In this paper, we will use the Banach fixed point theorem to prove the uniform-in-ϵ existence of the compressible full magneto-micropolar system in a bounded smooth domain, where ϵ is the dielectric constant. Consequently, the limit as ϵ→0 can be established. This approximation is usually referred to as the magnetohydrodynamics approximation and is equivalent to the neglect of the displacement current.
Citation: Jishan Fan, Tohru Ozawa. Magnetohydrodynamics approximation of the compressible full magneto- micropolar system[J]. AIMS Mathematics, 2022, 7(9): 16037-16053. doi: 10.3934/math.2022878
[1] | Mingyu Zhang . Regularity and uniqueness of 3D compressible magneto-micropolar fluids. AIMS Mathematics, 2024, 9(6): 14658-14680. doi: 10.3934/math.2024713 |
[2] | Ru Bai, Tiantian Chen, Sen Liu . Global stability solution of the 2D incompressible anisotropic magneto-micropolar fluid equations. AIMS Mathematics, 2022, 7(12): 20627-20644. doi: 10.3934/math.20221131 |
[3] | Muhammad Naqeeb, Amjad Hussain, Ahmad Mohammed Alghamdi . Blow-up criteria for different fluid models in anisotropic Lorentz spaces. AIMS Mathematics, 2023, 8(2): 4700-4713. doi: 10.3934/math.2023232 |
[4] | Xue-li Song, Yuan-yuan Liu, Xiao-tian Xie . The existence of uniform attractors for the 3D micropolar equations with nonlinear damping term. AIMS Mathematics, 2024, 9(4): 9608-9630. doi: 10.3934/math.2024470 |
[5] | Mingyu Zhang . On the Cauchy problem of compressible Micropolar fluids subjected to Hall current. AIMS Mathematics, 2024, 9(12): 34147-34183. doi: 10.3934/math.20241627 |
[6] | Dayong Huang, Guoliang Hou . Blowup criterion for the Cauchy problem of 2D compressible viscous micropolar fluids with vacuum. AIMS Mathematics, 2024, 9(9): 25956-25965. doi: 10.3934/math.20241268 |
[7] | Abdulaziz H. Alharbi, Ahmed G. Salem . Analytical and numerical investigation of viscous fluid-filled spherical slip cavity in a spherical micropolar droplet. AIMS Mathematics, 2024, 9(6): 15097-15118. doi: 10.3934/math.2024732 |
[8] | Li Lu . One new blow-up criterion for the two-dimensional full compressible magnetohydrodynamic equations. AIMS Mathematics, 2023, 8(7): 15876-15891. doi: 10.3934/math.2023810 |
[9] | Mingyu Zhang . On the Cauchy problem of 3D nonhomogeneous micropolar fluids with density-dependent viscosity. AIMS Mathematics, 2024, 9(9): 23313-23330. doi: 10.3934/math.20241133 |
[10] | Ahmed G. Salem, Turki D. Alharbi, Abdulaziz H. Alharbi, Anwar Ali Aldhafeeri . Impact of a spherical interface on a concentrical spherical droplet. AIMS Mathematics, 2024, 9(10): 28400-28420. doi: 10.3934/math.20241378 |
In this paper, we will use the Banach fixed point theorem to prove the uniform-in-ϵ existence of the compressible full magneto-micropolar system in a bounded smooth domain, where ϵ is the dielectric constant. Consequently, the limit as ϵ→0 can be established. This approximation is usually referred to as the magnetohydrodynamics approximation and is equivalent to the neglect of the displacement current.
In this paper, we consider the compressible full magneto-micropolar system [1]
∂tρ+div(ρu)=0, | (1.1) |
∂t(ρu)+div(ρu⊗u)+∇(ρθ)−(μ+μr)Δu−(λ+μ−μr)∇divu=2μrrotw+(E+u×b)×b, | (1.2) |
∂t(ρw)+div(ρuw)−(ca+cd)Δw−(c0+cd−ca)∇divw+4μrw=2μrrotu, | (1.3) |
∂t(ρθ)+div(ρuθ)−kΔθ+ρθdivu=μ2(∇u+∇uT):(∇u+∇uT)+λ(divu)2+4μr|12rotu−w|2+c0(divw)2+(ca+cd)∇w:∇w+(cd−ca)∇w:∇wT+|E+u×b|2, | (1.4) |
ϵ∂tE−rotb+E+u×b=0, | (1.5) |
∂tb+rotE=0,divb=0, | (1.6) |
in QT:=Ω×(0,T) for any T>0, with the initial and boundary conditions
(ρ,u,w,θ,E,b)(⋅,0)=(ρ0,u0,w0,θ0,E0,b0) in Ω⊆R3, | (1.7) |
u=0, w=0, θ=0, E×n=0, b⋅n=0 on ∂Ω×(0,T). | (1.8) |
Here, ρ is the density of the fluid, u is the fluid velocity field, w is the micro-rotational velocity, θ is the temperature, E is the electric field, and b is the magnetic field. Ω is a bounded domain in R3 with smooth boundary ∂Ω, whose outward normal vector is denoted by n. The positive constant k is the heat conductivity, the physical constants μ and λ are the shear viscosity and bulk viscosity and satisfy μ>0 and λ+23μ≥0. ϵ>0 is the dielectric constant. The positive constant μr represents the dynamic microrotation viscosity. c0,ca,cd are constants called coefficients of angular viscosities, which satisfy λ+μ−μr>0,c0+cd−ca>0.
When w=0, the above system is symmetric hyperbolic-parabolic. Kawashima-Shizuta [2,3,4] proved the local existence of smooth solutions for large data and global existence of smooth solutions for small data and studied the limit as ϵ→0 when Ω:=R2. Jiang-Li [5,6] studied the limit of ϵ→0 when Ω:=T3. Similar results have been obtained in [7,8,9,10,11,12,13]. Li-Mu [14] studied the low Mach number limit of the problem (1.1)–(1.6) when Ω:=R3.
When ϵ=0 and the entropy is a constant, Wei-Guo-Li [15] and Wu-Wang [16] studied the long-time behavior of smooth solutions. Zhang [17] showed the local well-posedness (without proof) and a blow-up criterion.
The well-posedness of the problem has been studied in [18,19,20,21]. The numerical analysis of some related problems has been considered in [22,23,24,25,26,27,28,29].
The aim of this paper is to prove the uniform-in-ϵ existence of unique local strong solutions to the problem (1.1)–(1.8) when Ω is a bounded domain.
Here, we impose the following regularity conditions on the initial data:
θ0≥0, 0<1C≤ρ0≤C, ρ0∈W1,6, divb0=0 in Ω,E0×n=0, b0⋅n=0 on ∂Ω, E0,b0∈H2, u0,w0,θ0∈H10∩H2. | (1.9) |
Theorem 1.1. Let (1.9) hold true and 0<ϵ<1, and let k=1. Then, there exist a small time ˜T>0 independent of ϵ>0 and a unique strong solution (ρ,u,w,θ,E,b) to the initial boundary value problem (1.1)–(1.8) such that
θ≥0, 1C≤ρ≤C, ρ∈L∞(0,˜T;W1,6), ∂tρ∈L∞(0,˜T;L6),u,w∈L∞(0,˜T;H2)∩L2(0,˜T;W2,6), θ∈L∞(0,˜T;H2),ut,wt,θt∈L∞(0,˜T;L2)∩L2(0,˜T;H1),b∈L∞(0,˜T;H2),bt∈L∞(0,˜T;H1),E∈L∞(0,˜T;H1)∩L2(0,˜T;H2), Et∈L2(0,˜T;H1), | (1.10) |
with the corresponding norms that are uniformly bounded with respect to ϵ>0.
We will prove Theorem 1.1. by the Banach fixed point theorem. We define the nonempty closed set
A:={(˜u,˜w)∈A;˜u(⋅,0)=u0,˜w(⋅,0)=w0,‖(˜u,˜w)‖A≤A} |
with the norm
‖(˜u,˜w)‖A:=‖(˜u,˜w)‖L∞(0,T;H2)+‖(˜u,˜w)‖L2(0,T;W2,6)+‖∂t(˜u,˜w)‖L∞(0,T;L2)+‖∂t(˜u,˜w)‖L2(0,T;H1). |
Let ˜u∈A be given, and we consider the following linear problems:
∂tρ+div(ρ˜u)=0, | (1.11) |
ρ(⋅,0)=ρ0; | (1.12) |
ϵ∂tE−rotb+E+˜u×b=0, | (1.13) |
∂tb+rotE=0, | (1.14) |
divb=0, | (1.15) |
(E,b)(⋅,0)=(E0,b0), | (1.16) |
E×n=0, b⋅n=0 on ∂Ω×(0,T); | (1.17) |
ρ∂tθ+ρ˜u⋅∇θ−Δθ+ρθdiv˜u=μ2(∇˜u+∇˜uT):(∇˜u+∇˜uT)+λ(div˜u)2+4μr|12rot˜u−˜w|2+c0(div˜w)2+(ca+cd)∇˜w:∇˜w+(cd−ca)∇˜w:∇˜wT+|E+˜u×b|2, | (1.18) |
θ(⋅,0)=θ0, | (1.19) |
θ=0 on ∂Ω×(0,T). | (1.20) |
ρ∂tu+ρ˜u⋅∇u+∇(ρθ)−(μ+μr)Δu−(λ+μ−μr)∇divu=2μrrot˜w+(E+u×b)×b, | (1.21) |
u(⋅,0)=u0, | (1.22) |
u=0 on ∂Ω×(0,T). | (1.23) |
ρ∂tw+ρ˜u⋅∇w−(ca+cd)Δw−(c0+cd−ca)∇divw+4μrw=2μrrotu, | (1.24) |
w(⋅,0)=w0, | (1.25) |
w=0 on ∂Ω×(0,T). | (1.26) |
Let (u,w) be the unique strong solution to the above problem, and we define the fixed point map F:(˜u,˜w)∈A→(u,w)∈A with ˜u=˜w=0 on ∂Ω×(0,T). We will prove that the map F maps A into A for suitable constant A and small T, and F is a contraction mapping on A, and thus F has a unique fixed point in A. This proves Theorem 1.1.
This section is devoted to the proof of Theorem 1.1.
Lemma 2.1. Let (˜u,˜w)∈A be given. Then, the problem (1.11) and (1.12) has a unique solution ρ satisfying
1C≤ρ≤C, ‖ρ‖L∞(0,T;W1,6)≤C, ‖ρt‖L∞(0,T;L6)≤CA |
for some small 0<T≤1.
Here and later on, C will denote a constant independent of ϵ and A.
Proof. Since Eq (1.11) is linear with regular ˜u, the existence and uniqueness are well-known, and we only need to establish a priori estimates.
Let
dx(X,t)dt=˜u(x(X,t),t) and x(X,0)=X, |
and we see that
dρ(x(X,t),t)dt=−ρdiv˜u, |
whence
ρ(x,t)=ρ0exp(−∫t0div˜uds). | (2.1) |
It follows from (2.1) that
ρ(x,t)≤ρexp(∫T0‖div˜u‖L∞dt)≤ρ0exp(∫T0C‖˜u‖W2,6dt)≤ρ0exp(CA√T)≤C‖ρ0‖L∞ |
if A√T≤1;
ρ(x,t)≥ρ0exp(−∫T0‖div˜u‖L∞dt)≥infρ0exp(−CA√T)≥Cinfρ0 |
if A√T≤1;
∇ρ=∇ρ0exp(−∫t0div˜uds)−ρ0exp(−∫t0div˜uds)∫t0∇div˜uds, |
whence
‖∇ρ‖L∞(0,T;L6)≤exp(∫T0‖div˜u‖L∞dt)(‖∇ρ0‖L6+‖ρ0‖L∞∫T0‖∇div˜u‖L6dt)≤Cexp(CA√T)(1+A√T)≤C |
if A√T≤1.
It follows from (1.11) that
ρt=−˜u∇ρ−ρdiv˜u, |
and
‖ρt‖L∞(0,T;L6)≤‖˜u‖L∞(0,T;L∞)‖∇ρ‖L∞(0,T;L6)+‖ρ‖L∞(0,T;L∞)‖div˜u‖L∞(0,T;L6)≤CA |
if A√T≤1.
This completes the proof.
Lemma 2.2. Let (˜u,˜w)∈A be given. Then, the problem (1.13)–(1.17) has a unique solution (E,b) satisfying (2.2), (2.4), (2.6), (2.8), (2.9), (2.10), (2.11) and (2.12) for some 0<T≤1.
Proof. Since Eqs (1.13)–(1.15) are linear with regular (ρ,˜u), the existence and uniqueness are well- known, and we only need to establish the a priori estimates.
Testing (1.13) and (1.14) by E and b and summing up the result, we see that
12ddt∫(ϵE2+b2)dx+∫E2dx=−∫(˜u×b)Edx≤‖˜u‖L∞‖b‖L2‖E‖L2≤CA‖b‖L2‖E‖L2≤12‖E‖2L2+CA2‖b‖2L2, |
which gives
∫(ϵE2+b2)dx+∫T0∫E2dxdt≤C | (2.2) |
if A2T≤1.
Note that (1.13), (1.17) and (1.23) give the boundary condition
rotb×n=0 on ∂Ω×(0,T). | (2.3) |
Taking rot to (1.13) and (1.14), testing by rotE and rotb and using (2.3), summing up the result and integrating by parts, we find that
12ddt∫(ϵ|rotE|2+|rotb|2)dx+∫|rotE|2dx=−∫rot(˜u×b)⋅rotEdx≤C‖˜u‖H2‖rotb‖L2‖rotE‖L2≤12∫|rotE|2dx+CA2‖rotb‖2L2, |
which yields
∫(ϵ|rotE|2+|rotb|2)dx+∫T0∫|rotE|2dxdt≤C | (2.4) |
if A2T≤1.
Here, we have used the Poincaré inequality
‖b‖L2≤C‖rotb‖L2. | (2.5) |
Taking ∂t to (1.13) and (1.14), testing by ∂tE and ∂tb and summing up the result and using (2.4), we infer that
12ddt∫(ϵ|Et|2+|∂tb|2)+∫|Et|2dx=∫∂t(bטu)⋅∂tEdx≤(‖∂tb‖L2‖˜u‖L∞+‖b‖L6‖∂t˜u‖L3)‖Et‖L2≤12∫|Et|2dx+CA2‖∂tb‖2L2+C‖∂t˜u‖L2‖∇∂t˜u‖L2, |
which implies
∫(ϵ|Et|2+|bt|2)dx+∫T0∫|Et|2dxdt≤C | (2.6) |
if A2T≤1.
(1.14) and (2.3) give the boundary condition
rot2E×n=0 on ∂Ω×(0,T). | (2.7) |
Taking rot2 to (1.13) and (1.14), testing by rot2E and rot2b and using (2.7) and summing up the result, we derive
12ddt∫(|ϵrot2E|2+|rot2b|2)dx+∫|rot2E|2dx=∫rot2(bטu)rot2Edx≤C‖˜u‖H2‖rot2b‖L2‖rot2E‖L2≤12∫|rot2E|2dx+CA2‖rot2b‖2L2, |
which implies
∫(ϵ|rot2E|2+|rot2b|2)dx+∫T0∫|rot2E|2dxdt≤C | (2.8) |
if A2T≤1.
Taking ∇div to (1.13), testing by ∇divE and using (2.8), we get
ϵ2ddt∫|∇divE|2dx+∫|∇divE|2dx=∫∇div(bטu)⋅∇divEdx≤C‖˜u‖H2‖rot2b‖L2‖∇divE‖L2≤12∫|∇divE|2dx+CA2, |
which leads to
ϵ∫|∇divE|2dx+∫T0∫|∇divE|2dxdt≤C | (2.9) |
if A2T≤1.
Taking ∂trot to (1.13) and (1.14), testing by ∂trotE and ∂trotb and using (2.3) and (2.8), we obtain
12ddt∫(ϵ|rotEt|2+|rotbt|2)dx+∫|rotEt|2dx=∫rot(btטu+bטut)rotEtdx≤12∫|rotEt|2dx+C‖bt‖2L6‖∇˜u‖2L3+C‖˜u‖2L∞‖rotbt‖2L2+C‖b‖2L∞‖∇˜ut‖2L2+C‖rotb‖2L6‖˜ut‖2L3≤12∫|rotEt|2dx+CA2‖rotbt‖2L2+C‖∇˜ut‖2L2, |
which yields
∫(ϵ|rotEt|2+|rotbt|2)dx+∫T0∫|rotEt|2dxdt≤CA2 | (2.10) |
if A2T≤1.
Applying ∂tdiv to (1.13), testing by ∂tdivE, and using (2.10) and (2.8), we have
ϵ2ddt∫|divEt|2dx+∫|divEt|2dx=∫div(btטu+bטut)∂tdivEdx=∫(˜urotbt−btrot˜u+˜utrotb−brot˜ut)∂tdivEdx≤(‖˜u‖L∞‖rotbt‖L2+‖bt‖L6‖rot˜u‖L3+‖˜ut‖L6‖rotb‖L3+‖b‖L∞‖rot˜ut‖L2)‖divEt‖L2≤C(A2+‖∇˜ut‖L2)‖divEt‖L2≤12‖divEt‖2L2+CA4+C‖∇˜ut‖2L2, |
which gives
ϵ∫(divEt)2dx+∫T0∫(divEt)2dxdt≤CA2 | (2.11) |
if A2T≤1.
(2.6), (2.10) and (2.11) imply
ddt∫(E2+(divE)2+|rotE|2)dx=2∫(E⋅Et+divEdivEt+rotErotEt)dx≤(∫(E2+(divE)2+|rotE|2))12(∫(E2t+(divEt)2+(rotEt)2)dx)12, |
whence
dydt≤C(‖Et‖L2+‖divEt‖L2+‖rotEt‖L2), |
with
y(t):=(∫(E2+(divE)2+(rotE)2)dx)12. |
Integrating the above inequality, we have
y(t)≤y(0)+CAT≤C | (2.12) |
if AT≤1.
This completes the proof.
Lemma 2.3. Let (˜u,˜w)∈A be given. Then, the problem (1.18) and (1.19) has a unique solution θ satisfying θ≥0, (2.14), (2.15) and (2.16).
Proof. Since Eq (1.18) is linear with regular (ρ,˜u,˜w,E,b), the existence and uniqueness are well- known, and we only need to establish a priori estimates.
Testing (1.18) by θ and using (1.11) and Lemmas 2.1–2.2, we infer that
12ddt∫ρθ2dx+∫|∇θ|2dx=−∫ρθ2div˜udx+∫[μ2(∇˜u+∇˜uT):(∇˜u+∇˜uT)+λ(div˜u)2+4μr|12rot˜u−˜w|2+c0(div˜w)2+(ca+cd)∇˜w:∇˜w+(cd−ca)∇˜w:∇˜wT+|E+˜u×b|2]θdx≤‖div˜u‖L∞∫ρθ2dx+C‖∇˜u‖L6‖∇˜u‖L3‖θ‖L2+C‖˜w‖L6‖˜w‖L3‖θ‖L2+C‖∇˜w‖L6‖∇˜w‖L3‖θ‖L2+C‖E‖L3‖E‖L6‖θ‖L2+C‖˜u‖2L∞‖b‖2L4‖θ‖L2≤‖div˜u‖L∞∫ρθ2dx+CA2‖θ‖L2+C‖θ‖L2, |
which yields
∫θ2dx+∫T0∫|∇θ|2dxdt≤C | (2.13) |
if A2T≤1.
Testing (1.18) by θt and using Lemmas 2.1–2.2, we deduce that
12ddt∫|∇θ|2dx+∫ρθ2tdx=−∫(ρθdiv˜u+ρ˜u⋅∇θ)θtdx+∫[μ2(∇˜u+∇˜uT):(∇˜u+∇˜uT)+λ(div˜u)2+4μr|12rot˜u−˜w|2+c0(div˜w)2+(ca+cd)∇˜w:∇˜w+(cd−ca)∇˜w:∇˜wT+|E+˜u×b|2]θtdx≤‖div˜u‖L6‖θ‖L3‖√ρθt‖L2‖√ρ‖L∞+‖˜u‖L∞‖∇θ‖L2‖√ρθt‖L2‖√ρ‖L∞+C(‖∇˜u‖2L4+‖˜w‖2L4+‖∇˜w‖2L4+‖E‖2L4+‖˜u‖2L∞‖b‖2L4)‖θt‖L2≤12∫ρθ2tdx+CA2(‖θ‖2L3+‖∇θ‖2L2)+CA4+C, |
which gives
∫|∇θ|2dx+∫T0∫θ2tdxdt≤C | (2.14) |
if A4T≤1.
Taking ∂t to (1.18), testing by θt, and using (1.11) and Lemmas 2.1–2.2, we have
12ddt∫ρθ2tdx+∫|∇θt|2dx≤−∫ρtθ2tdx−∫∂t(ρ˜u)⋅∇θ⋅θtdx−∫∂t(ρθdiv˜u)⋅θtdx+C∫|∇˜u||∇˜ut||θt|dx+C∫|˜w||˜wt||θt|dx+C∫|∇˜w||∇˜wt||θt|dx+C∫|EEtθt|dx+C|∫(˜u×b)(˜ut×b+˜u×bt)θtdx|≤‖ρt‖L6‖θt‖L2‖θt‖L3+‖ρt‖L6‖˜u‖L∞‖∇θ‖L2‖θt‖L3+C‖˜ut‖L3‖∇θ‖L2‖θt‖L6+C‖ρt‖L6‖θ‖L6‖div˜u‖L6‖θt‖L2+C‖√ρθt‖2L2‖div˜u‖L∞+C‖θ‖L6‖∇˜ut‖L2‖θt‖L3+C‖∇˜u‖L6‖∇˜ut‖L2‖θt‖L3+C‖˜w‖L6‖˜wt‖L2‖θt‖L3+C‖∇˜w‖L6‖∇˜wt‖L2‖θt‖L3+C‖E‖L6‖Et‖L2‖θt‖L3+C‖˜u‖L∞‖b‖2L∞‖˜ut‖L2‖θt‖L2+C‖˜u‖2L∞‖b‖L∞‖bt‖L2‖θt‖L2≤CA‖θt‖32L2‖∇θt‖12L2+CA2‖θt‖12L2‖∇θt‖12L2+C‖˜ut‖12L2‖∇˜ut‖12L2‖∇θt‖L2+CA2‖θt‖L2+C‖div˜u‖L∞∫ρθ2tdx+CA‖∇˜ut‖L2‖θt‖12L2‖∇θt‖12L2+CA‖∇˜wt‖L2‖θt‖12L2‖∇θt‖12L2+C‖Et‖L2‖θt‖L3, |
which yields
∫θ2tdx+∫T0∫|∇θt|2dxdt≤C | (2.15) |
if (A4+A3+A2)T≤1. Here, we bound
CA‖∇˜ut‖L2‖θt‖12L2‖∇θt‖12L2≤116‖∇θt‖2L2+CA43‖∇˜ut‖43L2‖θt‖23L2≤116‖∇θt‖2L2+CA43‖∇˜ut‖43L2(1+‖θt‖2L2)CA‖∇˜wt‖L2‖θt‖12L2‖∇θt‖12L2≤116‖∇θt‖2L2+CA43‖∇˜wt‖43L2‖θt‖23L2≤116‖∇θt‖2L2+CA43‖∇˜wt‖43L2(1+‖θt‖2L2),C‖Et‖L2‖θt‖L3≤C‖Et‖L2‖θt‖12L2‖∇θt‖12L2≤116‖∇θt‖2L2+C‖Et‖43L2(1+‖θt‖2L2). |
It follows from (1.18), (2.15) and (2.14) that
‖θ‖L∞(0,T;H2)≤CA2+C. | (2.16) |
This completes the proof.
Lemma 2.4. Let (˜u,˜w)∈A be given. Then, the problem (1.21)–(1.23) has a unique solution u satisfying
‖u‖L∞(0,T;H2)+‖u‖L2(0,T;W2,6)+‖ut‖L∞(0,T;L2)+‖ut‖L2(0,T;H1)≤C1 | (2.17) |
for some small 0<T≤1. Here, C1 is a positive constant independent of ϵ and A.
Proof. Since Eq (1.21) is linear with regular (ρ,˜u,˜w,θ,E,b), the existence and uniqueness are well- known, and we only need to establish (2.17).
Testing (1.21) by u and using (1.11) and Lemmas 2.1–2.3, we see that
12ddt∫ρ|u|2dx+∫((μ+μr)|∇u|2+(λ+μ−μr)(divu)2)dx+∫|u×b|2dx=∫ρθdivudx+2μr∫urot˜wdx+∫(E×b)udx≤‖ρ‖L∞‖θ‖L2‖divu‖L2+C‖u‖L2‖rot˜w‖L2+‖E‖L6‖b‖L3‖u‖L2≤C‖divu‖L2+C‖u‖L2+CA‖u‖L2≤λ+μ−μr2‖divu‖2L2+C‖u‖L2+C+CA‖u‖L2, |
which gives
∫|u|2dx+∫T0∫|∇u|2dxdt≤C | (2.18) |
if A2T≤1.
Testing (1.21) by ut and using Lemmas 2.1–2.3, we find that
12ddt∫[(μ+μr)|∇u|2+(λ+μ−μr)(divu)2]dx+∫ρ|ut|2dx=−∫ρ˜u⋅∇u⋅utdx−∫∇(ρθ)⋅utdx+2μr∫utrot˜wdx+∫[(E+u×b)×b]utdx≤12∫ρ|ut|2dx+C‖˜u‖2L∞‖∇u‖2L2+C‖ρ‖2L∞‖∇θ‖2L2+C‖θ‖2L3‖∇ρ‖2L6+C‖rot˜w‖2L2+C‖E‖2L6‖b‖2L3+C‖u‖2L∞‖b‖2L4≤12∫ρ|ut|2dx+CA2‖∇u‖2L2+C+CA2, |
which implies
∫|∇u|2dx+∫T0∫|ut|2dxdt≤C | (2.19) |
if A2T≤1.
Applying ∂t to (1.21), testing by ut, and using (1.11), Lemmas 2.1–2.3 and (2.19), we have
12ddt∫ρ|ut|2dx+∫[(μ+μr)|∇ut|2+(λ+μ−μr)(divut)2]dx+∫|ut×b|2dx=−∫ρtu2tdx−∫(ρ˜u)t⋅∇u⋅utdx+∫(ρθ)tdivutdx+2μr∫˜wtrotutdx+∫(Et×b+E×bt)utdx+∫[(u×bt)×b+(u×b)×bt]utdx≤‖ρt‖L6‖ut‖L3‖ut‖L2+‖ρt‖L6‖˜u‖L∞‖∇u‖L2‖ut‖L3+‖ρ‖L∞‖˜ut‖L3‖∇u‖L2‖ut‖L6+‖ρt‖L6‖θ‖L3‖divut‖L2+‖ρ‖L∞‖θt‖L2‖divut‖L2+2μr‖˜wt‖L2‖rotut‖L2+‖Et‖L2|‖b‖L∞‖ut‖L2+‖E‖L6‖bt‖L3‖ut‖L2+‖u‖L6‖bt‖L3‖b‖L∞‖ut‖L2≤C‖ut‖L2‖ut‖L3+CA‖ut‖L3+C‖˜ut‖L3‖ut‖L6+C‖divut‖L2+CA‖rotut‖L2+C‖Et‖L2‖ut‖L2+C‖bt‖L3‖ut‖L2≤μ2∫|∇ut|2dx+C‖ut‖2L2+CA2+C‖˜ut‖L2‖∇˜ut‖L2+C+C‖Et‖L2‖ut‖L2+C‖bt‖L3‖ut‖L2, |
which gives
∫|ut|2dx+∫T0∫|∇ut|2dxdt≤C1 | (2.20) |
if A2T≤1.
Since
˜u(x,t)=u0(x)+∫t0∂t˜uds, |
and
‖∇˜u‖L∞(0,T;L2)≤C+∫T0‖∇∂t˜u‖L2dt≤C+C√TA≤C | (2.21) |
if A2T≤1.
Similarly, we have
‖∇˜w‖L∞(0,T;L2)≤C | (2.22) |
if A2T≤1.
We rewrite (1.21) as
−μΔu−(λ+μ)∇divu=f:=2μrrot˜w+(E+u×b)×b−ρ∂tu−ρ˜u⋅∇u−∇(ρθ). |
By the H2-theory of the elliptic system, we get
‖u‖H2≤C‖f‖L2≤C‖∇˜w‖L2+C‖E‖L6‖b‖L3+C‖u‖L6‖b‖2L6+C‖ρ∂tu‖L2+C‖˜u‖L6‖∇u‖L3+C‖ρ∇θ‖L2+C‖θ‖L3‖∇ρ‖L6≤C+C‖∇u‖L3, |
which yields
‖u‖L∞(0,T;H2)≤C1. | (2.23) |
Similarly, by the W2,6-theory of the elliptic system, we have
‖u‖W2,6≤C‖f‖L6≤C‖rot˜w‖L6+C‖E‖L6‖b‖L∞+C‖u‖L∞‖b‖L∞‖b‖L6+C‖ut‖L6+C‖˜u‖L6‖∇u‖L∞+C‖∇θ‖L6+C‖∇ρ‖L6≤C+C‖∇u‖L∞+CA2+C‖ut‖L6≤C+C‖∇u‖14L2‖u‖34W2,6+CA2+C‖∇ut‖L2, |
whence
‖u‖W2,6≤C+CA2+C‖∇ut‖L2, |
which yields
‖u‖L2(0,T;W2,6)≤C1 | (2.24) |
if A4T≤1.
This completes the proof.
Similarly to Lemma 2.4, we have the following.
Lemma 2.5. Let (˜u,˜w)∈A be given. Then, the problem (1.24)–(1.26) has a unique solution w satisfying (2.17) with u:=w.
Proof. Since the proof is very similar to that of Lemma 2.4, we omit the details here.
Due to the above Lemmas 2.1–2.5, we can take A:=C1, and thus F maps A into A. The following lemma tells us that F is a contraction mapping in the sense of weaker norm.
Lemma 2.6. There is a constant 0<δ<1 such that for any ˜ui (i=1,2),
‖F(˜u1,˜w1)−F(˜u2,˜w2)‖L2(0,T;H1)≤δ‖(˜u1−˜u2,˜w1−˜w2)‖L2(0,T;H1) | (2.25) |
for some small 0<T≤1.
Proof. Suppose (ρi,ui,wi,θi,Ei,bi) (i=1,2) are the solutions to the problem (1.11)–(1.26) corresponding to ˜ui (i=1,2). Define
ρ:=ρ1−ρ2,u:=u1−u2,w:=w1−w2,θ:=θ1−θ2,E:=E1−E2,b:=b1−b2,˜u:=˜u1−˜u2,˜w:=˜w1−˜w2. |
Then, we have
ρt+div(ρ˜u1)=−div(ρ2˜u), | (2.26) |
ϵ∂tE−rotb+E+˜u×b1+˜u2×b=0, | (2.27) |
∂tb+rotE=0,divb=0, | (2.28) |
ρ1∂tθ+ρ1˜u1⋅∇θ−Δθ+ρ1θ1div˜u1−ρ2θ2div˜u2+ρ∂tθ2+(ρ1˜u1−ρ2˜u2)∇θ2=Q1−Q2, | (2.29) |
ρ1∂tu+ρ1˜u1⋅∇u+∇(ρ1θ1−ρ2θ2)−(μ+μr)Δu−(λ+μ−μr)∇divu+ρ∂tu2+(ρ1˜u1−ρ2˜u2)∇u2=2μrrot˜w+(E1+u1×b1)×b1−(E2+u2×b2)×b2, | (2.30) |
with
Qi:=μ2(∇˜ui+∇˜uTi):(∇˜ui+∇˜uTi)+λ(div˜ui)2+4μr|12rot˜ui−˜wi|2+c0(div˜wi)2+(ca+cd)∇˜wi:∇˜wi+(cd−ca)∇˜wi:∇˜wTi+|Ei+˜ui×bi|2 (i=1,2) |
ρ1∂tw+ρ1˜u1⋅∇w−(ca+cd)Δw−(c0+cd−ca)∇divw+4μrw=2μrrotu−ρ∂tw2−(ρ1˜u1−ρ2˜u2)⋅∇w2. | (2.31) |
Testing (2.26) by ρ, we see that
ddt∫ρ2dx≤C‖∇˜u1‖L∞∫ρ2dx+C(‖ρ2‖L∞‖∇˜u‖L2+‖˜u‖L6‖∇ρ2‖L3‖ρ‖L2≤C‖˜u1‖W2,6∫ρ2dx+C‖∇˜u‖L2‖ρ‖L2≤η1‖∇˜u‖2L2+C(1+‖˜u1‖W2,6)‖ρ‖2L2 | (2.32) |
for any 0<η1<1.
Testing (2.27) and (2.28) by E and b and summing up the result, we find that
12ddt∫(ϵE2+b2)dx+∫E2dx=∫(b1טu+bטu2)Edx≤14∫E2dx+C‖b1‖2L∞‖˜u‖2L2+C‖˜u2‖2L∞‖b‖2L2≤14∫E2dx+C‖˜u‖2L2+C‖b‖2L2. | (2.33) |
Testing (2.29) by θ and using ∂tρ1+div(ρ1˜u1)=0, we infer that
12ddt∫ρ1θ2dx+∫|∇θ|2dx=∫[ρθ1div˜u1+ρ2θdiv˜u1+ρ2θ2div˜u+ρ∂tθ2+(ρ˜u1+ρ2˜u)∇θ2]θdx+∫(Q1−Q2)θdx≤‖ρ‖L2‖θ1‖L∞‖div˜u1‖L∞‖θ‖L2+‖ρ2‖L∞‖div˜u1‖L∞‖θ‖2L2+‖ρ2‖L∞‖θ2‖L∞‖div˜u‖L2‖θ‖L2+‖ρ‖L2‖∂tθ2‖L3‖θ‖L6+‖ρ‖L2‖˜u1‖L∞‖∇θ2‖L6‖θ‖L3+‖ρ2‖L∞‖˜u‖L2‖∇θ2‖L6‖θ‖L3+C(‖˜w1‖W1,6+‖˜w2‖W1,6)‖∇˜w‖L2‖θ‖L3+C(‖∇˜u1‖L6+‖∇˜u2‖L6)‖∇˜u‖L2‖θ‖L3+C(‖E1‖L6+‖E2‖L6)‖E‖L2‖θ‖L3+C(‖˜u1‖L∞‖b1‖L∞+‖˜u2‖L∞‖b2‖L∞)(‖˜u‖L2‖b1‖L∞+‖˜u2‖L∞‖b‖L2)‖θ‖L2≤C‖div˜u1‖L∞(‖ρ‖2L2+‖θ‖2L2)+η1‖∇˜u‖2L2+η1‖∇˜w‖2L2+C‖θ‖2L2+124‖∇θ‖2L2+C‖∂tθ2‖2L3‖ρ‖2L2+C‖ρ‖2L2+η1‖˜u‖2L2+η2‖E‖2L2+η1‖b‖2L2 | (2.34) |
for any 0<η1,η2<1.
Testing (2.30) by u and using ∂tρ1+div(ρ1˜u1)=0, we deduce that
12ddt∫ρ1|u|2dx+∫[(μ+μr)|∇u|2+(λ+μ−μr)(divu)2]dx+∫(u×b1)2dx=−∫[ρ∂tu2+(ρ˜u1+ρ2˜u)⋅∇u2]udx+∫(ρ1θ1−ρ2θ2)divudx+2μr∫rot˜w⋅udx+∫[(E1+u1×b1)×b1−(E2+u2×b2)×b2]udx≤‖ρ‖L2‖∂tu2‖L3‖u‖L6+(‖ρ‖L2‖˜u1‖L∞+‖ρ2‖L∞‖˜u‖L2)‖∇u2‖L6‖u‖L3+(‖ρ‖L2‖θ1‖L∞+‖ρ2‖L∞‖θ‖L2)‖divu‖L2+C‖rot˜w‖L2‖u‖L2+‖E‖L2‖b1‖L∞‖u‖L2+‖b‖L2‖E2‖L6‖u‖L3+(‖u2‖L∞‖b‖L2‖b1‖L∞+‖u2‖L∞‖b2‖L∞‖b‖L2)‖u‖L2≤μ16‖∇u‖2L2+C‖∂tu2‖2L3‖ρ‖2L2+C(‖ρ‖L2+‖˜u‖L2)‖u‖L3+C‖ρ‖2L2+C‖θ‖2L2+C‖E‖L2‖u‖L2+C‖b‖L2‖u‖L3+C‖b‖L2‖u‖L2+C‖rot˜w‖L2‖u‖L2≤μ8‖∇u‖2L2+C‖∂tu2‖2L3‖ρ‖2L2+η1‖˜u‖2L2+C‖u‖2L2+C‖ρ‖2L2+C‖θ‖2L2+Cη2‖E‖2L2+η1‖b‖2L2+η1‖rot˜w‖2L2 | (2.35) |
for any 0<η1,η2<1.
Testing (2.31) by w and using ∂tρ1+div(ρ1˜u1)=0, we compute
12ddt∫ρ1|w|2dx+(ca+cd)∫|∇w|2dx+(c0+cd−ca)∫(divw)2dx+4μr∫|w|2dx=2μr∫wrotudx−∫[ρ∂tw2+(ρ˜u1+ρ2˜u)⋅∇w2]wdx≤C‖w‖2L2+μ8‖∇u‖2L2+‖ρ‖L2‖∂tw2‖L3‖w‖L6+(‖ρ‖L2‖˜u1‖L∞+‖ρ2‖L∞‖˜u‖L2)‖∇w2‖L6‖w‖L3≤C‖w‖2L2+μ8‖∇u‖2L2+ca+cd8‖∇w‖2L2+C‖∂tw2‖2L3‖ρ‖2L2+C‖ρ‖2L2+η1‖˜u‖2L2. | (2.36) |
Taking (2.32)+η1×(2.33)+(2.34)+(2.35)+(2.36), taking η2<<η1 and using the Gronwall inequality, we arrive at (2.25) for small 0<T≤1.
This completes the proof.
Proof of Theorem 1.1.
By Lemmas 2.1–2.6 and the Banach fixed point theorem, we finish the proof.
J. Fan is partially supported by NSFC (No. 11971234).
The authors declare no conflict of interest.
[1] | G. Łukaszewicz, Micropolar fluids: theory and applications, Boston: Birkhäuser, 1999. |
[2] |
S. Kawashima, Smooth global solutions for two-dimensional equations of electro-magneto-fluid dynamics, Japan J. Appl. Math., 1 (1984), 207. https://doi.org/10.1007/BF03167869 doi: 10.1007/BF03167869
![]() |
[3] |
S. Kawashima, Y. Shizuta, Magnetohydrodynamic approximation of the complete equations for an electromagnetic fluid, Tsukuba J. Math., 10 (1986), 131–149. https://doi.org/10.21099/tkbjm/1496160397 doi: 10.21099/tkbjm/1496160397
![]() |
[4] |
S. Kawashima, Y. Shizuta, Magnetohydrodynamic approximation of the complete equations for an electromagnetic fluid II, Proc. Japan Acad. Ser. A Math. Sci., 62 (1986), 181–184. https://doi.org/10.3792/pjaa.62.181 doi: 10.3792/pjaa.62.181
![]() |
[5] |
S. Jiang, F. C. Li, Rigorous derivation of the compressible magnetohydrodynamic equations from the electromagnetic fluid system, Nonlinearity, 25 (2012), 1735–1752. https://doi.org/10.1088/0951-7715/25/6/1735 doi: 10.1088/0951-7715/25/6/1735
![]() |
[6] | S. Jiang, F. C. Li, Convergence of the complete electromagnetic fluid system to the full compressible magnetohydrodynamic equations, 2013, arXiv: 1309.3668. |
[7] | A. Milani, On a singular perturbation problem for the linear Maxwell equations, Rend. Sem. Mat. Univ. Politec. Torino, 38 (1980), 99–110. |
[8] |
A. Milani, Local in time existence for the complete Maxwell equations with monotone characteristic in a bounded domain, Annali di Matematica pura ed applicata, 131 (1982), 233–254. https://doi.org/10.1007/BF01765154 doi: 10.1007/BF01765154
![]() |
[9] |
A. Milani, The quasi-stationary Maxwell equations as singular limit of the complete equations: the quasi-linear case, J. Math. Anal. Appl., 102 (1984), 251–274. https://doi.org/10.1016/0022-247X(84)90218-X doi: 10.1016/0022-247X(84)90218-X
![]() |
[10] |
M. Stedry, O. Vejvoda, Small time-periodic solutions of equations of magnetohydrodynamics as a singularity perturbed problem, Aplikace matematiky, 28 (1983), 344–356. https://doi.org/10.21136/am.1983.104046 doi: 10.21136/am.1983.104046
![]() |
[11] |
M. Stedry, O. Vejvoda, Equations of magnetohydrodynamics of compressible fluid: periodic solutions, Aplikace matematiky, 30 (1985), 77–91. https://doi.org/10.21136/am.1985.104130 doi: 10.21136/am.1985.104130
![]() |
[12] | M. Stedry, O. Vejvoda, Equations of magnetohydrodynamics: periodic solutions, Časopis pro pěstováni matematiky, 111 (1986), 177–184. https://doi.org/10.21136/cpm.1986.118275 |
[13] |
D. Lauerová, The Rothe method and time periodic solutions to the Navier-Stokes equations and equations of magnetohydrodynamics, Aplikace matematiky, 35 (1990), 89–98. https://doi.org/10.21136/am.1990.104392 doi: 10.21136/am.1990.104392
![]() |
[14] |
F. Li, Y. Mu, Low Mach number limit of the full compressible Navier-Stokes-Maxwell system, J. Math. Anal. Appl., 412 (2014), 334–344. https://doi.org/10.1016/j.jmaa.2013.10.064 doi: 10.1016/j.jmaa.2013.10.064
![]() |
[15] |
R. Wei, B. Guo, Y. Li, Global existence and optimal convergence rates of solutions for 3D compressible magneto-micropolar fluid equations, J. Differ. Equations, 263 (2017), 2457–2480. https://doi.org/10.1016/j.jde.2017.04.002 doi: 10.1016/j.jde.2017.04.002
![]() |
[16] |
Z. Wu, W. Wang, The pointwise estimates of diffusion wave of the compressible micropolar fluids, J. Differ. Equations, 265 (2018), 2544–2576. https://doi.org/10.1016/j.jde.2018.04.039 doi: 10.1016/j.jde.2018.04.039
![]() |
[17] |
P. Zhang, Blow-up criterion for 3D compressible viscous magneto-micropolar fluids with initial vacuum, Bound. Value Probl., 2013 (2013), 160. https://doi.org/10.1186/1687-2770-2013-160 doi: 10.1186/1687-2770-2013-160
![]() |
[18] | C. Jia, Z. Tan, J. Zhou, Well-posedness of compressible magneto-micropolar fluid equations, 2019, arXiv: 1906.06848v2. |
[19] |
Z. Song, The global well-posedness for the 3-D compressible micropolar system in the critical Besov space, Z. Angew. Math. Phys., 72 (2021), 160. https://doi.org/10.1007/s00033-021-01591-x doi: 10.1007/s00033-021-01591-x
![]() |
[20] |
T. Tang, J. Sun, Local well-posedness for the density-dependent incompressible magneto-micropolar system with vacuum, Discrete Contin. Dyn. Syst. B, 26 (2021), 6017–6026. https://doi.org/10.3934/dcdsb.2020377 doi: 10.3934/dcdsb.2020377
![]() |
[21] |
J. Fan, Z. Zhang, Y. Zhou, Local well-posedness for the incompressible full magneto-micropolar system with vacuum, Z. Angew. Math. Phys., 71 (2020), 42. https://doi.org/10.1007/s00033-020-1267-z doi: 10.1007/s00033-020-1267-z
![]() |
[22] |
M. A. Fahmy, A new boundary element algorithm for a general solution of nonlinear space-time fractional dual phase-lag bio-heat transfer problems during electromagnetic radiation, Case Stud. Therm. Eng., 25 (2021), 100918. https://doi.org/10.1016/j.csite.2021.100918 doi: 10.1016/j.csite.2021.100918
![]() |
[23] | M. A. Fahmy, A new boundary element formulation for modeling and simulation of three-temperature distributions in carbon nanotube fiber reinforced composites with inclusions, Math. Method. Appl. Sci., in press. https://doi.org/10.1002/mma.7312 |
[24] |
M. A. Fahmy, A new BEM modeling algorithm for size-dependent thermopiezoelectric problems in smart nanostructures, Comput. Mater. Con., 69 (2021), 931–944. https://doi.org/10.32604/cmc.2021.018191 doi: 10.32604/cmc.2021.018191
![]() |
[25] |
M. A. Fahmy, Boundary element modeling of 3T nonlinear transient magneto-thermoviscoelastic wave propagation problems in anisotropic circular cylindrical shells, Compos. Struct., 277 (2021), 114655. https://doi.org/10.1016/j.compstruct.2021.114655 doi: 10.1016/j.compstruct.2021.114655
![]() |
[26] |
M. A. Fahmy, M. M. Almehmadi, F. M. Al Subhi, A. Sohail, Fractional boundary element solution of three-temperature thermoelectric problems, Sci. Rep., 12 (2022), 6760. https://doi.org/10.1038/s41598-022-10639-5 doi: 10.1038/s41598-022-10639-5
![]() |
[27] |
M. A. Fahmy, 3D Boundary element model for ultrasonic wave propagation fractional order boundary value problems of functionally graded anisotropic fiber-reinforced plates, Fractal Fract., 6 (2022), 247. https://doi.org/10.3390/fractalfract6050247 doi: 10.3390/fractalfract6050247
![]() |
[28] |
M. A. Fahmy, Boundary element and sensitivity analysis of anisotropic thermoelastic metal and alloy discs with holes, Materials, 15 (2022), 1828. https://doi.org/10.3390/ma15051828 doi: 10.3390/ma15051828
![]() |
[29] |
M. A. Fahmy, M. M. Almehmadi, Boundary element analysis of rotating functionally graded anisotropic fiber-reinforced magneto-thermoelastic composites, Open Eng., 12 (2022), 313–322. https://doi.org/10.1515/eng-2022-0036 doi: 10.1515/eng-2022-0036
![]() |