Research article

New solutions for perturbed chiral nonlinear Schrödinger equation

  • Received: 24 February 2022 Revised: 02 April 2022 Accepted: 14 April 2022 Published: 25 April 2022
  • MSC : 35C07, 35Q40, 35Q55, 60H15, 81Q15

  • In this article, we extract stochastic solutions for the perturbed chiral nonlinear Schrödinger equation (PCNLSE) forced by multiplicative noise in Itô sense with the aid of exp[φ(ξ)]-expansion and unified solver methods. The PCNLSE meditate on the quantum behaviour, like quantum features are closely related to its particular features. The proposed techniques introduce the closed form structure of waves in explicit form. The behaviour of the gained solutions are of qualitatively different nature, based on the physical parameters. The acquired solutions are extremely viable in nonlinear optics, superfluid, plasma physics, electromagnetism, nuclear physics, industrial studies and in many other applied sciences. We also illustrate the profile pictures of some acquired solutions to show the physical dynamical representation of them, utilizing Matlab release. The proposed techniques in this article can be implemented to other complex equations arising in applied sciences.

    Citation: E. S. Aly, Mahmoud A. E. Abdelrahman, S. Bourazza, Abdullah Ali H. Ahmadini, Ahmed Hussein Msmali, Nadia A. Askar. New solutions for perturbed chiral nonlinear Schrödinger equation[J]. AIMS Mathematics, 2022, 7(7): 12289-12302. doi: 10.3934/math.2022682

    Related Papers:

    [1] Yousef F. Alharbi, E. K. El-Shewy, Mahmoud A. E. Abdelrahman . New and effective solitary applications in Schrödinger equation via Brownian motion process with physical coefficients of fiber optics. AIMS Mathematics, 2023, 8(2): 4126-4140. doi: 10.3934/math.2023205
    [2] R. A. Alomair, S. Z. Hassan, Mahmoud A. E. Abdelrahman . A new structure of solutions to the coupled nonlinear Maccari's systems in plasma physics. AIMS Mathematics, 2022, 7(5): 8588-8606. doi: 10.3934/math.2022479
    [3] Mahmoud A. E. Abdelrahman, Sherif I. Ammar, Kholod M. Abualnaja, Mustafa Inc . New solutions for the unstable nonlinear Schrödinger equation arising in natural science. AIMS Mathematics, 2020, 5(3): 1893-1912. doi: 10.3934/math.2020126
    [4] Mahmoud A. E. Abdelrahman, S. Z. Hassan, R. A. Alomair, D. M. Alsaleh . Fundamental solutions for the conformable time fractional Phi-4 and space-time fractional simplified MCH equations. AIMS Mathematics, 2021, 6(6): 6555-6568. doi: 10.3934/math.2021386
    [5] Jalil Manafian, Onur Alp Ilhan, Sizar Abid Mohammed . Forming localized waves of the nonlinearity of the DNA dynamics arising in oscillator-chain of Peyrard-Bishop model. AIMS Mathematics, 2020, 5(3): 2461-2483. doi: 10.3934/math.2020163
    [6] Ayyaz Ali, Zafar Ullah, Irfan Waheed, Moin-ud-Din Junjua, Muhammad Mohsen Saleem, Gulnaz Atta, Maimoona Karim, Ather Qayyum . New exact solitary wave solutions for fractional model. AIMS Mathematics, 2022, 7(10): 18587-18602. doi: 10.3934/math.20221022
    [7] Nauman Raza, Maria Luz Gandarias, Ghada Ali Basendwah . Symmetry reductions and conservation laws of a modified-mixed KdV equation: exploring new interaction solutions. AIMS Mathematics, 2024, 9(4): 10289-10303. doi: 10.3934/math.2024503
    [8] Mahmoud A. E. Abdelrahman, H. S. Alayachi . A reliable analytic technique and physical interpretation for the two-dimensional nonlinear Schrödinger equations. AIMS Mathematics, 2024, 9(9): 24359-24371. doi: 10.3934/math.20241185
    [9] S. Owyed, M. A. Abdou, A. Abdel-Aty, H. Dutta . Optical solitons solutions for perturbed time fractional nonlinear Schrodinger equation via two strategic algorithms. AIMS Mathematics, 2020, 5(3): 2057-2070. doi: 10.3934/math.2020136
    [10] Islam Samir, Hamdy M. Ahmed, Wafaa Rabie, W. Abbas, Ola Mostafa . Construction optical solitons of generalized nonlinear Schrödinger equation with quintuple power-law nonlinearity using Exp-function, projective Riccati, and new generalized methods. AIMS Mathematics, 2025, 10(2): 3392-3407. doi: 10.3934/math.2025157
  • In this article, we extract stochastic solutions for the perturbed chiral nonlinear Schrödinger equation (PCNLSE) forced by multiplicative noise in Itô sense with the aid of exp[φ(ξ)]-expansion and unified solver methods. The PCNLSE meditate on the quantum behaviour, like quantum features are closely related to its particular features. The proposed techniques introduce the closed form structure of waves in explicit form. The behaviour of the gained solutions are of qualitatively different nature, based on the physical parameters. The acquired solutions are extremely viable in nonlinear optics, superfluid, plasma physics, electromagnetism, nuclear physics, industrial studies and in many other applied sciences. We also illustrate the profile pictures of some acquired solutions to show the physical dynamical representation of them, utilizing Matlab release. The proposed techniques in this article can be implemented to other complex equations arising in applied sciences.



    The theory of solitons plays a crucial role in different fields of natural sciences, such as superfluid, biology, nuclear physics, solid state physics, quantum mechanics, engineering, plasma physics, optical physics, super conductivity, industrial studies, and in various other physical and natural sciences [1,2,3,4,5]. Solitons are of great significant in biological sciences in the filed of neurosciences [6,7]. Solitons have gained much attention on account of their sturdy nature and vital applications in optical communications and all long-distance [8,9,10,11,12,13,14]. The nonlinear Schrödinger's equations with their huge number of vital applications are the most commonly use nonlinear models in field of nonlinear wave propagation in natural sciences [15,16,17,18,19,20,21,22,23,24]. There are many scientists introduced and developed some standing wave stabilities for nonlinear Schrödinger's equations and related topics; such as Hartree, spatio-temporal dispersion, inter-modal dispersion, Choquard, perturbed and their fractional forms [25,26,27,28].

    Recently, more and more attentiveness has been gone recently to the influence of a noise on the propagation of the travelling wave solutions. This influence is so important in order to describe various vital phenomena in many fields in natural sciences, such as quantum mechanics, fluid mechanics, molecular biology, chemical engineering, plasma physics, electromagnetic theory, bio science, nano-fibers, optoelectronics and photonics [29,30,31,32,33]. The dynamics of optical pulses in fibers communications with birefringence, randomly varied, may be reflected to coupled of nonlinear Schrödinger's equations with random coefficients [34]. The nonlinear Schrödinger's equations with multiplicative noise proposed as a model of energy transfer in a monolayer molecular aggregate in the existence of thermal fluctuations [35,36]. Abdelrahman and Sohaly in [37] implemented Riccati-Bernoulli sub-ODE approach to extract stochastic solutions via probability distribution function, where the stochastic terms are the random variables. With fast evolution of symbolic computation approaches, the seeking of stochastic solutions for the stochastic nonlinear partial differential equations have attracted a lot of attention.

    Obviously, the chiral solitons are of great important in the evolution of practical quantum Hall effect, where chiral excitations are known to become visible. The chiral nonlinear Schrödinger equation, was considered earlier where bright and dark soliton waves were given [38]. Thereafter in 2004, Bohm potential was introduced via many scientific researches were done with PNLSE where Bohm potential was taken as perturbation term [39,40]. This paper is concerned with the PNLSE forced by multiplicative noise in Itô sense given by:

    iut+auxx+ib(uuxuux)u+σuWt=iαuuxxu,i=1 (1.1)

    u is a complex function, denotes complex conjugate. The 1st term denotes the evolution term and a represents the coefficient of dispersion and b represents a nonlinear coupling constant. The noise in time Wt=dWdt is the distributional derivative of the Brownian motion. Whereas, the right side, represents the perturbation term; α is named Bohm potential. The solutions of PCNLSE have valuable applications in the development of quantum mechanics. Hence it is so significant to gain solutions of PCNLSE.

    Our work is motivated to extract new solutions for the PCNLSE in the presence of noise term, utilizing exp[φ(ξ)]-expansion technique [41,42] and unified solver technique [43,44,45]. These approaches present various classes of solutions via free physical parameters. These solutions are very profitable in various fields of natural sciences, like, superfluid, optical fibers, plasma physics, nano-technology, nuclear physics, quantum mechanics. The proposed techniques are direct, robust, adequate and efficacious.

    This paper is organized as follows. Section 3 presents the solutions for the PCNLSE, utilizing exp[φ(ξ)]-expansion and unified solver techniques. Section 4 presents physical interpretation for the acquired solutions. Conclusions are reported in section 5.

    Here, we briefly introduce the exp[φ(ξ)]-expansion method [41,42,46] and unified solver method [43].

    Consider the following nonlinear partial differential equations (NPDEs):

    G(Ξ,Ξx,Ξt,Ξxx,Ξxt,Ξtt,...)=0. (2.1)

    Using the wave transformation:

    Ξ(x,t)=Ξ(ζ),      ζ=xwt, (2.2)

    where w is the speed of the travelling wave, Eq (2.1) reduced to the following ODE:

    H(Ξ,Ξ,Ξ,Ξ,...)=0. (2.3)

    Various NPDEs in applied science reduced to the following ODE:

    Γ1Ξ+Γ2Ξ3+Γ3Ξ=0, (2.4)

    where Γ1,Γ2 and Γ3 are constants depend on the constants of the proposed equation and the velocity speed of the wave transformations.

    According to the exp[φ(ξ)]-expansion technique [41,42,46], the solution of Eq (2.4) can be written in a polynomial form of exp[φ(ξ)] as follows

    Ξ(ξ)=B0+B1exp[φ(ξ)] (2.5)

    B0 and B10 are constants and φ(ξ) obeys the following ODE

    φ(ξ)=exp[φ(ξ)]+νexp[φ(ξ)]+λ. (2.6)

    Equation (2.6) has the following solutions:

    1) For ν0,λ24ν>0,

    φ(ξ)=ln(λ24ν tanh(λ24ν2(ξ+K))λ2ν), (2.7)

    2) For ν0,λ24ν<0,

    φ(ξ)=ln(4νλ2 tan(4νλ22 (ξ+K))λ2ν), (2.8)

    3) For ν=0,λ0,λ24ν>0

    φ(ξ)=ln(λexp[λ(ξ+K)]1), (2.9)

    4) For ν0,λ0,λ24ν=0,

    φ(ξ)=ln(2(λ(ξ+C)+2)λ2(ξ+K)), (2.10)

    5) For ν=0,λ=0,λ24ν=0,

    φ(ξ)=ln(ξ+K). (2.11)

    Here K is an arbitrary constant.

    Finally, putting Eq (2.5) and (2.6) into Eq (2.4) and aggregating all terms of the same power exp[mφ(ξ)], m=0,1,2,3. After that equating them to zero, gives an algebraic equations. Solving these equations by Mathematica, gives the values of ai. Then, we get the solutions (2.5), which give the exact solutions of Eq (2.3).

    In view of the unified solver approach [43], the solutions of Eq (2.4) are:

    (ⅰ) Rational function solutions: (at Γ3=0)

    Ξ1,2(x,t)=(Γ22Γ1(ξ+ς))1. (2.12)

    (ⅱ) Trigonometric function solutions: (at Γ3Γ1<0)

    Ξ3,4(x,t)=±Γ3Γ2tan(Γ32Γ1(η+ϱ)) (2.13)

    and

    Ξ5,6(x,t)=±Γ3Γ2cot(Γ32Γ1(η+ϱ)). (2.14)

    (ⅲ) Hyperbolic function solutions: (at Γ3Γ1>0)

    Ξ7,8(x,t)=±Γ3Γ2tanh(Γ32Γ1(η+ϱ)) (2.15)

    and

    Ξ9,10(x,t)=±Γ3Γ2coth(Γ32Γ1(η+ϱ)). (2.16)

    Here ϱ is an arbitrary constant.

    Here, we implement the exp[φ(ξ)]-expansion and unified solver techniques, to introduce the chiral solitons for the PCNLSE in the presence of noise term. Using the following wave transformation [47]:

    u(x,t)=ei[rx+wt+ϑ+σW(t)]U(ξ),ξ=x+ct, (3.1)

    r, w and ϑ are, respectively, wave number, frequency of solitons and phase constant.

    Superseding Eq (3.1) into Eq (1.1), the real and imaginary parts, yields

    a2U(ξ)ξ22rbU3(ξ)(w+r2a)U(ξ)=0, (3.2)
    (c2ra)(U(ξ)ξ)α(2U(ξ)ξ2)=0. (3.3)

    Hence, Eq (3.2) can be reformulated as follows

    Γ12U(ξ)ξ2+Γ2U3(ξ)+Γ3U(ξ)=0, (3.4)

    where Γ1=a,Γ2=2rb,Γ3=(w+r2a).

    In light of the above exp[φ(ξ)]-expansion approach, the solutions are:

    U=B0+B1exp[φ(ξ)],φ=eφ+μeφ+λ, (3.5)

    B0 and B10 are constants. Superseding U, U, U3 into Eq (3.4) and setting all coefficients of exp[φ] equal to zero, yields a system of algebraic equations. Solving this system gives:

    U(ξ)=±a2kb(λ+2exp[φ(ξ)]). (3.6)

    Then the solutions of Eq (3.4) [41,42,46] are

    Family 1: When λ24μ>0&μ0

    U1,2(x,t)=±aλ2rb(λ4μλ24μtanh(λ24μ2(x+ct+K))+λ), (3.7)
    U3,4(x,t)=±aλ2rb(λ4μλ24μcoth(λ24μ2(x+ct+K))+λ). (3.8)

    As a result, Eq (1.1) has solutions

    u1,2(x,t)=±aλ2rbei[rx+wt+ϑ+σW(t)](λ4μλ24μtanh(λ24μ2(x+ct+K))+λ). (3.9)
    u3,4(x,t)=±aλ2rbei[rx+wt+ϑ+σW(t)](λ4μλ24μcoth(λ24μ2(x+ct+K))+λ). (3.10)

    Family 2: When λ24μ<0&μ0

    U5,6(x,t)=±a2rb(λ+4μ4μλ2tan(4μλ22(x+ct+K))λ). (3.11)
    U7,8(x,t)=±a2rb(λ+4μ4μλ2cot(4μλ22(x+ct+K))λ). (3.12)

    As a result, Eq (1.1) has solutions

    u5,6(x,t)=±a2rbei[rx+wt+ϑ+σW(t)](λ+4μ4μλ2tan(4μλ22(x+ct+K))λ). (3.13)
    u7,8(x,t)=±a2rbei[rx+wt+ϑ+σW(t)](λ+4μ4μλ2cot(4μλ22(x+ct+K))λ). (3.14)

    Family 3: When λ24μ>0&λ0&μ=0

    U9,10(x,t)=±a2rb(λ+2λexp[λ(x+ct+K)]1). (3.15)

    As a result, Eq (1.1) has solutions

    ˜ψ9,10(x,t)=±a2rbei[rx+wt+ϑ+σW(t)](λ+2λexp[λ(x+ct+K)]1). (3.16)

    Family 4: When λ24μ=0&λ0&μ0

    U11,12(x,t)=±a2rb(λλ2(ξ+C)λ(x+ct+K)+2). (3.17)

    As a result, Eq (1.1) has solutions

    u11,12(x,t)=±a2rbei[rx+wt+ϑ+σW(t)](λλ2(ξ+C)λ(x+ct+K)+2). (3.18)

    Family 5: When λ24μ=0&λ=0&μ=0

    U13,14(x,t)=±a2rb(1x+ct+K). (3.19)

    As a result, Eq (1.1) has solutions

    u13,14(x,t)=±a2rbei[rx+wt+ϑ+σW(t)](1x+ct+K). (3.20)

    In light of the the above unified solver technique, the solutions of Eq (1.1) are:

    Rational function solutions:

    ˜U1,2(x,t)=(rba(x+ct+ϱ))1. (3.21)

    As a result, Eq (1.1) has solutions

    ˜u1,2(x,t)=ei[rx+wt+ϑ+σW(t)](rba(x+ct+ϱ))1. (3.22)

    Trigonometric function solutions:

    ˜U3,4(x,t)=±w+r2a2rbtan(w+r2a2a(x+ct+ς)) (3.23)

    and

    ˜U5,6(x,t)=±w+r2a2rbcot(w+r2a2a(x+ct+ς)). (3.24)

    As a result, Eq (1.1) has solutions

    ˜u3,4(x,t)=±w+r2a2rbei[rx+wt+ϑ+σW(t)]tan(w+r2a2a(x+ct+ς)) (3.25)

    and

    ˜u5,6(x,t)=±w+r2a2kbei[rx+wt+ϑ+σW(t)]cot(w+r2a2a(x+ct+ς)). (3.26)

    Hyperbolic function solutions:

    ˜U7,8(x,t)=±(w+r2a)2rbtanh((w+r2a)2a(x+ct+ς)) (3.27)

    and

    ˜U9,10(x,t)=±(w+r2a)2rbcoth((w+r2a)2a(x+ct+ς)). (3.28)

    As a result, Eq (1.1) has solutions

    ˜u7,8(x,t)=±(w+r2a)2rbei[kx+wt+ϑ+σW(t)]tanh((w+r2a)2a(x+ct+ς)) (3.29)

    and

    ˜u9,10(x,t)=±(w+r2a)2rbei[kx+wt+ϑ+σW(t)]coth((w+r2a)2a(x+ct+ς)). (3.30)

    In this work we consider the PCNLSE with multiplicative noise term, where the noise has a rather complex spectrum. In crystals this kind of noise related to scattering of excitons by phonons fields, as a result of thermal vibrations of the molecules. We have constructed some new stochastic solutions to PCNLSE in the presence of noise term, utilizing the exp[φ(ξ)]-expansion and unified solver techniques. These solutions are presented in explicit form. The acquired chiral solitons play an important role in the development of the practical quantum Hall effect, where chiral excitations are known to emerge [48,49].

    The behavior of these chiral solutions being solitons, shock, dissipative, rough, periodic, explosive, etc., is depend on the physical parameters given in the PCNLSE. For example the profile picture of wave changes from compressive to rarefactive at critical points and stability regions changed to unstable regions at some critical values [50,51]. The obtained new solutions in this study are play a crucial role in nuclear physics, plasma physics, nano-technology, nonlinear optics, superfluid. Our study shows that the proposed techniques are direct, simple, sturdy and functional. Furthermore, these approaches are so vital to solve other complicated nonlinear partial differential equations in the presence of noise term, which arising in natural sciences. We give some profile pictures of some selected solutions for the PCNLSE in the presence of noise term. These pictures depict the effect of noise term in Itô sense on the presented solutions.

    The amplitude (height) of the wave is the half the distance from trough to crest. Amplitude can be determined for sound wave traveling through water waves, air or for any other kind of wave along a gas or a liquid. Even waves traveling via a solid have an amplitude, as in waves fluctuating the earth because of an earthquake. One of the main feature of the multiplicative noise term in Itô sense, is the effect of this noise on the amplitude of the waves. By controlling the value of the noise term, the disastrous power of some massive natural disasters can be decreasing or turn them into beneficial energy sources.

    Figures 14 illustrate the behaviour of solution u1,˜u7 via various values of noise term. These figure show the variation of the attitude of the waves.

    Figure 1.  Profile picture of u1 for σ = 0.
    Figure 2.  Profile picture of u1 for σ = 1.
    Figure 3.  Profile picture of ˜u7 for σ = 0.
    Figure 4.  Profile picture of ˜u7 for σ = 1.

    Remark 1. The two presented techniques in this study can be implemented for solving the nonlinear fractional differential equations [52,53,54].

    We have given a rich variety of classes of solutions with physical parameters to PCNLSE, using the unified solver and exp(φ(ξ))-expansion methods. Indeed, the proposed methods are not only direct and simple but also succinct and give vital new results. The presented Chiral solitons are so important in evolution of quantum mechanics, specifically, in quantum hall effect complete computer industry, nano-science and nuclear medicine. We have illustrated graphical structures for some selected solutions utilizing Matlab 18, that are beneficial to understand more obviously about the dynamics of solutions. Finally, the proposed two techniques can be implemented for further physical equations arising in applied sciences.

    The authors declare no conflict of interest.



    [1] H. G. Abdelwahed, Nonlinearity contributions on critical MKP equation, J. Taibah Univ. Sci., 14 (2020), 777–782. https://doi.org/10.1080/16583655.2020.1774136 doi: 10.1080/16583655.2020.1774136
    [2] M. Inc, A. I. Aliyu, A. Yusuf, M. Bayram, D. Baleanu, Optical solitons to the (n+1)-dimensional nonlinear Schrödinger's equation with Kerr law and power law nonlinearities using two integration schemes, Mod. Phys. Lett. B, 33 (2019), 1950223. https://doi.org/10.1142/S0217984919502245 doi: 10.1142/S0217984919502245
    [3] M. Younis, S. Ali, S. A. Mahmood, Solitons for compound KdV Burgers equation with variable coefficients and power law nonlinearity, Nonlinear Dyn., 81 (2015), 1191–1196. https://doi.org/10.1007/s11071-015-2060-y doi: 10.1007/s11071-015-2060-y
    [4] C. K. Kuo, B. Ghanbari, Resonant multi-soliton solutions to new (3+1)-dimensional Jimbo-Miwa equations by applying the linear superposition principle, Nonlinear Dyn., 96 (2019), 459–464. https://doi.org/10.1007/s11071-019-04799-9 doi: 10.1007/s11071-019-04799-9
    [5] M. A. E. Abdelrahman, G. M. Bahaa, Elementary waves, Riemann problem, Riemann invariants and new conservation laws for the pressure gradient model, Eur. Phys. J. Plus, 134 (2019), 187. https://doi.org/10.1140/epjp/i2019-12580-7 doi: 10.1140/epjp/i2019-12580-7
    [6] A. Biswas, D. Milovic, D. Milic, Solitons in alpha-helix proteins by he's variational principle, Int. J. Biomath., 4 (2011), 423–429. https://doi.org/10.1142/S1793524511001325 doi: 10.1142/S1793524511001325
    [7] A. Biswas, A. H. Kara, M. Savescu, A. H. Bokhari, F. D. Zaman, Solitons and conservation laws in neurosciences, Int. J. Biomath., 6 (2019), 1350017. https://doi.org/10.1142/S1793524513500174 doi: 10.1142/S1793524513500174
    [8] A. Zubair, N. Raza, M. Mirzazadeh, W. Liu, Q. Zhou, Analytic study on optical solitons in parity-time-symmetric mixed linear and nonlinear modulation lattices with non-Kerr nonlinearities, Optik, 173 (2018), 249–262. https://doi.org/10.1016/j.ijleo.2018.08.023 doi: 10.1016/j.ijleo.2018.08.023
    [9] N. Raza, A. Zubair, Optical dark and singular solitons of generalized nonlinear Schrödinger's equation with anti-cubic law of nonlinearity, Mod. Phys. Lett. B, 65 (2019), 1950158. https://doi.org/10.1142/S0217984919501586 doi: 10.1142/S0217984919501586
    [10] N. Raza, A. Javid, Generalization of optical solitons with dual dispersion in the presence of Kerr and quadratic-cubic law nonlinearities, Mod. Phys. Lett. B, 33 (2019), 1850427. https://doi.org/10.1142/S0217984918504274 doi: 10.1142/S0217984918504274
    [11] S. F. Tian, J. M. Tu, T. T. Zhang, Y. R. Chen, Integrable discretizations and soliton solutions of an Eckhaus-Kundu equation, Appl. Math. Lett., 122 (2021), 107507. https://doi.org/10.1016/j.aml.2021.107507 doi: 10.1016/j.aml.2021.107507
    [12] S. F. Tian, M. J. Xu, T. T. Zhang, A symmetry-preserving difference scheme and analytical solutions of a generalized higher-order beam equation, Proc. R. Soc. A, 477 (2021), 20210455. https://doi.org/10.1098/rspa.2021.0455 doi: 10.1098/rspa.2021.0455
    [13] S. F. Tian, Lie symmetry analysis, conservation laws and solitary wave solutions to a fourth-order nonlinear generalized Boussinesq water wave equation, Appl. Math. Lett., 100 (2020), 106056. https://doi.org/10.1016/j.aml.2019.106056 doi: 10.1016/j.aml.2019.106056
    [14] Z. Y. Yin, S. F. Tian, Nonlinear wave transitions and their mechanisms of (2+1)-dimensional Sawada-Kotera equation, Physica D, 427 (2021), 133002. https://doi.org/10.1016/j.physd.2021.133002 doi: 10.1016/j.physd.2021.133002
    [15] Z. J. Yang, S. M. Zhang, X. L. Li, Z. G. Pang, Variable sinh-Gaussian solitons in nonlocal nonlinear Schrödinger equation, Appl. Math. Lett., 82 (2018), 64–70. https://doi.org/10.1016/j.aml.2018.02.018 doi: 10.1016/j.aml.2018.02.018
    [16] L. M. Song, Z. J. Yang, Z. G. Pang, X. L. Li, S. M. Zhang, Interaction theory of mirror-symmetry soliton pairs in nonlocal nonlinear Schrödinger equation, Appl. Math. Lett., 90 (2019), 42–48. https://doi.org/10.1016/j.aml.2018.10.008 doi: 10.1016/j.aml.2018.10.008
    [17] L. Song, Z. Yang, S. Zhang, X. Li, Spiraling anomalous vortex beam arrays in strongly nonlocal nonlinear media, Phys. Rev. A, 99 (2019), 063817. https://doi.org/10.1103/PhysRevA.99.063817 doi: 10.1103/PhysRevA.99.063817
    [18] L. Song, Z. Yang, X. Li, S. Zhang, Controllable Gaussian-shaped soliton clusters in strongly nonlocal media, Opt. Express, 26 (2018), 19182–19198. https://doi.org/10.1364/OE.26.019182 doi: 10.1364/OE.26.019182
    [19] H. G. Abdelwahed, E. K. El-Shewy, M. A. E.Abdelrahman, A. F. Alsarhana, On the physical nonlinear (n+1)-dimensional Schrödinger equation applications, Results Phys., 21 (2021), 103798. https://doi.org/10.1016/j.rinp.2020.103798 doi: 10.1016/j.rinp.2020.103798
    [20] H. G. Abdelwahed, M. A. E. Abdelrahman, S. Alghanim, N. F. Abdo, Higher-order Kerr nonlinear and dispersion effects on fiber optics, Results Phys., 26 (2021), 104268. https://doi.org/10.1016/j.rinp.2021.104268 doi: 10.1016/j.rinp.2021.104268
    [21] H. X. Jia, D. W. Zuo, X. H. Li, X. S. Xiang, Breather, soliton and rogue wave of a two-component derivative nonlinear Schrödinger equation, Phys. Lett. A, 405 (2021), 127426. https://doi.org/10.1016/j.physleta.2021.127426 doi: 10.1016/j.physleta.2021.127426
    [22] M. A. E. Abdelrahman, N. F. Abdo, On the nonlinear new wave solutions in unstable dispersive environments, Phys. Scr., 95 (2020), 045220. https://doi.org/10.1088/1402-4896/ab62d7 doi: 10.1088/1402-4896/ab62d7
    [23] H. Triki, A. M. Wazwaz, Soliton solutions of the cubic-quintic nonlinear Schrödinger equation with variable coefficients, Rom. J. Phys., 61 (2016), 360–366.
    [24] A. M. Wazwaz, Bright and dark optical solitons for (2+1)-dimensional Schrödinger (NLS) equations in the anomalous dispersion regimes and the normal dispersive regimes, Optik, 192 (2019), 162948. https://doi.org/10.1016/j.ijleo.2019.162948 doi: 10.1016/j.ijleo.2019.162948
    [25] M. Eslami, Solitary wave solutions for perturbed equation nonlinear Schrödinger's with Kerr law nonlinearity under the DAM, Optik, 126 (2015), 1312–1317. https://doi.org/10.1016/j.ijleo.2015.02.075 doi: 10.1016/j.ijleo.2015.02.075
    [26] T. Cazenave, P. L. Lions, Orbital stability of standing waves for some nonlinear Schrödinger equations, Commun. Math. Phys., 85 (1982), 549–561. https://doi.org/10.1007/BF01403504 doi: 10.1007/BF01403504
    [27] B. Feng, H. Zhang, Stability of standing waves for the fractional Schrödinger-Choquard equation, Comput. Math. Appl., 75 (2018), 2499–2507. https://doi.org/10.1016/j.camwa.2017.12.025 doi: 10.1016/j.camwa.2017.12.025
    [28] B. Feng, H. Zhang, Stability of standing waves for the fractional Schrödinger-Hartree equation, J. Math. Anal. Appl., 460 (2018), 352–364. https://doi.org/10.1016/j.jmaa.2017.11.060 doi: 10.1016/j.jmaa.2017.11.060
    [29] M. A. E. Abdelrahman, M. A. Sohaly, The development of the deterministic nonlinear PDEs in particle physics to stochastic case, Results Phys., 9 (2018), 344–350. https://doi.org/10.1016/j.rinp.2018.02.032 doi: 10.1016/j.rinp.2018.02.032
    [30] Y. F. Alharbi, M. A. E. Abdelrahman, M. A. Sohaly, S. I. Ammar, Disturbance solutions for the long–short-wave interaction system using bi-random Riccati-Bernoulli sub-ODE method, J. Taibah Univ. Sci., 14 (2020), 500–506. https://doi.org/10.1080/16583655.2020.1747242 doi: 10.1080/16583655.2020.1747242
    [31] Y. F. Alharbi, M. A. E. Abdelrahman, M. A. Sohaly, M. Inc, Stochastic treatment of the solutions for the resonant nonlinear Schrödinger equation with spatio-temporal dispersions and inter-modal using beta distribution, Eur. Phys. J. Plus, 135 (2020), 368. https://doi.org/10.1140/epjp/s13360-020-00371-2 doi: 10.1140/epjp/s13360-020-00371-2
    [32] Y. F. Alharbi, M. A. Sohaly, M. A. E. Abdelrahman, New stochastic solutions for a new extension of nonlinear Schrödinger equation, Pramana-J. Phys., 95 (2021), 157. https://doi.org/10.1007/s12043-021-02189-8 doi: 10.1007/s12043-021-02189-8
    [33] Y. F. Alharbi, M. A. Sohaly, M. A. E. Abdelrahman, Fundamental solutions to the stochastic perturbed nonlinear Schrödinger's equation via gamma distribution, Results Phys., 25 (2021), 104249. https://doi.org/10.1016/j.rinp.2021.104249 doi: 10.1016/j.rinp.2021.104249
    [34] T. Ueda, W. L. Kath, Dynamics of optical pulses in randomly birefrengent fiers, Physica D, 55 (1992), 166–181. https://doi.org/10.1016/0167-2789(92)90195-S doi: 10.1016/0167-2789(92)90195-S
    [35] C. Sulem, P. L. Sulem, The nonlinear Schrödinger equation, self-focusing and wave collapse, New York, NY: Springer, 1999. https://doi.org/10.1007/b98958
    [36] O. Bang, P. L. Christiansen, F. If, K. O. Rasmussen, Y. B. Gaididei, Temperature effects in a nonlinear model of monolayer Scheibe aggregates, Phys. Rev. E, 49 (1994), 4627–4636. https://doi.org/10.1103/PhysRevE.49.4627 doi: 10.1103/PhysRevE.49.4627
    [37] M. A. E. Abdelrahman, M. A. Sohaly, Solitary waves for the nonlinear Schrödinger problem with the probability distribution function in stochastic input case, Eur. Phys. J. Plus, 132 (2017), 339. https://doi.org/10.1140/epjp/i2017-11607-5 doi: 10.1140/epjp/i2017-11607-5
    [38] A. Nishino, Y. Umeno, M. Wadati, Chiral nonlinear Schrödinger equation, Chaos Soliton. Fract., 9 (1998), 1063–1069. https://doi.org/10.1016/S0960-0779(97)00184-7 doi: 10.1016/S0960-0779(97)00184-7
    [39] A. Biswas, Perturbation of chiral solitons, Nucl. Phys. B, 806 (2009), 457–461. https://doi.org/10.1016/j.nuclphysb.2008.05.023 doi: 10.1016/j.nuclphysb.2008.05.023
    [40] G. Ebadi, A. Yildirim, A. Biswas, Chiral solitons with Bohm potential using (GG) method and exp-function method, Rom. Rep. Phys., 64 (2012), 357–366.
    [41] J. H. He, X. H. Wu, Exp-function method for nonlinear wave equations, Chaos Soliton. Fract., 30 (2006), 700–708. https://doi.org/10.1016/j.chaos.2006.03.020 doi: 10.1016/j.chaos.2006.03.020
    [42] H. Aminikhad, H. Moosaei, M. Hajipour, Exact solutions for nonlinear partial differential equations via Exp-function method, Numer. Methods Partial Differential Equations, 26 (2009), 1427–1433. https://doi.org/10.1002/num.20497 doi: 10.1002/num.20497
    [43] M. A. E. Abdelrahman, H. AlKhidhr, A robust and accurate solver for some nonlinear partial differential equations and tow applications, Phys. Scr., 95 (2020), 065212. https://doi.org/10.1088/1402-4896/ab80e7 doi: 10.1088/1402-4896/ab80e7
    [44] H. G. Abdelwahed, M. A. E. Abdelrahman, New nonlinear periodic, solitonic, dissipative waveforms for modified-Kadomstev-Petviashvili-equation in nonthermal positron plasma, Results Phys., 19 (2020), 103393. https://doi.org/10.1016/j.rinp.2020.103393 doi: 10.1016/j.rinp.2020.103393
    [45] M. A. E. Abdelrahman, H. AlKhidhr, Closed-form solutions to the conformable space-time fractional simplified MCH equation and time fractional Phi-4 equation, Results Phys., 18 (2020), 103294. https://doi.org/10.1016/j.rinp.2020.103294 doi: 10.1016/j.rinp.2020.103294
    [46] M. A. E. Abdelrahman, M. A. Sohaly, On the new wave solutions to the MCH equation, Indian J. Phys., 93 (2019), 903–911. https://doi.org/10.1007/s12648-018-1354-6 doi: 10.1007/s12648-018-1354-6
    [47] M. Younis, N. Cheemaa, S. A. Mahmood, S. T. R. Rizvi, On optical solitons: the chiral nonlinear Schrödinger equation with perturbation and Bohm potential, Opt. Quant. Electron., 48 (2016), 542. https://doi.org/10.1007/s11082-016-0809-2 doi: 10.1007/s11082-016-0809-2
    [48] L. Griguolo, D. Seminara, Chiral solitons from dimensional reduction of Chern–Simons gauged nonlinear Schrödinger equation: classical and quantum aspects, Nucl. Phys. B, 516 (1998), 467–498. https://doi.org/10.1016/S0550-3213(97)00810-9 doi: 10.1016/S0550-3213(97)00810-9
    [49] J. H. Lee, C. K. Lin, O. K. Pashev, Shock waves, chiral solitons and semi-classical limit of one-dimensional anyons, Chaos Soliton. Fract., 19 (2004), 109–128. https://doi.org/10.1016/S0960-0779(03)00084-5 doi: 10.1016/S0960-0779(03)00084-5
    [50] H. Ikezi, K. Schwarzenegger, A. L. Simsons, Y. Ohsawa, T. Kamimura, Nonlinear self‐modulation of ion-acoustic waves, The Physics of Fluids, 21 (1978), 239. https://doi.org/10.1063/1.862198 doi: 10.1063/1.862198
    [51] V. E. Zakharov, L. A. Ostrovsky, Modulation instability: The beginning, Physica D, 238 (2009), 540–548. https://doi.org/10.1016/j.physd.2008.12.002 doi: 10.1016/j.physd.2008.12.002
    [52] W. Liu, K. Chen, The functional variable method for finding exact solutions of some nonlinear time-fractional differential equations, Pramana-J. Phys., 81 (2013), 377–384. https://doi.org/10.1007/s12043-013-0583-7 doi: 10.1007/s12043-013-0583-7
    [53] K. Hosseini, A. Bekir, R. Ansari, Exact solutions of nonlinear conformable time-fractional Boussinesq equations using the-expansion method, Opt. Quant. Electron., 49 (2017), 131. https://doi.org/10.1007/s11082-017-0968-9 doi: 10.1007/s11082-017-0968-9
    [54] M. A. E. Abdelrahman, A note on Riccati-Bernoulli sub-ODE method combined with complex transform method applied to fractional differential equations, Nonlinear Engineering, 7 (2018), 279–285. https://doi.org/10.1515/nleng-2017-0145 doi: 10.1515/nleng-2017-0145
  • This article has been cited by:

    1. Aydin Secer, Stochastic optical solitons with multiplicative white noise via Itô calculus, 2022, 268, 00304026, 169831, 10.1016/j.ijleo.2022.169831
    2. Sibel Tarla, Karmina K. Ali, Resat Yilmazer, Newly modified unified auxiliary equation method and its applications, 2022, 269, 00304026, 169880, 10.1016/j.ijleo.2022.169880
    3. Hanan A. Alkhidhr, An insight into the solitonic structure of two distinct fractional nonlinear Schrödinger models in optical fiber using conformable fractional derivative, 2024, 14, 2158-3226, 10.1063/5.0187732
    4. Hadil Alhazmi, Sanaa A. Bajri, E. K. El-Shewy, Mahmoud A. E. Abdelrahman, An insight into the solitonic features of the nonlinear generalized higher-order Schrödinger equation using the solver method, 2024, 14, 2158-3226, 10.1063/5.0219009
    5. Emmanuel Kengne, Ultrashort optical pulses with nonlinear chirps in non-Kerr media exhibiting higher-order nonlinearities, 2023, 55, 0306-8919, 10.1007/s11082-023-05447-8
    6. Yousef F Alharbi, Mahmoud A E Abdelrahman, E K El-Shewy, Higher-order stochastic optical new shock-like and super solitary structures for Schrödinger model, 2024, 98, 0973-7111, 10.1007/s12043-024-02745-y
    7. Hina Zulfiqar, Aqsa Aashiq, Kalim U. Tariq, Hijaz Ahmad, Bandar Almohsen, Muhammad Aslam, Hamood Ur Rehman, On the solitonic wave structures and stability analysis of the stochastic nonlinear Schrödinger equation with the impact of multiplicative noise, 2023, 289, 00304026, 171250, 10.1016/j.ijleo.2023.171250
    8. Shafqat Ur Rehman, Jamshad Ahmad, Taseer Muhammad, Dynamics of novel exact soliton solutions to Stochastic Chiral Nonlinear Schrödinger Equation, 2023, 79, 11100168, 568, 10.1016/j.aej.2023.08.014
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2305) PDF downloads(125) Cited by(8)

Figures and Tables

Figures(4)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog