
The nonlinear Maccari's systems depict the dynamics of isolated waves, detained in a small part of space, in optical communications, hydrodynamics and plasma physics. In this paper, we construct some new solutions for the Maccari's systems, using the unified solver technique based on He's variations technique. These solutions prescribe some vital complex phenomena in plasma physics. The proposed solver will be used as a box solver for considering various models in applied science and new physics. Some graphs are presented in order to display the dynamical behaviour of the gained solutions.
Citation: R. A. Alomair, S. Z. Hassan, Mahmoud A. E. Abdelrahman. A new structure of solutions to the coupled nonlinear Maccari's systems in plasma physics[J]. AIMS Mathematics, 2022, 7(5): 8588-8606. doi: 10.3934/math.2022479
[1] | M. Mossa Al-Sawalha, Safyan Mukhtar, Azzh Saad Alshehry, Mohammad Alqudah, Musaad S. Aldhabani . Chaotic perturbations of solitons in complex conformable Maccari system. AIMS Mathematics, 2025, 10(3): 6664-6693. doi: 10.3934/math.2025305 |
[2] | M. B. Almatrafi, Mahmoud A. E. Abdelrahman . The novel stochastic structure of solitary waves to the stochastic Maccari's system via Wiener process. AIMS Mathematics, 2025, 10(1): 1183-1200. doi: 10.3934/math.2025056 |
[3] | Naseem Abbas, Amjad Hussain, Mohsen Bakouri, Thoraya N. Alharthi, Ilyas Khan . A study of dynamical features and novel soliton structures of complex-coupled Maccari's system. AIMS Mathematics, 2025, 10(2): 3025-3040. doi: 10.3934/math.2025141 |
[4] | Mohammad Alqudah, Manoj Singh . Applications of soliton solutions of the two-dimensional nonlinear complex coupled Maccari equations. AIMS Mathematics, 2024, 9(11): 31636-31657. doi: 10.3934/math.20241521 |
[5] | Mahmoud A. E. Abdelrahman, S. Z. Hassan, R. A. Alomair, D. M. Alsaleh . Fundamental solutions for the conformable time fractional Phi-4 and space-time fractional simplified MCH equations. AIMS Mathematics, 2021, 6(6): 6555-6568. doi: 10.3934/math.2021386 |
[6] | Hammad Alotaibi . Solitary waves of the generalized Zakharov equations via integration algorithms. AIMS Mathematics, 2024, 9(5): 12650-12677. doi: 10.3934/math.2024619 |
[7] | E. S. Aly, Mahmoud A. E. Abdelrahman, S. Bourazza, Abdullah Ali H. Ahmadini, Ahmed Hussein Msmali, Nadia A. Askar . New solutions for perturbed chiral nonlinear Schrödinger equation. AIMS Mathematics, 2022, 7(7): 12289-12302. doi: 10.3934/math.2022682 |
[8] | Jamshad Ahmad, Zulaikha Mustafa, Mehjabeen Anwar, Marouan Kouki, Nehad Ali Shah . Exploring solitonic wave dynamics in the context of nonlinear conformable Kairat-X equation via unified method. AIMS Mathematics, 2025, 10(5): 10898-10916. doi: 10.3934/math.2025495 |
[9] | Azzh Saad Alshehry, Safyan Mukhtar, Ali M. Mahnashi . Optical fractals and Hump soliton structures in integrable Kuralay-Ⅱ system. AIMS Mathematics, 2024, 9(10): 28058-28078. doi: 10.3934/math.20241361 |
[10] | Yousef F. Alharbi, E. K. El-Shewy, Mahmoud A. E. Abdelrahman . New and effective solitary applications in Schrödinger equation via Brownian motion process with physical coefficients of fiber optics. AIMS Mathematics, 2023, 8(2): 4126-4140. doi: 10.3934/math.2023205 |
The nonlinear Maccari's systems depict the dynamics of isolated waves, detained in a small part of space, in optical communications, hydrodynamics and plasma physics. In this paper, we construct some new solutions for the Maccari's systems, using the unified solver technique based on He's variations technique. These solutions prescribe some vital complex phenomena in plasma physics. The proposed solver will be used as a box solver for considering various models in applied science and new physics. Some graphs are presented in order to display the dynamical behaviour of the gained solutions.
Nonlinear evolution equations (NLEEs) are utilized in order to display many complex phenomena arising in various fields of applied sciences, such as superfluid, chemical engineering, thermal engineering, plasma physics, optical fibers and so on [1,2,3,4,5,6,7,8]. There are many scientists in various fields of natural sciences are interested in investigation of the nonlinear phenomena. Various vital analytical methods have been proposed and developed to extract the solutions of different kinds of NLEEs, see [9,10,11,12,13,14,15,16,17,18]. Moreover, there are recent development in studying the dynamics of soliton solutions and analytical closed-form solutions [19,20,21,22,23,24,25,26,27,28,29,30].
The Maccari (MS) system, derived by Maccari in 1996 with a reduction technique based on spatio-temporal rescaling, from the Kadomtsev-Petviashvili equation [31]. This system is a kind of NLEEs that are often introduced to prescribe the motion of the isolated waves, localized in a small part of space, in various fields such as plasma physics, quantum mechanics, Bose-Einstein condensates, optical fiber communications and so on [32,33,34,35,36,37,38,39]. Recently, some investigations presented new novel concepts in wave motions and pulses in the study of nonlinear unforeseen critical behaviors such as the electrostatic noise in auroura, the acoustics wave in fluid and telltales wiggle electric fields [40,41,42,43].
In this article, we consider the coupled MS [32,35,44], given as follows:
iQt+Qxx+RQ=0,Rt+Ry+(∣Q∣2)x=0, | (1.1) |
where Q=Q(x,y,t) denotes the complex scalar field and R=R(x,y,t) denotes the real scalar field. The independent variables are x,y and t denotes the temporal variable.
Also, we can consider the coupled nonlinear MS [45], given as follows:
iQt+Qxx+RQ=0,iSt+Sxx+RS=0,Rt+Ry+(∣Q+S∣2)x=0, | (1.2) |
where Q=Q(x,y,t) and S=S(x,y,t) denote the complex scalar fields and R=R(x,y,t) denotes the real scalar field.
Moreover, we consider the coupled nonlinear MS [34], described as follows:
iQt+Qxx+RQ=0,iSt+Sxx+RS=0,iNt+Nxx+RN=0,Rt+Ry+(∣Q+S+N∣2)x=0, | (1.3) |
where Q=Q(x,y,t), S=S(x,y,t), N=N(x,y,t) denote the complex scalar fields and R=R(x,y,t) denotes the real scalar field.
Our study is motivated to grasp some new solutions for the three coupled models of MS by using the unified solver method. This solver introduces some families of solutions in explicit way with free physical parameters. These solutions admit pivotal applications in plasma environments, superfluid, plasma physics, nonlinear optic[46,47]. The proposed solver will be utilized as a box solver for solving many other nonlinear models arising in applied science and new physics. In contrast to other methods, this solver preserves several advantages, such as, it avoids complex and tedious calculations and presents pivotal solutions in an explicit way. Moreover, this solver is simple, robust, well ordered and efficacious. The proposed solver will be significant for mathematicians, engineers and physicists. To the best of our knowledge, no previous work has been done using the proposed solver for solving the MS systems.
The present article is organized as follows. Section 2 describes the unified solver technique. Section 3 presents the solutions for three coupled of the Maccari's systems. Section 4 gives the physical interpretation of the presented results. Moreover, some graphs of some acquired solutions are depicted. Conclusions and future directions for research are all reported in Section 5.
We give the unified solver for the widely used NLEEs arising in the nonlinear science. For a given NLEE with some physical field Ψ(x,y,t)
F(Ψ,Ψt,Ψx,Ψtt,Ψxx,....)=0, | (2.1) |
we construct its explicit solutions in the form:
Ψ(x,y,t)=Ψ(ξ), ξ=k1x+k2y+k3t, | (2.2) |
where k1, k2 and k3 are constants. Consequently the nonlinear evolution Eq (2.1) transformed to the following ordinary differential equation (ODE):
G(Ψ,Ψ′,Ψ′′,Ψ′′′,...)=0. | (2.3) |
Based on He's semi-inverse method [48,49,50], if possible, integrate (2.3) term by term one or more times. The variational model for the differential Eq (2.3) can be obtained by the semi-inverse method [51] which reads:
J(Ψ)=∞∫0Ldξ, | (2.4) |
where L is the Lagrangian function, of the problem described by the Eq (2.3), depending on Ψ and its derivatives given in the form:
L=12Ψ′2−V, | (2.5) |
where V is the potential function. By a Ritz method, we can find different forms of solitary wave solutions, such as Ψ(x,y,t)=α sech(βξ), Ψ(x,y,t)=α csch(βξ), Ψ(x,y,t)=α tanh(βξ), Ψ(x,y,t)=α cotch(βξ) and Ψ(x,y,t)=α sech2(βξ) where α and β are constants determined later.
We look for a solitary wave solution in the form
Ψ(x,y,t)=α,sech(βξ),Ψ(x,y,t)=α,sech2(βξ),Ψ(x,y,t)=α,tanh(βξ). | (2.6) |
In this section we give the unified solver for the widely used NLEEs arising in the nonlinear science. Suppose a system of equations can be reduced to the form:
L1Ψ′′+L2Ψ3+L3Ψ=0, | (2.7) |
where Li,i=1,2,3 are constants. Multiplying (2.7) by Ψ′ and integrating with respect to Ψ we get the equation:
12Ψ′2+L24L1Ψ4+L32L1Ψ2+L0=0 | (2.8) |
and L0 is a constant of integration. Thus the Eq (2.7) can be written in the form:
Ψ′′=−∂V∂Ψ,V=−(γ2Ψ4+γ1ψ2+γ0), | (2.9) |
where
γ2=−L24L1,γ1=−L32L1,γ0=−L0 | (2.10) |
and V is the potential function (Sagadev potential).
We apply He's semi-inverse technique[48,49,50] for solving Eq (2.7), which construct the following variational formulation from Eq (2.8)
J=∫∞0[12Ψ′2+γ2Ψ4+γ1Ψ2+γ0]dξ. | (2.11) |
By Ritz-like method, we look for a solitary wave solution in the form given by Eq (2.6). Substituting from Eq (2.6) into Eq (2.11) and making J stationary with respect to α and β we obtain:
∂J∂α=0;∂J∂β=0. | (2.12) |
Solving simultaneously the system of equations given by (2.12) we obtain α and β. Consequently the solitary wave solution given by Eq (2.6) is well determined.
The first family of solutions takes the form:
Ψ(ξ)=αsechθ,θ=βξ. | (2.13) |
Substituting from Eq (2.13) in Eq (2.11), we get
J=1β∫∞0[12α2β2,sech2,θtanh2θ+γ2,α4sech4θ+γ1,α2sech2θ+γ0]dθ. |
Since γ0 is a constant of integration we can let γ0=0 and consequently:
J=α12β[2αβ2+8γ2α3+12γ1α]. | (2.14) |
Making J stationary with respect to α and β leads to
∂J∂α=112β[32γ2α3+24γ1α+4αβ2]=0, | (2.15) |
∂J∂β=−α12β2[8γ2α3+12γ1α−2αβ2]=0. | (2.16) |
Solving these equations and using (2.13), the solutions of Eq (2.9) take the form:
Ψ(ξ)=±√−γ1γ2,sech(±√2γ1ξ). | (2.17) |
Consequently by using (2.10) the first family of solutions takes the form:
Ψ(ξ)=±√−2L3L2,sech(±√−L3L1ξ). | (2.18) |
The second family of solutions takes the form:
ψ(ξ)=αsech2θ;θ=βξ. | (2.19) |
The substitution from Eq (2.19) in Eq (2.11) leads to
J=αβ∫∞0[2αβ2sech4θtanh2θ+γ2α3sech8θ+γ1αsech4θ+γ0α]dθ. |
Assuming that γ0=0 we find that
J=2α2105β[14αβ2+24γ2α3+35γ1α]. | (2.20) |
Making J stationary with respect to α and β leads to
14αβ2+48γ2α3+35γ1α=0, | (2.21) |
14αβ2−24γ2α3−35γ1α=0. | (2.22) |
Solving these equations and using (2.19), the second family of solutions of Eqs (2.9) and (2.7) take the form:
Ψ(ξ)=±√−35γ136γ2sech2(±√56γ1ξ) | (2.23) |
and
Ψ(ξ)=±√−35L318L2sech2(±√−5L312L1ξ), | (2.24) |
respectively.
The third family of solutions takes the form:
ψ(ξ)=α,tanh(βξ). | (2.25) |
Substituting from Eq (2.25) into Eq (2.11), we have
J=1β∫∞0[12α2β2sech4θ+γ2α4tanh4θ+γ1α2tanh2θ+γ0]dθ=1β∫∞0[α2(γ2α2+12β2)sech4θ−α2(2γ2α2+γ1)sech2θ]dθ+1β(γ2α4+γ1α2+γ0)∫∞0dθ. |
Under the condition
γ0=−α2(γ2α2+γ1), | (2.26) |
we find that
J=−α23β[4γ2α2+3γ1−β2]. | (2.27) |
The values of α and β which makes J stationary with respect to α and β are obtained by solving the two conditions
∂J∂α=−α3β[16γ2α2+6γ1−2β2]=0, | (2.28) |
∂J∂β=α23β2[4γ2α2+3γ1+β2]=0. | (2.29) |
Solving these equations and using (2.25), the solutions of Eq (2.9) take the form:
Ψ(ξ)=±√−γ12γ2tanh(±√−γ1ξ). | (2.30) |
Consequently the third family of solutions of (2.7) take the form:
Ψ(ξ)=±√−L3L2tanh(±√L32L1ξ). | (2.31) |
In this section we introduce the solutions for the coupled nonlinear Maccari's systems.
Utilizing the wave transformation:
Q(x,y,t)=ei(kx+αy+λt)u(ζ),R(x,y,t)=R(ζ),ζ=x+βy−2kt, | (3.1) |
k,α,λ and β are constants. Then the system of Eq (1.1) is converted to the following system
u″+uR−(λ+k2)u=0,(u2)′−(2k−β)R′=0. | (3.2) |
Integrating second equation of Eq (3.2) and taking integration constant as zero, gives
R=(12k−β)u2. | (3.3) |
Substituting Eq (3.3) into first equation of system (3.2), yields
L1u″+L2u3+L3u=0, | (3.4) |
where
L1=1,L2=12k−β,L3=−(λ+k2). | (3.5) |
Applying the unified solver method described in Section 2, three families of solutions of Eq (1.1) are given as follows:
u1,2(ζ)=±√2(2k−β)(λ+k2)sech(±√λ+k2ζ). | (3.6) |
Thus,
Q1,2(x,y,t)=±ei(kx+αy+λt)√2(2k−β)(λ+k2)sech(±√λ+k2ζ). | (3.7) |
R1,2(x,y,t)=2(λ+k2)sech2(±√λ+k2ζ),λ+k2>0. | (3.8) |
u3,4(ζ)=±√35(λ+k2)(2k−β)18sech2(±√5(λ+k2)12ζ). | (3.9) |
Thus,
Q3,4(x,y,t)=±ei(kx+αy+λt)√35(λ+k2)(2k−β)18sech2(±√5(λ+k2)12ζ). | (3.10) |
R3,4(x,y,t)=35(λ+k2)18sech4(±√5(λ+k2)12ζ),λ+k2>0. | (3.11) |
u5,6(ζ)=±√(λ+k2)(2k−β)tanh(±√−(λ+k2)2ζ). | (3.12) |
Thus,
Q5,6(x,y,t)=±ei(k+αy+λt)√(λ+k2)(2k−β)tanh(±√−λ+k22ζ). | (3.13) |
R5,6(x,y,t)=(λ+k2)tanh2(±√−λ+k22ζ),λ+k2<0. | (3.14) |
Consider the wave transformation:
Q(x,y,t)=ei(kx+αy+λt)u(ζ),S(x,y,t)=ei(kx+αy+λt)v(ζ),R(x,y,t)=R(ξ),ζ=x+βy−2kt, | (3.15) |
where k,α,λ and β are constants. By applying this transformation to the system (1.2) we get
u″−(λ+k2)u+uR=0,v″−(λ+k2)v+vR=0,((u+v)2)′−(2k−β)R′=0. | (3.16) |
Integrating third equation of the system of Eq (3.16) and taking integration constant as zero, gives
R=(12k−β)(u+v)2. | (3.17) |
Substituting Eq (3.17) into first two equations of (3.16), yields
u″+12k−βu(u+v)2−(λ+k2)u=0,v″+12k−βv(u+v)2−(λ+k2)v=0. | (3.18) |
In order to solve the last system of equations, we use a simple relation between u and v, as follows:
v=ru, | (3.19) |
where r is an arbitrary constant. Substituting (3.19) into the system (3.18), gives
Γ1u″+Γ2u3+Γ3u=0, | (3.20) |
where Γ1=1,Γ2=(1+r)22k−β,Γ3=−(λ+k2).
In view of the unified solver illustrated in Section 2 solutions of Eq (1.2) can be given in the following formulas:
u1,2(ζ)=±√2(λ+k2)(2k−β)(1+r)2sech(±√λ+k2ζ). | (3.21) |
Thus,
v1,2(ζ)=±r√2(λ+k2)(2k−β)(1+r)2sech(±√λ+k2ζ). | (3.22) |
Q1,2(x,y,t)=±ei(kx+αy+λt)√2(λ+k2)(2k−β)(1+r)2sech(±√λ+k2ζ). | (3.23) |
S1,2(x,y,t)=±rei(kx+αy+λt)√2(λ+k2)(β−2k)(1+r)2sech(±√λ+k2ζ). | (3.24) |
R1,2(x,y,t)=2(λ+k2)sech2(±√λ+k2ξ),λ+k2>0. | (3.25) |
u3,4(ζ)=±√35(λ+k2)(2k−β)18(1+r)2sech2(±√512(λ+k2)ζ). | (3.26) |
Thus,
v3,4(ζ)=±r√35(λ+k2)(2k−β)18(1+r)2sech2(±√512(λ+k2)ζ). | (3.27) |
Q3,4(x,y,t)=±ei(kx+αy+λt)√35(λ+k2)(2k−β)18(1+r)2sech2(±√512(λ+k2)ζ). | (3.28) |
S3,4(x,y,t)=±rei(kx+αy+λt)√35(λ+k2)(2k−β)18(1+r)2sech2(±√512(λ+k2)ζ). | (3.29) |
R3,4(x,y,t)=3518(λ+k2)sech4(±√512(λ+k2)ξ),λ+k2>0. | (3.30) |
u5,6(ζ)=±√(λ+k2)(2k−β)(1+r)2tanh(±√−λ+k22ζ). | (3.31) |
Thus,
v5,6(ζ)=±r√(λ+k2)(2k−β)(1+r)2tanh(±√−λ+k22ζ). | (3.32) |
Q5,6(x,y,t)=±ei(kx+αy+λt)√(λ+k2)(2k−β)(1+r)2tanh(±√−λ+k22ζ). | (3.33) |
S5,6(x,y,t)=±rei(kx+αy+λt)√(λ+k2)(2k−β)(1+r)2tanh(±√−λ+k22ζ). | (3.34) |
R5,6(x,y,t)=(λ+k2)tanh2(±√−λ+k22ζ),λ+k2<0. | (3.35) |
In order to solve the system of Eq (1.3), we first consider the following wave transformation:
Q(x,y,t)=ei(kx+αy+λt)u(ζ),S(x,y,t)=ei(kx+αy+λt)v(ζ),N(x,y,t)=ei(kx+αy+λt)w(ζ),R(x,y,t)=R(ζ),ζ=x+βy−2kt, | (3.36) |
where k,α,λ and β are constants. Substituting this transformation to system (1.3) gives
u″−(λ+k2)u+uR=0,v″−(λ+k2)v+vR=0,w″−(λ+k2)w+wR=0,((u+v+w)2)′−(2k−β)R′=0. | (3.37) |
As illustrated before, we integrate the third equation of (3.37) with assuming the integration constant to be zero and this gives
R=(12k−β)(u+v+w)2. | (3.38) |
Substituting Eq (3.38) into first three equation of (3.37), implies
u″+12k−βu(u+v+w)2−(λ+k2)u=0,v″+12k−βv(u+v)2−(λ+k2)v=0,w″+12k−βw(u+v+w)2−(λ+k2)w=0. | (3.39) |
To solve these equations, we use a simple relations between v,w and u, as follows
v=r1u,w=r2u, | (3.40) |
where r1,r2 are arbitrary constants. Substituting (3.40) into the Eq (3.39), gives
Γ1u″+Γ2u3+Γ3u=0, | (3.41) |
where Γ1=1,Γ2=(1+r1+r2)22k−β,Γ3=−(λ+k2).
Similarly, solutions of system (1.3) can be obtained using the unified solver, presented in Section 2, and are described in the following:
u1,2(ζ)=±√2(λ+k2)(2k−β)(1+r1+r2)2sech(±√λ+k2ζ). | (3.42) |
Thus,
v1,2(ζ)=±r1√2(λ+k2)(2k−β)(1+r1+r2)2sech(±√λ+k2ζ). | (3.43) |
w1,2(ζ)=±r2√2(λ+k2)(2k−β)(1+r1+r2)2sech(±√λ+k2ζ). | (3.44) |
Q1,2(x,y,t)=±ei(kx+αy+λt)√2(λ+k2)(2k−β)(1+r1+r2)2sech(±√λ+k2ζ). | (3.45) |
S1,2(x,y,t)=±r1ei(kx+αy+λt)√2(λ+k2)(2k−β)(1+r1+r2)2sech(±√λ+k2ζ). | (3.46) |
N1,2(x,y,t)=±r2ei(kx+αy+λt)√2(λ+k2)(2k−β)(1+r1+r2)2sech(±√λ+k2ζ). | (3.47) |
R1,2(x,y,t)=2(λ+k2)sech2(±√λ+k2ζ),λ+k2>0. | (3.48) |
u3,4(ζ)=±√35(λ+k2)(2k−β)18(1+r1+r2)2sech2(±√512(λ+k2)ζ). | (3.49) |
Thus,
v3,4(ζ)=±r1√35(λ+k2)(2k−β)18(1+r1+r2)2sech2(±√512(λ+k2)ζ). | (3.50) |
w3,4(ζ)=±r2√35(λ+k2)(2k−β)18(1+r1+r2)2sech2(±√512(λ+k2)ζ). | (3.51) |
Q3,4(x,y,t)=±ei(kx+αy+λt)√35(λ+k2)(2k−β)18(1+r1+r2)2sech2(±√512(λ+k2)ζ). | (3.52) |
S3,4(x,y,t)=±r1ei(kx+αy+λt)√35(λ+k2)(2k−β)18(1+r1+r2)2sech2(±√512(λ+k2)ζ). | (3.53) |
N3,4(x,y,t)=±r2ei(kx+αy+λt)√35(λ+k2)(2k−β)18(1+r1+r2)2sech2(±√512(λ+k2)ζ). | (3.54) |
R3,4(x,y,t)=3518(λ+k2)sech4(±√512(λ+k2)ζ),λ+k2>0. | (3.55) |
u5,6(ζ)=±√(λ+k2)(2k−β)(1+r1+r2)2tanh(±√−λ+k22ζ). | (3.56) |
Thus,
v5,6(ζ)=±r1√(λ+k2)(2k−β)(1+r1+r2)2tanh(±√−λ+k22ζ). | (3.57) |
w5,6(ζ)=±r2√(λ+k2)(2k−β)(1+r1+r2)2tanh(±√−λ+k22ζ). | (3.58) |
Q5,6(x,y,t)=±ei(kx+αy+λt)√(λ+k2)(2k−β)(1+r1+r2)2tanh(±√−λ+k22ζ). | (3.59) |
S5,6(x,y,t)=±r1ei(kx+αy+λt)√(λ+k2)(2k−β)(1+r1+r2)2tanh(±√−λ+k22ζ). | (3.60) |
N5,6(x,y,t)=±r2ei(kx+αy+λt)√(λ+k2)(2k−β)(1+r1+r2)2tanh(±√−λ+k22ζ). | (3.61) |
R5,6(x,y,t)=(λ+k2)tanh2(±√−λ+k22ζ),λ+k2<0. | (3.62) |
Some new solutions for three coupled nonlinear Maccari's systems were achieved in explicit form. These systems are the complex nonlinear models that characteristic the dynamics of isolated waves, confined in a small part of space, in some fields such as plasma physics, superfluid and optical fiber communications [35,45]. The acquired solutions are hyperbolic function solutions. These solutions explain some interesting physical phenomena in applied science and new physics. E.g., the hyperbolic secant arises in the profile of a laminar jet whereas the hyperbolic tangent emerges in the study of magnetic moment and special relativity. Indeed, the presented solutions included bright and dark and soliton solutions of the nonlinear Maccari's systems.
According to the presented results in Section 3 we found that
1) The last model generalize the first two models.
2) There is no change in the form of the real field R(x,y,t) in the three models.
Remark 1. 1) The proposed solver in this study can be implemented for the wide classes of nonlinear stochastic partial differential equations (NSPDEs).
2) The proposed solver can be easily extended for solving nonlinear stochastic fractional partial differential equations (NSFPDEs) [52,53,54].
3) The proposed solver averts monotonous and complex computations and introduces vital solutions in an explicit form.
For certain values of the parameters in each three cases, Figures 1–6 display the nonlinear dynamical behaviour of the bright and dark soliton solutions.
In this article, three coupled nonlinear Maccari's systems were solved using the unified solver technique. Some vital soliton solutions are presented. These solutions have vital physical aspects in many fields such as nonlinear optics plasma physics, hydrodynamic. In the view of such information, it has been seen that the unified solver method has been influential for the analytical solutions of nonlinear Maccari's systems and it is highly effective and reliable in terms of finding new solutions. Moreover, our analysis shows that the proposed solver is simple, powerful and efficient. Some graphs are presented to prescribe the dynamical behaviour of selected solutions. Finally, the used solver can be applied for so many other models emerging in natural science.
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
[1] |
M. Younis, N. Cheemaa, S. Mahmood, S. Rizvi, On optical solitons: the chiral nonlinear Schrödinger equation with perturbation and Bohm potential, Opt. Quant. Electron., 48 (2016), 542. http://dx.doi.org/10.1007/s11082-016-0809-2 doi: 10.1007/s11082-016-0809-2
![]() |
[2] |
O. González-Gaxiola, A. Biswas, Akhmediev breathers, Peregrine solitons and Kuznetsov-Ma solitons in optical fibers and PCF by Laplace-Adomian decomposition method, Optik, 172 (2018), 930–939. http://dx.doi.org/10.1016/j.ijleo.2018.07.102 doi: 10.1016/j.ijleo.2018.07.102
![]() |
[3] |
H. Triki, A. Biswas, Dark solitons for a generalized nonlinear Schrödinger equation with parabolic law and dual-power law nonlinearities, Math. Method. Appl. Sci., 34 (2011), 958–962. http://dx.doi.org/10.1002/mma.1414 doi: 10.1002/mma.1414
![]() |
[4] |
S. Hassan, N. Alyamani, M. Abdelrahman, A construction of new traveling wave solutions for the 2D Ginzburg-Landau equation, Eur. Phys. J. Plus, 134 (2019), 425. http://dx.doi.org/10.1140/epjp/i2019-12811-y doi: 10.1140/epjp/i2019-12811-y
![]() |
[5] |
A. Wazwaz, The integrable time-dependent sine-Gordon with multiple optical kink solutions, Optik, 182 (2019), 605–610. http://dx.doi.org/10.1016/j.ijleo.2019.01.018 doi: 10.1016/j.ijleo.2019.01.018
![]() |
[6] |
M. Inc, S. Hassan, M. Abdelrahman, R. Alomair, Y. Chu, Fundamental solutions for the long-short-wave interaction system, Open Phys., 18 (2020), 1093–1099. http://dx.doi.org/10.1515/phys-2020-0220 doi: 10.1515/phys-2020-0220
![]() |
[7] |
Y. Alharbi, M. Abdelrahman, M. Sohaly, S. Ammar, Disturbance solutions for the long-short-wave interaction system using bi-random Riccati-Bernoulli sub-ODE method, J. Taibah Univ. Sci., 14 (2020), 500–506. http://dx.doi.org/10.1080/16583655.2020.1747242 doi: 10.1080/16583655.2020.1747242
![]() |
[8] |
M. Abdelrahman, H. AlKhidhr, Closed-form solutions to the conformable space-time fractional simplified MCH equation and time fractional Phi-4 equation, Results Phys., 18 (2020), 103294. http://dx.doi.org/10.1016/j.rinp.2020.103294 doi: 10.1016/j.rinp.2020.103294
![]() |
[9] |
J. Zhang, M. Wang, Y. Wang, Z. Fang, The improved F-expansion method and its applications, Phys. Lett. A, 350 (2006), 103–109. http://dx.doi.org/10.1016/j.physleta.2005.10.099 doi: 10.1016/j.physleta.2005.10.099
![]() |
[10] |
M. Mirzazadeh, M. Eslami, A. Biswas, 1-Soliton solution of KdV6 equation, Nonlinear Dyn., 80 (2015), 387–396. http://dx.doi.org/10.1007/s11071-014-1876-1 doi: 10.1007/s11071-014-1876-1
![]() |
[11] |
X. Yang, Z. Deng, Y. Wei, A Riccati-Bernoulli sub-ODE method for nonlinear partial differential equations and its application, Adv. Diff. Equ., 2015 (2015), 117. http://dx.doi.org/10.1186/s13662-015-0452-4 doi: 10.1186/s13662-015-0452-4
![]() |
[12] |
Y. Alharbi, M. Sohaly, M. Abdelrahman, Fundamental solutions to the stochastic perturbed nonlinear Schrödinger's equation via gamma distribution, Results Phys., 25 (2021) 104249. http://dx.doi.org/10.1016/j.rinp.2021.104249 doi: 10.1016/j.rinp.2021.104249
![]() |
[13] |
S. Zhang, J. Tong, W. Wang, A generalized (G′G)-expansion method for the mKdv equation with variable coefficients, Phys. Lett. A, 372 (2008), 2254–2257. http://dx.doi.org/10.1016/j.physleta.2007.11.026 doi: 10.1016/j.physleta.2007.11.026
![]() |
[14] |
M. Abdelrahman, H. AlKhidhr, A robust and accurate solver for some nonlinear partial differential equations and tow applications, Phys. Scr., 95 (2020), 065212. http://dx.doi.org/10.1088/1402-4896/ab80e7 doi: 10.1088/1402-4896/ab80e7
![]() |
[15] |
M. Abdelrahman, O. Moaaz, New exact solutions to the dual-core optical fibers, Indian J. Phys., 94 (2020), 705–711. http://dx.doi.org/10.1007/s12648-019-01503-w doi: 10.1007/s12648-019-01503-w
![]() |
[16] |
H. Abdelwahed, M. Abdelrahman, New nonlinear periodic, solitonic, dissipative waveforms for modified-Kadomstev-Petviashvili-equation in nonthermal positron plasma, Results Phys., 19 (2020), 103393. http://dx.doi.org/10.1016/j.rinp.2020.103393 doi: 10.1016/j.rinp.2020.103393
![]() |
[17] |
X. Yan, S. Tian, M. Dong, T. Zhang, Rogue waves and their dynamics on bright-dark soliton background of the coupled higher order nonlinear Schrödinger equation, J. Phys. Soc. Jpn., 88 (2019), 074004. http://dx.doi.org/10.7566/JPSJ.88.074004 doi: 10.7566/JPSJ.88.074004
![]() |
[18] |
X. Yan, Lax pair, Darboux-dressing transformation and localized waves of the coupled mixed derivative nonlinear Schrödinger equation in a birefringent optical fiber, Appl. Math. Lett., 107 (2020), 106414. http://dx.doi.org/10.1016/j.aml.2020.106414 doi: 10.1016/j.aml.2020.106414
![]() |
[19] |
S. Kumar, H. Almusawa, I. Hamid, M. Akbar, M. Abdou, Abundant analytical soliton solutions and Evolutionary behaviors of various wave profiles to the Chaffee-Infante equation with gas diffusion in a homogeneous medium, Results Phys., 30 (2021), 104866. http://dx.doi.org/10.1016/j.rinp.2021.104866 doi: 10.1016/j.rinp.2021.104866
![]() |
[20] |
S. Kumar, K. Nisar, A. Kumar, A (2+1)-dimensional generalized Hirota-Satsuma-Ito equations: Lie symmetry analysis, invariant solutions and dynamics of soliton solutions, Results Phys., 28 (2021), 104621. http://dx.doi.org/10.1016/j.rinp.2021.104621 doi: 10.1016/j.rinp.2021.104621
![]() |
[21] |
A. Hendi, L. Ouahid, S. Kumar, S. Owyed, M. Abdou, Dynamical behaviors of various optical soliton solutions for the Fokas-Lenells equation, Mod. Phys. Lett. B, 35 (2021), 2150529. http://dx.doi.org/10.1142/S0217984921505291 doi: 10.1142/S0217984921505291
![]() |
[22] |
L. Ouahid, M. Abdou, S. Kumar, S. Owyed, S. Saha Ray, A plentiful supply of soliton solutions for DNA Peyrard-Bishop equation by means of a new auxiliary equation strategy, Mod. Phys. Lett. B, 35 (2021), 2150265. http://dx.doi.org/10.1142/S0217979221502659 doi: 10.1142/S0217979221502659
![]() |
[23] |
L. Ouahid, M. Abdou, S. Owyed, S. Kumar, New optical soliton solutions via two distinctive schemes for the DNA Peyrard-Bishop equation in fractal order, Mod. Phys. Lett. B, 35 (2021), 2150444. http://dx.doi.org/10.1142/S0217984921504443 doi: 10.1142/S0217984921504443
![]() |
[24] |
S. Kumar, B. Mohan, A study of multi-soliton solutions, breather, lumps, and their interactions for Kadomtsev-Petviashvili equation with variable time coefficient using Hirota method, Phys. Scr., 96 (2021), 125255. http://dx.doi.org/10.1088/1402-4896/ac3879 doi: 10.1088/1402-4896/ac3879
![]() |
[25] |
S. Dhiman, S. Kumar, H. Kharbanda, An extended (3+1)-dimensional Jimbo-Miwa equation: Symmetry reductions, invariant solutions and dynamics of different solitary waves, Mod. Phys. Lett. B, 35 (2021), 2150528. http://dx.doi.org/10.1142/S021798492150528X doi: 10.1142/S021798492150528X
![]() |
[26] |
S. Kumar, A. Kumar, H. Kharbanda, Lie symmetry analysis and generalized invariant solutions of (2+1)-dimensional dispersive long wave (DLW) equations, Phys. Scr., 95 (2020), 065207. http://dx.doi.org/10.1088/1402-4896/ab7f48 doi: 10.1088/1402-4896/ab7f48
![]() |
[27] |
S. Tian, J. Tu, T. Zhang, Y. Chen, Integrable discretizations and soliton solutions of an Eckhaus-Kundu equation, Appl. Math. Lett., 122 (2021), 107507. http://dx.doi.org/10.1016/j.aml.2021.107507 doi: 10.1016/j.aml.2021.107507
![]() |
[28] |
S. Tian, M. Xu, T. Zhang, A symmetry-preserving difference scheme and analytical solutions of a generalized higher-order beam equation, Proc. R. Soc. A, 477 (2021), 20210455. http://dx.doi.org/10.1098/rspa.2021.0455 doi: 10.1098/rspa.2021.0455
![]() |
[29] |
S. Tian, Lie symmetry analysis, conservation laws and solitary wave solutions to a fourth-order nonlinear generalized Boussinesq water wave equation, Appl. Math. Lett., 100 (2020), 106056. http://dx.doi.org/10.1016/j.aml.2019.106056 doi: 10.1016/j.aml.2019.106056
![]() |
[30] |
S. Tian, D. Guo, X. Wang, T. Zhang, Traveling wave, lump Wave, rogue wave, multi-kink solitary wave and interaction solutions in a (3+1)-dimensional Kadomtsev-Petviashvili equation with Bäcklund transformation, J. Appl. Anal. Comput., 11 (2021), 45–58. http://dx.doi.org/10.11948/20190086 doi: 10.11948/20190086
![]() |
[31] |
A. Maccari, The Kadomtsev-Petviashvili equation as a source of integrable model equations, J. Math. Phys., 37 (1996), 6207. http://dx.doi.org/10.1063/1.531773 doi: 10.1063/1.531773
![]() |
[32] |
S. Zhang, Exp-function method for solving Maccari system, Phys. Lett. A, 371 (2007), 65–71. http://dx.doi.org/10.1016/j.physleta.2007.05.091 doi: 10.1016/j.physleta.2007.05.091
![]() |
[33] |
J. Pan, L. Gong, Exact solutions to Maccari's system, Commun. Theor. Phys., 48 (2007), 7–10. http://dx.doi.org/ 10.1088/0253-6102/48/1/002 doi: 10.1088/0253-6102/48/1/002
![]() |
[34] |
A. Neirameh, New analytical solutions for the couple nonlinear Maccari's system, Alex. Eng. J., 55 (2016), 2839–2847. http://dx.doi.org/10.1016/j.aej.2016.07.007 doi: 10.1016/j.aej.2016.07.007
![]() |
[35] |
N. Chemaa, M. Younis, New and more exact traveling wave solutions to integrable (2+1)-dimensional Maccari system, Nonlinear Dyn., 83 (2016), 1395–1401. http://dx.doi.org/10.1007/s11071-015-2411-8 doi: 10.1007/s11071-015-2411-8
![]() |
[36] | G. Wang, L. Wang, J. Rao, J. He, New patterns of the two-dimensional rogue waves: (2+1)-dimensional Maccari system, Commun. Theor. Phys., 67 (2017), 601–610. |
[37] |
H. Baskonus, T. Sulaiman, H. Bulut, On the novel wave behaviors to the coupled nonlinear Maccari's system with complex structure, Optik, 131 (2017), 1036–1043. http://dx.doi.org/10.1016/j.ijleo.2016.10.135 doi: 10.1016/j.ijleo.2016.10.135
![]() |
[38] |
M. Shakeel, S. Mohyud-Din, M. Iqbal, Closed form solutions for coupled nonlinear Maccari system, Comput. Math. Appl., 76 (2018), 799–809. http://dx.doi.org/10.1016/j.camwa.2018.05.020 doi: 10.1016/j.camwa.2018.05.020
![]() |
[39] |
T. Xu, Y. Chen, Z. Qiao, Multi-dark soliton solutions for the (2+1)-dimensional multi-component Maccari system, Mod. Phys. Lett. B, 33 (2019), 1950390. http://dx.doi.org/10.1142/S0217984919503901 doi: 10.1142/S0217984919503901
![]() |
[40] |
W. Wan, S. Jia, J. Fleischer, Dispersive superfluid-like shock waves in nonlinear optics, Nature Phys., 3 (2007), 46–51. http://dx.doi.org/10.1038/nphys486 doi: 10.1038/nphys486
![]() |
[41] |
A. E. Dubinov, D. Yu. Kolotkov, Ion-acoustic supersolitons in plasma, Plasma Phys. Rep., 38 (2012), 909–912. http://dx.doi.org/10.1134/S1063780X12100054 doi: 10.1134/S1063780X12100054
![]() |
[42] |
F. Verheest, M. Hellberg, W. Hereman, Head-on collisions of electrostatic solitons in nonthermal plasmas, Phys. Rev. E, 86 (2012), 036402. http://dx.doi.org/10.1103/PhysRevE.86.036402 doi: 10.1103/PhysRevE.86.036402
![]() |
[43] |
S. Singh, G. Lakhina, Ion-acoustic supersolitons in the presence of non-thermal electrons, Commun. Nonlinear Sci., 23 (2015), 274–281. http://dx.doi.org/10.1016/j.cnsns.2014.11.017 doi: 10.1016/j.cnsns.2014.11.017
![]() |
[44] |
S. Demiray, Y. Pandir, H. Bulut, New solitary wave solutions of Maccari system, Ocean Eng., 103 (2015), 153–159. http://dx.doi.org/10.1016/j.oceaneng.2015.04.037 doi: 10.1016/j.oceaneng.2015.04.037
![]() |
[45] | D. Rostamy, F. Zabihi, Exact solutions for different coupled nonlinear Maccari's systems, Nonlinear Studies, 19 (2012), 229–239. |
[46] |
T. Gill, C. Bedi, A. Bains, Envelope excitations of ion acoustic solitary waves in a plasma with superthermal electrons and positrons, Phys. Scr., 81 (2010), 055503. http://dx.doi.org/ 10.1088/0031-8949/81/05/055503 doi: 10.1088/0031-8949/81/05/055503
![]() |
[47] |
M. Uddin, M. Alam, A. Mamun, Nonplanar positron-acoustic Gardner solitary waves in electron-positron-ion plasmas with superthermal electrons and positrons, Phys. Plasmas, 22 (2015), 022111. http://dx.doi.org/10.1063/1.4907226 doi: 10.1063/1.4907226
![]() |
[48] |
J. He, Semi-inverse method of establishing generalized variational principles for fluid mechanics with emphasis on turbo machinery aerodynamics, International Journal of Turbo and Jet Engines, 14 (1997), 23–28. http://dx.doi.org/10.1515/TJJ.1997.14.1.23 doi: 10.1515/TJJ.1997.14.1.23
![]() |
[49] |
J. He, Variational principles for some nonlinear partial differential equations with variable coefficients, Chaos Soliton. Fract., 19 (2004), 847–851. http://dx.doi.org/10.1016/S0960-0779(03)00265-0 doi: 10.1016/S0960-0779(03)00265-0
![]() |
[50] |
J. He, Some asymptotic methods for strongly nonlinear equations, Int. J. Mod. Phys. B, 20 (2006), 1141–1199. http://dx.doi.org/10.1142/S0217979206033796 doi: 10.1142/S0217979206033796
![]() |
[51] |
N. Kudryashov, Seven common errors in finding exact solutions of nonlinear differential equations, Commun. Nonlinear Sci., 14 (2009), 3507–3529. http://dx.doi.org/10.1016/j.cnsns.2009.01.023 doi: 10.1016/j.cnsns.2009.01.023
![]() |
[52] |
M. Abdelrahman, A note on Riccati-Bernoulli sub-ODE method combined with complex transform method applied to fractional differential equations, Nonlinear Engineering, 7 (2018), 279–285. http://dx.doi.org/10.1515/nleng-2017-0145 doi: 10.1515/nleng-2017-0145
![]() |
[53] |
S. Hassan, M. Abdelrahman, Solitary wave solutions for some nonlinear time fractional partial differential equations, Pramana-J. Phys., 91 (2018), 67. http://dx.doi.org/10.1007/s12043-018-1636-8 doi: 10.1007/s12043-018-1636-8
![]() |
[54] |
D. Kumar, J. Singh, D. Baleanu, S. Rathore, Analysis of a fractional model of the Ambartsumian equation, Eur. Phys. J. Plus, 133 (2018), 259. http://dx.doi.org/10.1140/epjp/i2018-12081-3 doi: 10.1140/epjp/i2018-12081-3
![]() |
1. | R.A. Alomair, S.Z. Hassan, Mahmoud A.E. Abdelrahman, Ali H. Amin, E.K. El-Shewy, New solitary optical solutions for the NLSE with δ-potential through Brownian process, 2022, 40, 22113797, 105814, 10.1016/j.rinp.2022.105814 | |
2. | Hanan A. Alkhidhr, Mahmoud A. E. Abdelrahman, Mohammad Mirzazadeh, Simulating New CKO as a Model of Seismic Sea Waves via Unified Solver, 2023, 2023, 1687-9139, 1, 10.1155/2023/2514899 | |
3. | H. G. Abdelwahed, A. F. Alsarhana, E. K. El-Shewy, Mahmoud A. E. Abdelrahman, Higher-Order Dispersive and Nonlinearity Modulations on the Propagating Optical Solitary Breather and Super Huge Waves, 2023, 7, 2504-3110, 127, 10.3390/fractalfract7020127 | |
4. | Mahmoud A.E. Abdelrahman, Hanan A. Alkhidhr, Ali H. Amin, E.K. El-Shewy, A new structure of solutions to the system of ISALWs via stochastic sense, 2022, 37, 22113797, 105473, 10.1016/j.rinp.2022.105473 | |
5. | Mahmoud A.E. Abdelrahman, S.Z. Hassan, Munerah Almulhem, A new structure of optical solitons to the (n+1)-NLSE, 2022, 37, 22113797, 105535, 10.1016/j.rinp.2022.105535 | |
6. | Hanan A. Alkhidhr, The new stochastic solutions for three models of non-linear Schrödinger’s equations in optical fiber communications via Itô sense, 2023, 11, 2296-424X, 10.3389/fphy.2023.1144704 | |
7. | H. G. Abdelwahed, A. F. Alsarhana, E. K. El-Shewy, Mahmoud A. E. Abdelrahman, The Stochastic Structural Modulations in Collapsing Maccari’s Model Solitons, 2023, 7, 2504-3110, 290, 10.3390/fractalfract7040290 | |
8. | H. G. Abdelwahed, A. F. Alsarhana, E. K. El-Shewy, Mahmoud A. E. Abdelrahman, Dynamical energy effects in subsonic collapsing electrostatic Langmuir soliton, 2023, 35, 1070-6631, 037129, 10.1063/5.0141228 | |
9. | Emad K. El-Shewy, Noura F. Abdo, Mahmoud A. E. Abdelrahman, Modulations of Stochastic Modeling in the Structural and Energy Aspects of the Kundu–Mukherjee–Naskar System, 2023, 11, 2227-7390, 4881, 10.3390/math11244881 | |
10. | Yousef F. Alharbi, Ahmed M. T. Abd El-Bar, Mahmoud A. E. Abdelrahman, Ahmed M. Gemeay, Arne Johannssen, A new statistical distribution via the Phi-4 equation with its wide-ranging applications, 2024, 19, 1932-6203, e0312458, 10.1371/journal.pone.0312458 | |
11. | Munerah Almulhem, Samia Hassan, Alanwood Al-buainain, Mohammed Sohaly, Mahmoud Abdelrahman, Characteristics of Solitary Stochastic Structures for Heisenberg Ferromagnetic Spin Chain Equation, 2023, 15, 2073-8994, 927, 10.3390/sym15040927 | |
12. | Maged A. Azzam, H. G. Abdelwahed, Emad K. El-Shewy, Mahmoud A. E. Abdelrahman, Langmuir Forcing and Collapsing Subsonic Density Cavitons via Random Modulations, 2023, 15, 2073-8994, 1558, 10.3390/sym15081558 | |
13. | M. Mossa Al-Sawalha, Saima Noor, Mohammad Alqudah, Musaad S. Aldhabani, Rasool Shah, Formation of Optical Fractals by Chaotic Solitons in Coupled Nonlinear Helmholtz Equations, 2024, 8, 2504-3110, 594, 10.3390/fractalfract8100594 | |
14. | Amira F. Daghistani, Ahmed M. T. Abd El-Bar, Ahmed M. Gemeay, Mahmoud A. E. Abdelrahman, Samia Z. Hassan, A Hyperbolic Secant-Squared Distribution via the Nonlinear Evolution Equation and Its Application, 2023, 11, 2227-7390, 4270, 10.3390/math11204270 | |
15. | H. G. Abdelwahed, A. F. Alsarhana, E. K. El-Shewy, Mahmoud A. E. Abdelrahman, Characteristics of New Stochastic Solitonic Solutions for the Chiral Type of Nonlinear Schrödinger Equation, 2023, 7, 2504-3110, 461, 10.3390/fractalfract7060461 | |
16. | Hadil Alhazmi, Sanaa A. Bajri, E. K. El-Shewy, Mahmoud A. E. Abdelrahman, Effect of random noise behavior on the properties of forcing nonlinear Maccari’s model structures, 2024, 14, 2158-3226, 10.1063/5.0228465 | |
17. | Shan Zhao, Zhao Li, The analysis of traveling wave solutions and dynamical behavior for the stochastic coupled Maccari's system via Brownian motion, 2024, 15, 20904479, 103037, 10.1016/j.asej.2024.103037 | |
18. | Jamil Abbas Haider, Abdullah M.S. Alhuthali, Mohamed Abdelghany Elkotb, Exploring novel applications of stochastic differential equations: Unraveling dynamics in plasma physics with the Tanh-Coth method, 2024, 60, 22113797, 107684, 10.1016/j.rinp.2024.107684 | |
19. | Hesham G. Abdelwahed, Reem Alotaibi, Emad K. El-Shewy, Mahmoud A. E. Abdelrahman, Rajesh Sharma, An insight into the stochastic solitonic features of the Maccari model using the solver technique, 2024, 19, 1932-6203, e0312741, 10.1371/journal.pone.0312741 | |
20. | S. Z. Hassan, D. M. Alsaleh, Munerah Almulhem, R. A. Alomair, A. F. Daghestani, Mahmoud A. E. Abdelrahman, Innovative solutions to the 2D nonlinear Schrödinger model in mathematical physics, 2025, 15, 2158-3226, 10.1063/5.0249246 | |
21. | M. B. Almatrafi, Mahmoud A. E. Abdelrahman, The novel stochastic structure of solitary waves to the stochastic Maccari's system via Wiener process, 2025, 10, 2473-6988, 1183, 10.3934/math.2025056 | |
22. | Mahmoud A. E. Abdelrahman, M. A. Sohaly, Yousef F. Alharbi, Optical random soliton solutions to conformable fractional NLSE via statistical distributions, 2025, 34, 0218-8635, 10.1142/S0218863523500911 | |
23. | Zhimin Yan, Jinbo Li, Shoaib Barak, Salma Haque, Nabil Mlaiki, Delving into quasi-periodic type optical solitons in fully nonlinear complex structured perturbed Gerdjikov–Ivanov equation, 2025, 15, 2045-2322, 10.1038/s41598-025-91978-x | |
24. | Jin-Jin Mao, ∂̄-dressing method for the coupled third-order flow equation of the Kaup-Newell system, 2025, 10075704, 108841, 10.1016/j.cnsns.2025.108841 |