the compressible magnetohydrodynamic equations from the electromagnetic fluid system, Nonlinearity, 25 (2012), 1735–1752. https://doi.org/10.1088/0951-7715/25/6/1735 doi: 10.1088/0951-7715/25/6/1735
    [6] S. Jiang, F. C. Li, Convergence of the complete electromagnetic fluid system to the full compressible magnetohydrodynamic equations, 2013, arXiv: 1309.3668.
    [7] A. Milani, On a singular perturbation problem for the linear Maxwell equations, Rend. Sem. Mat. Univ. Politec. Torino, 38 (1980), 99–110.
    [8] A. Milani, Local in time existence for the complete Maxwell equations with monotone characteristic in a bounded domain, Annali di Matematica pura ed applicata, 131 (1982), 233–254. https://doi.org/10.1007/BF01765154 doi: 10.1007/BF01765154
    [9] A. Milani, The quasi-stationary Maxwell equations as singular limit of the complete equations: the quasi-linear case, J. Math. Anal. Appl., 102 (1984), 251–274. https://doi.org/10.1016/0022-247X(84)90218-X doi: 10.1016/0022-247X(84)90218-X
    [10] M. Stedry, O. Vejvoda, Small time-periodic solutions of equations of magnetohydrodynamics as a singularity perturbed problem, Aplikace matematiky, 28 (1983), 344–356. https://doi.org/10.21136/am.1983.104046 doi: 10.21136/am.1983.104046
    [11] M. Stedry, O. Vejvoda, Equations of magnetohydrodynamics of compressible fluid: periodic solutions, Aplikace matematiky, 30 (1985), 77–91. https://doi.org/10.21136/am.1985.104130 doi: 10.21136/am.1985.104130
    [12] M. Stedry, O. Vejvoda, Equations of magnetohydrodynamics: periodic solutions, Časopis pro pěstováni matematiky, 111 (1986), 177–184. https://doi.org/10.21136/cpm.1986.118275
    [13] D. Lauerová, The Rothe method and time periodic solutions to the Navier-Stokes equations and equations of magnetohydrodynamics, Aplikace matematiky, 35 (1990), 89–98. https://doi.org/10.21136/am.1990.104392 doi: 10.21136/am.1990.104392
    [14] F. Li, Y. Mu, Low Mach number limit of the full compressible Navier-Stokes-Maxwell system, J. Math. Anal. Appl., 412 (2014), 334–344. https://doi.org/10.1016/j.jmaa.2013.10.064 doi: 10.1016/j.jmaa.2013.10.064
    [15] R. Wei, B. Guo, Y. Li, Global existence and optimal convergence rates of solutions for 3D compressible magneto-micropolar fluid equations, J. Differ. Equations, 263 (2017), 2457–2480. https://doi.org/10.1016/j.jde.2017.04.002 doi: 10.1016/j.jde.2017.04.002
    [16] Z. Wu, W. Wang, The pointwise estimates of diffusion wave of the compressible micropolar fluids, J. Differ. Equations, 265 (2018), 2544–2576. https://doi.org/10.1016/j.jde.2018.04.039 doi: 10.1016/j.jde.2018.04.039
    [17] P. Zhang, Blow-up criterion for 3D compressible viscous magneto-micropolar fluids with initial vacuum, Bound. Value Probl., 2013 (2013), 160. https://doi.org/10.1186/1687-2770-2013-160 doi: 10.1186/1687-2770-2013-160
    [18] C. Jia, Z. Tan, J. Zhou, Well-posedness of compressible magneto-micropolar fluid equations, 2019, arXiv: 1906.06848v2.
    [19] Z. Song, The global well-posedness for the 3-D compressible micropolar system in the critical Besov space, Z. Angew. Math. Phys., 72 (2021), 160. https://doi.org/10.1007/s00033-021-01591-x doi: 10.1007/s00033-021-01591-x
    [20] T. Tang, J. Sun, Local well-posedness for the density-dependent incompressible magneto-micropolar system with vacuum, Discrete Contin. Dyn. Syst. B, 26 (2021), 6017–6026. https://doi.org/10.3934/dcdsb.2020377 doi: 10.3934/dcdsb.2020377
    [21] J. Fan, Z. Zhang, Y. Zhou, Local well-posedness for the incompressible full magneto-micropolar system with vacuum, Z. Angew. Math. Phys., 71 (2020), 42. https://doi.org/10.1007/s00033-020-1267-z doi: 10.1007/s00033-020-1267-z
    [22] M. A. Fahmy, A new boundary element algorithm for a general solution of nonlinear space-time fractional dual phase-lag bio-heat transfer problems during electromagnetic radiation, Case Stud. Therm. Eng., 25 (2021), 100918. https://doi.org/10.1016/j.csite.2021.100918 doi: 10.1016/j.csite.2021.100918
    [23] M. A. Fahmy, A new boundary element formulation for modeling and simulation of three-temperature distributions in carbon nanotube fiber reinforced composites with inclusions, Math. Method. Appl. Sci., in press. https://doi.org/10.1002/mma.7312
    [24] M. A. Fahmy, A new BEM modeling algorithm for size-dependent thermopiezoelectric problems in smart nanostructures, Comput. Mater. Con., 69 (2021), 931–944. https://doi.org/10.32604/cmc.2021.018191 doi: 10.32604/cmc.2021.018191
    [25] M. A. Fahmy, Boundary element modeling of 3T nonlinear transient magneto-thermoviscoelastic wave propagation problems in anisotropic circular cylindrical shells, Compos. Struct., 277 (2021), 114655. https://doi.org/10.1016/j.compstruct.2021.114655 doi: 10.1016/j.compstruct.2021.114655
    [26] M. A. Fahmy, M. M. Almehmadi, F. M. Al Subhi, A. Sohail, Fractional boundary element solution of three-temperature thermoelectric problems, Sci. Rep., 12 (2022), 6760. https://doi.org/10.1038/s41598-022-10639-5 doi: 10.1038/s41598-022-10639-5
    [27] M. A. Fahmy, 3D Boundary element model for ultrasonic wave propagation fractional order boundary value problems of functionally graded anisotropic fiber-reinforced plates, Fractal Fract., 6 (2022), 247. https://doi.org/10.3390/fractalfract6050247 doi: 10.3390/fractalfract6050247
    [28] M. A. Fahmy, Boundary element and sensitivity analysis of anisotropic thermoelastic metal and alloy discs with holes, Materials, 15 (2022), 1828. https://doi.org/10.3390/ma15051828 doi: 10.3390/ma15051828
    [29] M. A. Fahmy, M. M. Almehmadi, Boundary element analysis of rotating functionally graded anisotropic fiber-reinforced magneto-thermoelastic composites, Open Eng., 12 (2022), 313–322. https://doi.org/10.1515/eng-2022-0036 doi: 10.1515/eng-2022-0036
  • This article has been cited by:

    1. Sun Shin Ahn, Ravikumar Bandaru, Young Bae Jun, Imploring interior GE-filters in GE-algebras, 2021, 7, 2473-6988, 855, 10.3934/math.2022051
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1901) PDF downloads(90) Cited by(0)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog