Research article Special Issues

Investigating a generalized Hilfer-type fractional differential equation with two-point and integral boundary conditions

  • Received: 25 August 2021 Accepted: 24 October 2021 Published: 03 November 2021
  • MSC : 34A08, 34A12, 34B15, 47H10

  • In this paper, we investigate a nonlinear generalized fractional differential equation with two-point and integral boundary conditions in the frame of $ \kappa $-Hilfer fractional derivative. The existence and uniqueness results are obtained using Krasnoselskii and Banach's fixed point theorems. We analyze different types of stability results of the proposed problem by using some mathematical methodologies. At the end of the paper, we present a numerical example to demonstrate and validate our findings.

    Citation: Saleh S. Redhwan, Sadikali L. Shaikh, Mohammed S. Abdo, Wasfi Shatanawi, Kamaleldin Abodayeh, Mohammed A. Almalahi, Tariq Aljaaidi. Investigating a generalized Hilfer-type fractional differential equation with two-point and integral boundary conditions[J]. AIMS Mathematics, 2022, 7(2): 1856-1872. doi: 10.3934/math.2022107

    Related Papers:

  • In this paper, we investigate a nonlinear generalized fractional differential equation with two-point and integral boundary conditions in the frame of $ \kappa $-Hilfer fractional derivative. The existence and uniqueness results are obtained using Krasnoselskii and Banach's fixed point theorems. We analyze different types of stability results of the proposed problem by using some mathematical methodologies. At the end of the paper, we present a numerical example to demonstrate and validate our findings.



    加载中


    [1] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier Science, Amsterdam, 2006.
    [2] I. Podlubny, Fractional differential equations, Academic Press, San Diego, 1999.
    [3] S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional integrals and derivatives: Theory and applications, Gordon and Breach, Switzerland, 1993.
    [4] A. Atangana, D. Baleanu, New fractional derivatives with non-local and non-singular kernel: Theory and application to heat transfer, Model. Therm. Sci., 20 (2016), 763–769. doi: 10.2298/TSCI160111018A. doi: 10.2298/TSCI160111018A
    [5] A. Atangana, Fractal-fractional differentiation and integration: Connecting fractal calculus and fractional calculus to predict complex system, Chaos Soliton. Fract., 102 (2017), 396–406. doi: 10.1016/j.chaos.2017.04.027. doi: 10.1016/j.chaos.2017.04.027
    [6] S. S. Redhwan, M. S. Abdo, K. Shah, T. Abdeljawad, S. Dawood, H. A. Abdo, et al., Mathematical modeling for the outbreak of the coronavirus (COVID-19) under fractional nonlocal operator, Results Phys., 19 (2020), 103610. doi: 10.1016/j.rinp.2020.103610. doi: 10.1016/j.rinp.2020.103610
    [7] Q. Zhu, Stabilization of stochastic nonlinear delay systems with exogenous disturbances and the event-triggered feedback control, IEEE T. Automat. Contr., 64 (2019), 3764–3771. doi: 10.1109/TAC.2018.2882067. doi: 10.1109/TAC.2018.2882067
    [8] Q. Zhu, T. Huang, Stability analysis for a class of stochastic delay nonlinear systems driven by G-Brownian motion, Syst. Control Lett., 140 (2020), 104699. doi: 10.1016/j.sysconle.2020.104699. doi: 10.1016/j.sysconle.2020.104699
    [9] W. Hu, Q. Zhu, H. R. Karimi, Some improved Razumikhin stability criteria for impulsive stochastic delay differential systems, IEEE T. Automat. Contr., 64 (2019), 5207–5213. doi: 10.1109/TAC.2019.2911182. doi: 10.1109/TAC.2019.2911182
    [10] R. Hilfer, Applications of fractional calculus in physics, World Scientific, Singapore, 2000.
    [11] R. Hilfer, Experimental evidence for fractional time evolution in glass forming materials, J. Chem. Phys., 284 (2002), 399–408. doi: 10.1016/S0301-0104(02)00670-5. doi: 10.1016/S0301-0104(02)00670-5
    [12] J. C. Sousa, E. C. de Oliveira, A Gronwall inequality and the Cauchy-type problem by means of $\psi $-Hilfer operator, Differ. Equat. Appl., 2017. doi: 10.7153/dea-2019-11-02.
    [13] C. da Vanterler, J. Sousa, E. Capelas de Oliveira, On the $ \psi$-Hilfer fractional derivative, Commun. Nonlinear Sci. Numer. Simul., 60 (2018), 72–91. doi: 10.1016/j.cnsns.2018.01.005. doi: 10.1016/j.cnsns.2018.01.005
    [14] M. Benchohra, S. Hamani, S. K. Ntouyas, Boundary value problems for differential equations with fractional order, Surv. Math. Appl., 3 (2008), 1–12. doi: 10.1016/j.na.2009.01.073. doi: 10.1016/j.na.2009.01.073
    [15] K. Salim, S. Abbas, M. Benchohra, M. A. Darwish, Boundary value problem for implicit Caputo-Fabrizio fractional differential equations, Int. J. Differ. Equ., 15 (2020), 493–510.
    [16] A. Ashyralyev, Y. Sharifov, Existence and uniqueness of solutions for the system of nonlinear fractional differential equations with nonlocal and integral boundary conditions, Abstr. Appl. Anal., 2012 (2012). doi: 10.1155/2012/594802.
    [17] Y. Sharifov, S. A. Zamanova, R. A. Sardarova, Existence and uniqueness of solutions for the nonlinear fractional differential equations with two-point and integral boundary conditions, Eur. J. Pure Appl. Math., 14 (2021), 608–617. doi: 10.29020/nybg.ejpam.v14i2.3978. doi: 10.29020/nybg.ejpam.v14i2.3978
    [18] J. Sousa, E. C. de Oliveira, A Gronwall inequality and the Cauchy-type problem by means of $\psi $-Hilfer operator, Differ. Equat. Appl., 11 (2019), 87–106. doi: 10.7153/dea-2019-11-02. doi: 10.7153/dea-2019-11-02
    [19] J. V. C. Sousa, E. C. de Oliveira, Ulam-Hyers stability of a nonlinear fractional Volterra integro-differential equation, Appl. Math. Lett., 81 (2018), 50–56. doi: 10.1016/j.aml.2018.01.016. doi: 10.1016/j.aml.2018.01.016
    [20] J. V. C. Sousa, E. C. de Oliveira, On the Ulam-Hyers-Rassias stability for nonlinear fractional differential equations using the $\psi $ -Hilfer operator, J. Fix. Point Theory A., 20 (2018), 1–21. doi: 10.1007/s11784-018-0587-5. doi: 10.1007/s11784-018-0587-5
    [21] H. A. Wahash, M. S. Abdo, K. S. Panchal, Fractional integrodifferential equations with nonlocal conditions and generalized Hilfer fractional derivative, Ufa Math. J., 11 (2019), 151–171. doi: 10.13108/2019-11-4-151. doi: 10.13108/2019-11-4-151
    [22] M. S. Abdo, S. K. Panchal, Fractional integro-differential equations involving $\psi$-Hilfer fractional derivative, Adv. Appl. Math. Mech., 11 (2019), 338–359. doi: 10.4208/aamm.OA-2018-0143. doi: 10.4208/aamm.OA-2018-0143
    [23] M. A. Almalahi, S. K. Panchal, On the theory of $\psi $-Hilfer nonlocal Cauchy problem, J. Sib. Fed. Univ. Math., 14 (2021), 159–175. doi: 10.17516/1997-1397-2021-14-2-161-177. doi: 10.17516/1997-1397-2021-14-2-161-177
    [24] S. Asawasamrit, A. Kijjathanakorn, S. K. Ntouyas, J. Tariboon, Nonlocal boundary value problems for Hilfer fractional differential equations, B. Korean Math. Soc., 55 (2018), 1639–1657. doi: 10.4134/BKMS.b170887. doi: 10.4134/BKMS.b170887
    [25] A. D. Mali, K. D. Kucche, Nonlocal boundary value problem for generalized Hilfer implicit fractional differential equations, Math. Method. Appl. Sci., 43 (2020), 8608–8631. doi: 10.1002/mma.6521. doi: 10.1002/mma.6521
    [26] T. A. Burton, U. C. Kirk, A fixed point theorem of Krasnoselskii Schaefer type, Math. Nachr., 189 (1998), 23–31. doi: 10.1002/mana.19981890103. doi: 10.1002/mana.19981890103
    [27] T. A. Burton, A fixed-point theorem of Krasnoselskii, App. Math. Lett., 11 (1998), 85–88. doi: 10.1016/S0893-9659(97)00138-9. doi: 10.1016/S0893-9659(97)00138-9
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1563) PDF downloads(98) Cited by(5)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog