In this paper, we investigate a nonlinear generalized fractional differential equation with two-point and integral boundary conditions in the frame of κ-Hilfer fractional derivative. The existence and uniqueness results are obtained using Krasnoselskii and Banach's fixed point theorems. We analyze different types of stability results of the proposed problem by using some mathematical methodologies. At the end of the paper, we present a numerical example to demonstrate and validate our findings.
Citation: Saleh S. Redhwan, Sadikali L. Shaikh, Mohammed S. Abdo, Wasfi Shatanawi, Kamaleldin Abodayeh, Mohammed A. Almalahi, Tariq Aljaaidi. Investigating a generalized Hilfer-type fractional differential equation with two-point and integral boundary conditions[J]. AIMS Mathematics, 2022, 7(2): 1856-1872. doi: 10.3934/math.2022107
[1] | Thabet Abdeljawad, Pshtiwan Othman Mohammed, Hari Mohan Srivastava, Eman Al-Sarairah, Artion Kashuri, Kamsing Nonlaopon . Some novel existence and uniqueness results for the Hilfer fractional integro-differential equations with non-instantaneous impulsive multi-point boundary conditions and their application. AIMS Mathematics, 2023, 8(2): 3469-3483. doi: 10.3934/math.2023177 |
[2] | Saima Rashid, Abdulaziz Garba Ahmad, Fahd Jarad, Ateq Alsaadi . Nonlinear fractional differential equations and their existence via fixed point theory concerning to Hilfer generalized proportional fractional derivative. AIMS Mathematics, 2023, 8(1): 382-403. doi: 10.3934/math.2023018 |
[3] | Sunisa Theswan, Sotiris K. Ntouyas, Jessada Tariboon . Coupled systems of $ \psi $-Hilfer generalized proportional fractional nonlocal mixed boundary value problems. AIMS Mathematics, 2023, 8(9): 22009-22036. doi: 10.3934/math.20231122 |
[4] | Ugyen Samdrup Tshering, Ekkarath Thailert, Sotiris K. Ntouyas . Existence and stability results for a coupled system of Hilfer-Hadamard sequential fractional differential equations with multi-point fractional integral boundary conditions. AIMS Mathematics, 2024, 9(9): 25849-25878. doi: 10.3934/math.20241263 |
[5] | M. Latha Maheswari, K. S. Keerthana Shri, Mohammad Sajid . Analysis on existence of system of coupled multifractional nonlinear hybrid differential equations with coupled boundary conditions. AIMS Mathematics, 2024, 9(6): 13642-13658. doi: 10.3934/math.2024666 |
[6] | Muath Awadalla, Manigandan Murugesan, Subramanian Muthaiah, Bundit Unyong, Ria H Egami . Existence results for a system of sequential differential equations with varying fractional orders via Hilfer-Hadamard sense. AIMS Mathematics, 2024, 9(4): 9926-9950. doi: 10.3934/math.2024486 |
[7] | Idris Ahmed, Sotiris K. Ntouyas, Jessada Tariboon . Separated boundary value problems via quantum Hilfer and Caputo operators. AIMS Mathematics, 2024, 9(7): 19473-19494. doi: 10.3934/math.2024949 |
[8] | Lakhlifa Sadek, Tania A Lazǎr . On Hilfer cotangent fractional derivative and a particular class of fractional problems. AIMS Mathematics, 2023, 8(12): 28334-28352. doi: 10.3934/math.20231450 |
[9] | Donny Passary, Sotiris K. Ntouyas, Jessada Tariboon . Hilfer fractional quantum system with Riemann-Liouville fractional derivatives and integrals in boundary conditions. AIMS Mathematics, 2024, 9(1): 218-239. doi: 10.3934/math.2024013 |
[10] | Weerawat Sudsutad, Wicharn Lewkeeratiyutkul, Chatthai Thaiprayoon, Jutarat Kongson . Existence and stability results for impulsive $ (k, \psi) $-Hilfer fractional double integro-differential equation with mixed nonlocal conditions. AIMS Mathematics, 2023, 8(9): 20437-20476. doi: 10.3934/math.20231042 |
In this paper, we investigate a nonlinear generalized fractional differential equation with two-point and integral boundary conditions in the frame of κ-Hilfer fractional derivative. The existence and uniqueness results are obtained using Krasnoselskii and Banach's fixed point theorems. We analyze different types of stability results of the proposed problem by using some mathematical methodologies. At the end of the paper, we present a numerical example to demonstrate and validate our findings.
Fractional differential equations (FDEs) provide more advantages than integer-order differential equations. When it comes to explaining the changing laws of nature, these equations are both flexible and exact. As a result, FDEs are commonly used in real-world situations [1-3]. However, the development of the theory of FDEs is still in its early stages because various physical interpretations of FDEs are still unknown due to the intricacies of their initial values. Nonetheless, these equations have become a valid topic of debate among a number of researchers due to their wide range of practical applications and theoretical significance. Atangana and Baleanu [4] introduced a new definition of fractional derivatives with the nonlocal and non-singular kernel. In contrast, the properties of this operator, such as convolution of the power law, exponential decay law, and generalized Mittag-Leffler law with fractal derivative, are introduced by Atangana in [5]. For more details about the application of the Atangana-Baleanu operator see [6]. Zhu [7] studied the stabilization problem of stochastic nonlinear delay systems. Also, Zhu et al. [8] discussed the moment exponential stability problem for a class of stochastic delay nonlinear systems. Hu et al. [9] studied the Razumikhin stability theorem for a class of impulsive stochastic delay differential systems. In the last three decades, some researchers introduced definitions of fractional calculus, including definitions of Riemann-Liouville (RL) and Caputo, and less well-known definitions such as Erdelyi-Kober and Hadamard. In [10], Hilfer was given generalization of FDs of RL and Caputo, which so-called the Hilfer FD of order η and a type q∈[0,1]. When we give q=0 and q=1 respectively in the formula of Hilfer FD can get RL and Caputo FDs. Such a derivative interpolate between the RL and Caputo FDs. For more details on this FD above-mentioned can be found in [11,12]. In 2018, Sousa and de Oliveira [13] introduced a new FD with respect to another function ψ called "ψ-Hilfer FD" generalizes most of the previous FDs. Some of the existence and stability results of fractional boundary value problems (BVPs) are addressed in the recent literature; for instance, Benchohra et al. [14] studied the existence of solutions of a class of BVPs for a nonlinear FDE
{CDαυ(σ)=f(σ,υ(σ)),σ∈[0,T],aυ(0)+bυ(T)=c, | (1.1) |
where 0<α<1, a,b,c∈R, a+b≠0, and CDα is the Caputo FD of order α. Salim et al. [15] discussed some existence and Ulam stability results for the implicit problem (1.1) with Caputo-Fabrizio FD. Ashyralyev et al. [16] studied the existence and uniqueness of a fractional BVP of the form
{CDαυ(σ)=f(σ,υ(σ)),σ∈[0,b],Aυ(0)+Bυ(b)=∫b0g(s,υ(s))ds, | (1.2) |
where 0<α≤1, CDα is the Caputo FD of order α, A,B∈Rn×n, f,g:[0,b]×Rn→Rn are continuous. Sharifov et al. [17] investigated the existence and uniqueness of the solutions to the following fractional BVP
{CDαυ(σ)=f(σ,υ(σ)),σ∈[0,b],Aυ(0)+∫b0n(s)υ(s)ds+Bυ(b)=C, | (1.3) |
where 0<α<1, CDα is the Caputo FD of order α, A,B,C∈Rn×n, f:[0,b]×Rn→Rn is continuous, and n(s):[0,b]→Rn×n is given matrices.
On the other hand, Sousa and de Oliveira [18] proved the existence and uniqueness of solutions of the following Cauchy-type problem
{Dα,β,ψa+υ(σ)=f(σ,υ(σ)),σ∈(a,b],I1−γ,ψυ(σ)=υa, γ=α+β(1−α), | (1.4) |
where 0<α<1, 0≤β≤1, υa∈R, Dα,β,ψa+ is the ψ-Hilfer FD, and f:[0,b]×R→R is continuous. The authors in [19] discussed the Ulam-Hyers (UH) stability of (1.4) for an integro-differential-type. Furthermore, they proved the Ulam-Hyers-Rassias stability results of (1.4) for an implicit type in [20]. Abdo et al., in [21,22] investigated the existence and various types of stability theorems of fractional Cauchy problem involving ψ-Hilfer FD, whereas, some qualitative analyses of ψ-Hilfer type nonlocal Cauchy problem have been investigated in [23]. Nonlocal fractional BVPs with ψ-Hilfer FDs have been considered in [24,25].
In this paper, we study the existence, uniqueness and UH stability results of the class of BVPs for the following nonlinear FDE
{HDη,q;κυ(σ)=ϝ(σ,υ(σ)),σ∈J:=[a,b],d1υ(a)+d2∫baκ′(s)υ(s)ds+d3υ(b)=d4, | (1.5) |
where 0<η<1, 0≤q≤1, HDη,q;κ is the κ-Hilfer FD of order η, and type q, ϝ:J×R→R is continuous, di∈R (i=1,2,3,4), κ′(σ)∈C1(J,R) be an increasing function with κ′(σ)≠0 for all σ∈J.
We concentrate on non-local problems because, in many cases, the non-local condition better captures physical phenomena than classical initial (border) conditions. So, utilising Banach's and Krasnoseliskii's fixed point theorems under the minimum assumptions, we analyze the result of existence and uniqueness as well as UH stability results of the BVP (1.5). The work presented in this article is current and adds to the literature, particularly in the area of nonlinear problems of the κ-Hilfer type.
In general, our results remain valid for various values of the function κ and cover many corresponding problems, for instance (Hilfer-Hadamard type problem for κ(σ)=logσ), (Hilfer-Katugampola type problem for κ(σ)=σρ, ρ>0), (Caputo-type problem for κ(σ)=σ, and q=1), and (RL-type problem for κ(σ)=σ, and q=0).
The content of this paper is organized as follows: Section 2 presents some required results and preliminaries about κ-Hilfer FD. Our main results for the κ-Hilfer type BVP (1.5) are addressed in Section 3. Some examples to explain the acquired results are constructed in Section 4. Ultimately, we summarize our work in the conclusion section and suggest future directions.
We set notations and certain fundamental facts in this part, which will be used in the proofs of the following results.
Let C(J,R) and L(J,R) are the Banach space of continuous functions and Lebesgue integrable functions from J into R with the norms
‖υ‖∞=sup{|υ|:σ∈J}, and |
‖υ‖L=∫ba|υ(σ)|dσ, |
respectively.
Definition 2.1. [1] Let η>0 and g∈L1(J,R). The following expression
Iη;κg(σ)=1Γ(η)∫σaκ′(t)(κ(σ)−κ(t))η−1g(t)dt, |
is called left sided κ-RL fractional integral of order η.
Definition 2.2. [13] The κ-Hilfer FD of order η and parameter q is defined by
HDη,q;κg(σ)=Iq(n−η);κ(1κ′(σ)ddσ)n I(1−q)(n−η);κg(σ), |
where n−1<η<n, 0≤q≤1, σ>a.
Lemma 2.3. [1,13] Let η,χ, and δ>0. Then
(1) Iη;κIη;χg(σ)=Iη+χ;κg(σ).
(2) Iη;κ(κ(σ)−κ(a))δ−1=Γ(δ)Γ(η+δ)(κ(σ)−κ(a))η+δ−1.
We note also that HDη,q;κ(κ(σ)−κ(a))γ−1=0.
Lemma 2.4. [13] Let g∈L(a,b), η∈(n−1,n] (n∈N), q∈[0,1], then
(Iη;κHDη,q;κg)(σ)=g(σ)−n∑k=0(κ(σ)−κ(a))γ−kΓ(γ−k+1)g[n−k]κI(1−q)(n−η);κg(a), |
where g[n−k]κ=(1κ′(σ)ddσ)[n−k]g(σ).
Lemma 2.5. Let υ∈C(J,R). Then, the unique solution of the κ-Hilfer type BVP (1.5) is given by
υ(σ)=1ΛΓ(γ)(κ(σ)−κ(a))γ−1[d4−d2∫baκ′(s)Iη;κϝ(s,υ(s))ds−d3Iη;κϝ(b,υ(b))]+Iη;κϝ(σ,υ(σ)), | (2.1) |
where
Λ=[d2+γd3(κ(b)−κ(a))](κ(b)−κ(a))γΓ(γ+1)≠0, | (2.2) |
Proof. Let υ be a solution of the first equation of κ-Hilfer type BVP (1.5). Applying Iη;κ on the first equation of κ-Hilfer type BVP (1.5) with Lemma 2.4, and setting I1−η;κυ(a)=c0, we obtain
υ(σ)=c0Γ(γ)(κ(σ)−κ(a))γ−1+Iη;κϝ(σ,υ(σ)), | (2.3) |
where c0, is an arbitrary constant. From condition d1υ(a)+d2∫baκ′(s)υ(s)ds+d3υ(b)=d4, we have
d4=d1υ(a)+d2∫baκ′(s)υ(s)ds+d3υ(b)=d2∫baκ′(s)[c0Γ(γ)(κ(s)−κ(a))γ−1+Iη;κϝ(s,υ(s))]ds+d3[c0Γ(γ)(κ(b)−κ(a))γ−1+Iη;κϝ(b,υ(b))]=c0Γ(γ)[d2∫baκ′(s)(κ(s)−κ(a))γ−1ds+d3(κ(b)−κ(a))γ−1]+d2∫baκ′(s)Iη;κϝ(s,υ(s))ds+d3Iη;κϝ(b,υ(b))=c0[d2+γd3(κ(b)−κ(a))](κ(b)−κ(a))γΓ(γ+1)+d2∫baκ′(s)Iη;κϝ(s,υ(s))ds+d3Iη;κϝ(b,υ(b)). |
Hence
c0,=1Λ[d4−d2∫baκ′(s)Iη;κϝ(s,υ(s))ds−d3Iη;κϝ(b,υ(b))]. |
Therefore,
υ(σ)=1ΛΓ(γ)(κ(σ)−κ(a))γ−1[d4−d2∫baκ′(s)Iη;κϝ(s,υ(s))ds−d3Iη;κϝ(b,υ(b))]+Iη;κϝ(σ,υ(σ)). |
This completes the proof.
Here we can suffice to refer to Banach's fixed point theorem [26] and Krasnoselskii's fixed point theorem [27].
In this part, we demonstrate the results of the existence and uniqueness of the κ-Hilfer type BVP (1.5) by employing Banach's and Krasnoselskii's fixed point theorems.
To obtain our main results, the following conditions must be satisfied:
(H1) The function ϝ is continuous and there exists λ>0 such that
|ϝ(σ,υ1)−ϝ(σ,υ2)|≤λ|υ1−υ2|, |
for any υ1,υ2∈R and σ∈J.
For convenience purpose, we are setting two constant:
Υ1=λ[d2(κ(b)−κ(a))η+γΛΓ(γ)Γ(η+2)+d3ΛΓ(γ)(κ(b)−κ(a))ηΓ(η+1)+(κ(b)−κ(a))ηΓ(η+1)]. | (3.1) |
Theorem 3.1. Assume that (H1) holds. Then the κ-Hilfer type BVP (1.5) has at least one solution on J, provided that
Υ1<1, | (3.2) |
where Υ1 was defined by (3.1).
Proof. In view of Lemma 2.5, we define operator Π:C(J,R)→C(J,R) by
(Πυ)(σ)=(κ(σ)−κ(a))γ−1ΛΓ(γ)[d4−d2∫baκ′(s)Iη;κϝ(s,υ(s))ds−d3Iη;κϝ(σ,υ(σ))(b)]+Iη;κϝ(σ,υ(σ)). |
Consider the closed ball Bδ={υ∈C(J,R):‖υ‖≤δ}, with
δ≥Υ21−Υ1, |
where
Υ2=N[d2(κ(b)−κ(a))η+γΛΓ(γ)Γ(η+2)+d3ΛΓ(γ)(κ(b)−κ(a))ηΓ(η+1)+(κ(b)−κ(a))ηΓ(η+1)]+d4(κ(b)−κ(a))γ−1ΛΓ(γ), |
and N=maxσ∈J|ϝ(σ,0)|. Now, we define the operators Π1,Π2 such that Π=Π1+Π2 on Bδ as follows
(Π1υ)(σ)=Iη;κϝ(σ,υ(σ)), σ∈J |
and
(Π2υ)(σ)=(κ(σ)−κ(a))γ−1ΛΓ(γ)[d4−d2∫baκ′(s)Iη;κϝ(s,υ(s))ds−d3Iη;κϝ(σ,υ(σ))(b)]. |
By using (H1), we obtain
|ϝ(σ,υ(σ))|≤|ϝ(σ,υ(σ))−ϝ(σ,0)+ϝ(σ,0)|≤λ|υ(σ)|+|ϝ(σ,0)|≤λ|υ(σ)|+N. |
For any υ,υ∗∈Bδ, we have
‖(Π1υ)+(Π2υ)‖≤supσ∈J{(κ(σ)−κ(a))γ−1ΛΓ(γ)[d4+d2∫baκ′(s)Iη;κ|ϝ(s,υ(s))|ds+d3Iη;κ|ϝ(σ,υ(σ))(b)|]+Iη;κ|ϝ(σ,υ(σ))|}≤(λ‖υ‖+N)[d2(κ(b)−κ(a))η+γΛΓ(γ)Γ(η+2)+d3ΛΓ(γ)(κ(b)−κ(a))ηΓ(η+1)]+d4(κ(b)−κ(a))γ−1ΛΓ(γ)+(κ(b)−κ(a))ηΓ(η+1)(λ‖υ‖+N)≤λ‖υ‖[d2(κ(b)−κ(a))η+γΛΓ(γ)Γ(η+2)+d3ΛΓ(γ)(κ(b)−κ(a))ηΓ(η+1)+(κ(b)−κ(a))ηΓ(η+1)]+N[d2(κ(b)−κ(a))η+γΛΓ(γ)Γ(η+2)+d3ΛΓ(γ)(κ(b)−κ(a))ηΓ(η+1)+(κ(b)−κ(a))ηΓ(η+1)]+d4(κ(b)−κ(a))γ−1ΛΓ(γ)≤λδ[d2(κ(b)−κ(a))η+γΛΓ(γ)Γ(η+2)+d3ΛΓ(γ)(κ(b)−κ(a))ηΓ(η+1)+(κ(b)−κ(a))ηΓ(η+1)]+N[d2(κ(b)−κ(a))η+γΛΓ(γ)Γ(η+2)+d3ΛΓ(γ)(κ(b)−κ(a))ηΓ(η+1)+(κ(b)−κ(a))ηΓ(η+1)]+d4(κ(b)−κ(a))γ−1ΛΓ(γ)≤δΥ1+Υ2≤δ. |
This shows that Π1υ+Π2υ∗∈Bδ.
Next, due to continuity of ϝ, we conclude that Π1 is continuous too. Also, Π1 is uniformly bounded on Bδ as
‖Π2υ‖≤(κ(b)−κ(a))ηΓ(η+1)λδ. |
In addition, we prove the compactness of Π1 as follows. Let σ1,σ2∈J such that σ1<σ2. Then
|(Π1υ)(σ2)−(Π1υ)(σ1)|≤1Γ(η)|∫σ1aκ′(s)[(κ(σ2)−κ(s))η−1−((κ(σ1)−κ(s))η−1]|ϝ(s,υ(s))|)ds+∫σ2σ1κ′(s)((κ(σ2)−κ(s))η−1|ϝ(s,υ(s))|ds|≤(λδ+N)Γ(η+1)[|(κ(σ2)−κ(a))η−(κ(σ1)−κ(a))η|]. |
The last inequality with σ2−σ1 →0, gives
|(Π1υ)(σ2)−(Π1υ)(σ1)|→0, as σ2→σ1, υ∈Bδ. |
Then, Π1 is relatively compact on Bδ. An application of the Arzel-Ascoli theorem, Π1 is compact on Bδ.
Now, we will show that Π2 is a contraction. Let υ,υ∗∈Bδ. Then, by (H1) for σ∈J, we have
|(Π2υ)(σ)−(Π2υ∗)(σ)|≤supσ∈J{(κ(σ)−κ(a))γ−1ΛΓ(γ)[d4+d2∫baκ′(s)Iη;κ|ϝ(s,υ(s))−ϝ(s,υ∗(s))|ds+d3Iη;κ|ϝ(σ,υ(σ))(b)−ϝ(σ,υ∗(σ))(b)|]}≤λ‖υ−υ∗‖[d2(κ(b)−κ(a))η+γΛΓ(γ)Γ(η+2)+d3ΛΓ(γ)(κ(b)−κ(a))ηΓ(η+1)]≤Υ1‖υ−υ∗‖. |
Hence, Π2 is a contraction in Bδ. Thus, all conditions in Krasnoselskii's fixed point theorem are satisfied. So, the κ-Hilfer type BVP (1.5) has at least one solution on J.
Theorem 3.2. Assume that (H1) holds. Then the κ-Hilfer type BVP (1.5) has unique solution on J, provided that
Υ1<1, | (3.3) |
where Υ1 was defined by (3.1).
Proof. We shall show that Π has a unique fixed point by using Banach theorem [26]. By Theorem 3.1, we have
‖Πυ‖≤‖Π1υ‖+‖Π2υ‖≤δ. |
Thus, Π(Bδ)⊂Bδ. Now, we show that Π is a contraction. For υ,υ∗∈Bδ and σ∈J, we have
‖(Πυ)−(Πυ∗)‖≤‖(Π1υ)−(Π1υ∗)‖+‖(Π2υ)−(Π2υ∗)‖≤supσ∈J{(κ(σ)−κ(a))γ−1ΛΓ(γ)[d4+d2∫baκ′(s)Iη;κ|ϝ(s,υ(s))−ϝ(s,υ∗(s))|ds+d3Iη;κ|ϝ(σ,υ(σ))−ϝ(σ,υ∗(σ))|]+Iη;κ|ϝ(σ,υ(σ))−ϝ(σ,υ∗(σ))|}≤λ‖υ−υ∗‖[d2(κ(b)−κ(a))η+γΛΓ(γ)Γ(η+2)+d3ΛΓ(γ)(κ(b)−κ(a))ηΓ(η+1)+(κ(b)−κ(a))ηΓ(η+1)]≤Υ1‖υ−υ∗‖, |
which implies that ‖Πυ−Πυ∗‖≤Υ1‖υ−υ∗‖. By (3.2), we realize that Π is a contraction. Then, by Krasnoselskii Theorem [26], the κ-Hilfer type BVP (1.5) has a unique solution on J.
Special cases
According to our previous results, in this subsection we present several special cases:
Case (1): If κ(σ)=σ, then the κ-Hilfer type BVP (1.5) is reduced to the following Hilfer type problem
{HDη,qυ(σ)=ϝ(σ,υ(σ)),σ∈J:=[a,b],d1υ(a)+d2∫baυ(s)ds+d3υ(b)=d4, | (3.4) |
where HDη,q,σ is the Hilfer FD of order η, ϝ:J×R→R is continuous function, di∈R (i=1,2,3,4). The solution of the Hilfer type BVP (3.4) is given by
υ(σ)=(σ−a)γ−1ΛΓ(γ)[d4−d2∫baIηϝ(s,υ(s))ds−d3Iη;κϝ(b,υ(b))]+Iηϝ(σ,υ(σ)), |
where
Λ=[d2+γd3(b−a)](b−a)γΓ(γ+1)≠0. |
Then the following corollary is extracted from the Theorem 3.2.
Corollary 3.3. Assume that (H1) is satisfied. Then the BVP (3.4) has a unique solution on J provided that Υ∗1<1, where
Υ∗1=λ[d2(b−a)η+γΛΓ(γ)Γ(η+2)+d3ΛΓ(γ)(b−a)ηΓ(η+1)+(b−a)ηΓ(η+1)]. |
Case (2): If κ(σ)=logσ, then the κ-Hilfer type BVP (1.5) is reduced to the following Hilfer-Hadamard type problem
{HDη,q,logσυ(σ)=ϝ(σ,υ(σ)),σ∈J:=[a,b],d1υ(a)+d2∫baυ(s)ds+d3υ(b)=d4, | (3.5) |
where HDη,q,logσ is the Hilfer-Hadamard FD of order η, ϝ:J×R→R is continuous function, di∈R (i=1,2,3,4). The solution of the Hilfer-Hadamard type BVP (3.5) is given by
υ(σ)=(logσa)γ−1ΛΓ(γ)[d4−d2∫baIη;logσϝ(s,υ(s))ds−d3Iη;κϝ(b,υ(b))]+Iη;logσϝ(σ,υ(σ)), |
where
Λ=[d2+γd3(logba)](logba)γΓ(γ+1)≠0. |
Then the following corollary is deduced from the Theorem 3.2.
Corollary 3.4. Assume that (H1) is satisfied. Then the BVP (3.5) has a unique solution on J provided that Υ∗∗1<1, where
Υ∗∗1=λ[d2(logba)η+γΛΓ(γ)Γ(η+2)+d3ΛΓ(γ)(logba)ηΓ(η+1)+(logba)ηΓ(η+1)]. |
Case (3): If κ(σ)=σρ,ρ>0, then the κ- Hilfer type BVP (1.5) is reduced to the following Hilfer-Katugumpola type problem
{HDη,q,σρυ(σ)=ϝ(σ,υ(σ)),σ∈J:=[a,b],d1υ(a)+d2∫baυ(s)ds+d3υ(b)=d4, | (3.6) |
where HDη,q,σρ is the Hilfer-Katugumpola FD of order η,ρ>0, ϝ:J×R→R is continuous function, di∈R (i=1,2,3,4). The solution of the Hilfer-Katugumpola type BVP (3.6) is given by
υ(σ)=(σρ−aρ)γ−1ΛΓ(γ)[d4−d2∫baIη,σρϝ(s,υ(s))ds−d3Iη;κϝ(b,υ(b))]+Iη,σρϝ(σ,υ(σ)), |
where
Λ=[d2+γd3(bρ−aρ)](bρ−aρ)γΓ(γ+1)≠0. |
Then the next corollary is a special case of the Theorem 3.2.
Corollary 3.5. Assume that (H1) is satisfied. Then the BVP (3.6) has a unique solution on J provided that Υ∗∗∗1<1, where
Υ∗∗∗1=λ[d2(bρ−aρ)η+γΛΓ(γ)Γ(η+2)+d3ΛΓ(γ)(bρ−aρ)ηΓ(η+1)+(bρ−aρ)ηΓ(η+1)]. |
In this part, we discuss various types of stability like UH, GUH, UHR and GUHR. First of all, we introduce the following definitions. Let ϵ>0 such that
|HDη,q;κ¯υ(σ)−ϝ(σ,¯υ(σ))|≤ϵ, | (4.1) |
|HDη,q;κ¯υ(σ)−ϝ(σ,¯υ(σ))|≤ϵδκ(σ),δκ∈C(J,R). | (4.2) |
Definition 4.1. Let ¯υ∈C(J,R) be a function satisfies (4.1) corresponding to a solution υ∈C(J,R) of κ-Hilfer type BVP (1.5). If there exists 0<T∈R such that
|¯υ(σ)−υ(σ)|≤Tϵ,σ∈J, ϵ>0, |
then,
HDη,q;κ¯υ(σ)=ϝ(σ,¯υ(σ)), | (4.3) |
is UH stable.
Remark 4.2. A function ¯υ∈C(J,R) satisfies (4.1) if and only if there exist a functions z∈C(J,R) such that
(i) |z(σ)|≤ϵ, σ∈J,
(ii) HDη,q;κ¯υ(σ)=ϝ(σ,¯υ(σ))+z(σ), ϰ∈J.
Lemma 4.3. If υ∈C(J,R) is a solution to inequality (4.1), then υ satisfies the following inequality
|υ(σ)−Θυ|≤ϵΠ, |
where
Θ¯υ=1ΛΓ(γ)(κ(σ)−κ(a))γ−1[d4−d2∫baκ′(s)Iη;κϝ(s,υ(s))ds−d3Iη;κϝ(b,υ(b))]+Iη;κϝ(σ,υ(σ)), |
and
Π=(1ΛΓ(γ)[d4ϵ+d2(κ(b)−κ(a))η+γΓ(η+2)+d3(κ(b)−κ(a))ηΓ(η+1)]+(κ(b)−κ(a))ηΓ(η+1)) |
Proof. In view of Remark 4.2, we have
HDη,q;κυ(σ)=ϝ(σ,υ(σ))+z(ϰ)d1υ(a)+d2∫baκ′(s)υ(s)ds+d3υ(b)=d4. |
Then, by Lemma 2.5, we get
υ(σ)=Θυ+(κ(σ)−κ(a))γ−1ΛΓ(γ)[d4−d2∫baκ′(s)Iη;κz(s)ds−d3Iη;κz(b)]+Iη;κz(σ), |
which implies
|υ(σ)−Θυ|≤ϵΛΓ(γ)(κ(b)−κ(a))γ−1[d4ϵ+d2(κ(b)−κ(a))ηΓ(η+1)+d3(κ(b)−κ(a))ηΓ(η+1)]+ϵ(κ(b)−κ(a))ηΓ(η+1)≤ϵ(1ΛΓ(γ)[d4ϵ+d2(κ(b)−κ(a))η+γΓ(η+2)+d3(κ(b)−κ(a))ηΓ(η+1)]+(κ(b)−κ(a))ηΓ(η+1))≤ϵΠ. |
Theorem 4.4. Assume that (H1) holds. Under the Lemma 4.3, the following equation
HDη,q;κυ(σ)=ϝ(σ,υ(σ)),σ∈[a,b], | (4.4) |
is UH stable as well as GUH provided that Υ1<1.
Proof. ¯υ∈C(J,R) be a function satisfies (4.1), let υ∈C(J,R) be the unique solution of the following problem
{HDη,q;κυ(σ)=ϝ(σ,υ(σ)),σ∈J:=[a,b],d1υ(a)+d2∫baκ′(s)υ(s)ds+d3υ(b)=d4,υ(σ)=¯υ(σ),σ∈J:=[a,b]. |
Then, by Lemma 2.5, we get
υ(σ)=Θυ. |
It follows from Theorem 3.2, that
‖υ−¯υ‖=supσ∈J|υ(σ)−Θ¯υ|≤supτ∈f|υ(σ)−Θυ|+supτ∈f|Θυ−Θ¯υ|≤ϵΠ+Υ1‖υ−¯υ‖. |
Thus
‖υ−¯υ‖≤Tϵ, |
where
T=Π1−Υ1>0. |
Now, by choosing φΥ(ϵ)=CΥϵ such that φΥ(0)=0, then the problem (4.4) is GUH stability.
To prove the Ulam-Heyrs-Rassias stability, we need the following hypotheses:
(H2) There exists an increasing function δκ∈C(J,R) and there exists W>0 such that for any σ∈J
Iη;κδκ(σ)≤Wδκ(σ). | (4.5) |
Definition 4.5. Let ¯υ∈C(J,R) be a function satisfies inequality (4.2) corresponding to a solution υ∈C(J,R) of κ-Hilfer type BVP (1.5). If there exists 0<N∈R and non-decreasing function δκ(σ) such that
‖υ−¯υ‖≤Nϵδκ(σ),τ∈f, ϵ>0, |
then, the problem (4.4) is UHR stable with respect to δκ(σ).
Remark 4.6. A function ¯υ∈C(J,R) satisfies (4.2) if and only if there exist a functions z∈C(J,R) such that
(i)|z(τ)|≤ϵδκ(σ), σ∈J,
(ii)HDη,q;κ¯υ(σ)=ϝ(σ,¯υ(σ))+z(τ), τ∈f.
Lemma 4.7. If υ∈C(J,R) is a solution to inequality (4.2), then υ satisfies the following inequality
‖υ(σ)−Θυ‖≤ϵWδκ(σ), |
Proof. Indeed, by Remark 4.6 and Lemma 2.5, one can easily prove that
‖υ(σ)−Θυ‖≤ϵWδκ(σ), |
where
W=(1ΛΓ(γ)[d4ϵ+d2κ(b)+d3]+1). |
Theorem 4.8. Suppose that (H1) and (H2) are satisfied. If Υ1<1, then Eq (4.4) is UHR and generalized UHR stable.
Proof. Let ¯υ be satisfies (4.2), let ¯υ∈C(J,R) be unique solution of the following problem
{HDη,q;κυ(σ)=ϝ(σ,υ(σ)),σ∈J:=[a,b],d1υ(a)+d2∫baκ′(s)υ(s)ds+d3υ(b)=d4,υ(σ)=¯υ(σ),σ∈J:=[a,b]. |
Then, by Lemma 2.5, we get
υ(σ)=Θυ, |
It follows from Theorem 3.2, that
‖υ−¯υ‖=supσ∈J|υ(σ)−Θ¯υ|≤supσ∈J|υ(σ)−Θυ|+supτ∈f|Θυ−Θ¯υ|≤ϵWδκ(σ)+Υ1‖υ−¯υ‖. |
Thus
‖υ−¯υ‖≤Nϵδκ(σ), |
where
N=W1−Υ1>0. |
Hence, the problem (4.4) is UHR stable as well as generalized UHR stable.
In the end, we support our main results by suggesting an example to show the applicability of the outcomes numerically. In fact, the reported results acquired in Theorems 3.1, 3.2, 4.4 and 4.8 are guaranteed by an example.
Example 5.1. Consider the following problem
{HD13,56;√σ+1υ(σ)=(σ9)|υ(σ)|1+|υ(σ)|+1√2,σ∈[1,32],110υ(1)+25∫32112√σ+1υ(σ)dσ+57υ(32)=1, | (5.1) |
where
η=13,q=56, κ(σ)=√σ+1, J=[1,32], |
d1=110,d2=25,d3=57,d4=1. |
From these settings, we compute constants as γ=89, Λ=0.89≠0. For υ1,υ2∈R+, we have
|ϝ(σ,υ1)−ϝ(σ,υ2)|=(σ9)|υ11+υ1−υ21+υ2|≤(σ9)|υ1−υ2|≤16|υ1−υ2|. |
Hence, (H1)holds with λ=16>0. Also, the condition (3.2) is fulfilled, i.e. Υ1=0.18<1. Therefore, by the applying Banach's fixed point theorem, we conclude that the problem (5.1) has a unique solution υ on [1,32]. Finally, we see that the inequality
|HDη,q;κ¯υ(σ)−ϝ(σ,¯υ(σ))|≤ϵ |
is satisfied. Then the Eq (5.1) is Ulam-Hyers stable with
‖υ−¯υ‖≤Tϵ,σ∈J, ϵ>0, |
where
T=Π1−Υ1>0, |
Π=(1ΛΓ(γ)[d4ϵ+d2(κ(b)−κ(a))η+γΓ(η+2)+d3(κ(b)−κ(a))ηΓ(η+1)]+(κ(b)−κ(a))ηΓ(η+1))>0, |
and Υ1=0.18<1. Finally, we consider δκ(σ)=κ(σ)−κ(a), for σ∈[1,32]. Then, δκ:[1,32]→R is continuous nondecreasing function. Hence by Lemma 2.3, we get
Iη;κa+δκ(σ)=Iη;κa+(κ(σ)−κ(a))=Γ(2)Γ(η+2)(κ(σ)−κ(a))η+1≤[κ(32)−κ(1)]ηΓ(η+2)δκ(σ)=Wδκ(σ), for all ϰ∈J, |
where W=[κ(32)−κ(1)]ηΓ(η+2)>0. Therefore, Theorem 4.8 applicable. Moreover, for ϵ>0 and a continuous function δκ:[1,32]→R+ we find that
|HDη,q;κ¯υ(σ)−ϝ(σ,¯υ(σ))|≤ϵδκ(σ) |
is satisfied. Then Eq (5.1) is UHR stable with
‖υ−¯υ‖≤Nϵδκ(σ) |
where
N=W1−Υ1>0. |
In this research work, a newly nonlinear fractional differential equation with two-point and integral boundary conditions in the κ-Hilfer fractional derivative frame has been investigated. The existence and uniqueness results of the κ-Hilfer type BVP (1.5) have been obtained using Krasnoselskii and Banach's fixed point theorems. Different types of stability of the κ-Hilfer type BVP (1.5) have been discussed by using some mathematical methodologies. An example is presented to confirm the viability of our obtained results.
The acquired results in this paper are more general and cover many of the parallel problems that contain special cases of function κ, because our proposed system contains a global fractional derivative that integrates many classic fractional derivatives, for instance, the κ-Hilfer type BVP (1.5) for various values of a function κ and parameter q includes the study of a problem of FDEs involving the Hilfer, Hadamard, Katugampola, and many other fractional derivative operators which are described in the introduction. In future work, we will extend this work by replacing the constants di (i=1,2,3,4) with matrices.
The authors would like to thank Prince Sultan University for funding this research work.
The authors declare that they have no conflict of interest.
[1] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier Science, Amsterdam, 2006. |
[2] | I. Podlubny, Fractional differential equations, Academic Press, San Diego, 1999. |
[3] | S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional integrals and derivatives: Theory and applications, Gordon and Breach, Switzerland, 1993. |
[4] |
A. Atangana, D. Baleanu, New fractional derivatives with non-local and non-singular kernel: Theory and application to heat transfer, Model. Therm. Sci., 20 (2016), 763–769. doi: 10.2298/TSCI160111018A. doi: 10.2298/TSCI160111018A
![]() |
[5] |
A. Atangana, Fractal-fractional differentiation and integration: Connecting fractal calculus and fractional calculus to predict complex system, Chaos Soliton. Fract., 102 (2017), 396–406. doi: 10.1016/j.chaos.2017.04.027. doi: 10.1016/j.chaos.2017.04.027
![]() |
[6] |
S. S. Redhwan, M. S. Abdo, K. Shah, T. Abdeljawad, S. Dawood, H. A. Abdo, et al., Mathematical modeling for the outbreak of the coronavirus (COVID-19) under fractional nonlocal operator, Results Phys., 19 (2020), 103610. doi: 10.1016/j.rinp.2020.103610. doi: 10.1016/j.rinp.2020.103610
![]() |
[7] |
Q. Zhu, Stabilization of stochastic nonlinear delay systems with exogenous disturbances and the event-triggered feedback control, IEEE T. Automat. Contr., 64 (2019), 3764–3771. doi: 10.1109/TAC.2018.2882067. doi: 10.1109/TAC.2018.2882067
![]() |
[8] |
Q. Zhu, T. Huang, Stability analysis for a class of stochastic delay nonlinear systems driven by G-Brownian motion, Syst. Control Lett., 140 (2020), 104699. doi: 10.1016/j.sysconle.2020.104699. doi: 10.1016/j.sysconle.2020.104699
![]() |
[9] |
W. Hu, Q. Zhu, H. R. Karimi, Some improved Razumikhin stability criteria for impulsive stochastic delay differential systems, IEEE T. Automat. Contr., 64 (2019), 5207–5213. doi: 10.1109/TAC.2019.2911182. doi: 10.1109/TAC.2019.2911182
![]() |
[10] | R. Hilfer, Applications of fractional calculus in physics, World Scientific, Singapore, 2000. |
[11] |
R. Hilfer, Experimental evidence for fractional time evolution in glass forming materials, J. Chem. Phys., 284 (2002), 399–408. doi: 10.1016/S0301-0104(02)00670-5. doi: 10.1016/S0301-0104(02)00670-5
![]() |
[12] | J. C. Sousa, E. C. de Oliveira, A Gronwall inequality and the Cauchy-type problem by means of ψ-Hilfer operator, Differ. Equat. Appl., 2017. doi: 10.7153/dea-2019-11-02. |
[13] |
C. da Vanterler, J. Sousa, E. Capelas de Oliveira, On the ψ-Hilfer fractional derivative, Commun. Nonlinear Sci. Numer. Simul., 60 (2018), 72–91. doi: 10.1016/j.cnsns.2018.01.005. doi: 10.1016/j.cnsns.2018.01.005
![]() |
[14] |
M. Benchohra, S. Hamani, S. K. Ntouyas, Boundary value problems for differential equations with fractional order, Surv. Math. Appl., 3 (2008), 1–12. doi: 10.1016/j.na.2009.01.073. doi: 10.1016/j.na.2009.01.073
![]() |
[15] | K. Salim, S. Abbas, M. Benchohra, M. A. Darwish, Boundary value problem for implicit Caputo-Fabrizio fractional differential equations, Int. J. Differ. Equ., 15 (2020), 493–510. |
[16] | A. Ashyralyev, Y. Sharifov, Existence and uniqueness of solutions for the system of nonlinear fractional differential equations with nonlocal and integral boundary conditions, Abstr. Appl. Anal., 2012 (2012). doi: 10.1155/2012/594802. |
[17] |
Y. Sharifov, S. A. Zamanova, R. A. Sardarova, Existence and uniqueness of solutions for the nonlinear fractional differential equations with two-point and integral boundary conditions, Eur. J. Pure Appl. Math., 14 (2021), 608–617. doi: 10.29020/nybg.ejpam.v14i2.3978. doi: 10.29020/nybg.ejpam.v14i2.3978
![]() |
[18] |
J. Sousa, E. C. de Oliveira, A Gronwall inequality and the Cauchy-type problem by means of ψ-Hilfer operator, Differ. Equat. Appl., 11 (2019), 87–106. doi: 10.7153/dea-2019-11-02. doi: 10.7153/dea-2019-11-02
![]() |
[19] |
J. V. C. Sousa, E. C. de Oliveira, Ulam-Hyers stability of a nonlinear fractional Volterra integro-differential equation, Appl. Math. Lett., 81 (2018), 50–56. doi: 10.1016/j.aml.2018.01.016. doi: 10.1016/j.aml.2018.01.016
![]() |
[20] |
J. V. C. Sousa, E. C. de Oliveira, On the Ulam-Hyers-Rassias stability for nonlinear fractional differential equations using the ψ -Hilfer operator, J. Fix. Point Theory A., 20 (2018), 1–21. doi: 10.1007/s11784-018-0587-5. doi: 10.1007/s11784-018-0587-5
![]() |
[21] |
H. A. Wahash, M. S. Abdo, K. S. Panchal, Fractional integrodifferential equations with nonlocal conditions and generalized Hilfer fractional derivative, Ufa Math. J., 11 (2019), 151–171. doi: 10.13108/2019-11-4-151. doi: 10.13108/2019-11-4-151
![]() |
[22] |
M. S. Abdo, S. K. Panchal, Fractional integro-differential equations involving ψ-Hilfer fractional derivative, Adv. Appl. Math. Mech., 11 (2019), 338–359. doi: 10.4208/aamm.OA-2018-0143. doi: 10.4208/aamm.OA-2018-0143
![]() |
[23] |
M. A. Almalahi, S. K. Panchal, On the theory of ψ-Hilfer nonlocal Cauchy problem, J. Sib. Fed. Univ. Math., 14 (2021), 159–175. doi: 10.17516/1997-1397-2021-14-2-161-177. doi: 10.17516/1997-1397-2021-14-2-161-177
![]() |
[24] |
S. Asawasamrit, A. Kijjathanakorn, S. K. Ntouyas, J. Tariboon, Nonlocal boundary value problems for Hilfer fractional differential equations, B. Korean Math. Soc., 55 (2018), 1639–1657. doi: 10.4134/BKMS.b170887. doi: 10.4134/BKMS.b170887
![]() |
[25] |
A. D. Mali, K. D. Kucche, Nonlocal boundary value problem for generalized Hilfer implicit fractional differential equations, Math. Method. Appl. Sci., 43 (2020), 8608–8631. doi: 10.1002/mma.6521. doi: 10.1002/mma.6521
![]() |
[26] |
T. A. Burton, U. C. Kirk, A fixed point theorem of Krasnoselskii Schaefer type, Math. Nachr., 189 (1998), 23–31. doi: 10.1002/mana.19981890103. doi: 10.1002/mana.19981890103
![]() |
[27] |
T. A. Burton, A fixed-point theorem of Krasnoselskii, App. Math. Lett., 11 (1998), 85–88. doi: 10.1016/S0893-9659(97)00138-9. doi: 10.1016/S0893-9659(97)00138-9
![]() |
1. | Nemat Nyamoradi, Bashir Ahmad, Generalized Fractional Differential Systems with Stieltjes Boundary Conditions, 2023, 22, 1575-5460, 10.1007/s12346-022-00703-w | |
2. | Basim N. Abood, Saleh S. Redhwan, Omar Bazighifan, Kamsing Nonlaopon, Investigating a Generalized Fractional Quadratic Integral Equation, 2022, 6, 2504-3110, 251, 10.3390/fractalfract6050251 | |
3. | Mohammed A. Almalahi, Satish K. Panchal, Fahd Jarad, Calogero Vetro, Multipoint BVP for the Langevin Equation under φ -Hilfer Fractional Operator, 2022, 2022, 2314-8888, 1, 10.1155/2022/2798514 | |
4. | Teeranush Suebcharoen, Watchareepan Atiponrat, Khuanchanok Chaichana, Fixed point theorems via auxiliary functions with applications to two-term fractional differential equations with nonlocal boundary conditions, 2023, 8, 2473-6988, 7394, 10.3934/math.2023372 | |
5. | Shaista Gul, Rahmat Ali Khan, Kamal Shah, Thabet Abdeljawad, On a general class of nth order sequential hybrid fractional differential equations with boundary conditions, 2023, 8, 2473-6988, 9740, 10.3934/math.2023491 | |
6. | Mohammed N. Alkord, Sadikali L. Shaikh, BVP for generalized Hilfer integrodifferential equation with positive constant coefficient, 2024, 12, 2195-268X, 107, 10.1007/s40435-023-01325-z | |
7. | Hasanen A. Hammad, Hüseyin Işık, Hassen Aydi, Manuel De la Sen, Involvement of three successive fractional derivatives in a system of pantograph equations and studying the existence solution and MLU stability, 2024, 57, 2391-4661, 10.1515/dema-2024-0035 | |
8. | Kadda MAAZOUZ, Dvivek VİVEK, Elsayed ELSAYED, Existence Results for BVP of a Class of Generalized Fractional-Order Implicit Differential Equations, 2022, 5, 2651-4001, 114, 10.33434/cams.1069182 | |
9. | Muath Awadalla, Manigandan Murugesan, Subramanian Muthaiah, Bundit Unyong, Ria H Egami, Existence results for a system of sequential differential equations with varying fractional orders via Hilfer-Hadamard sense, 2024, 9, 2473-6988, 9926, 10.3934/math.2024486 | |
10. | Subramanian Muthaiah, Manigandan Murugesan, Muath Awadalla, Bundit Unyong, Ria H. Egami, Ulam-Hyers stability and existence results for a coupled sequential Hilfer-Hadamard-type integrodifferential system, 2024, 9, 2473-6988, 16203, 10.3934/math.2024784 | |
11. | A. Salim, C. Derbazi, J. Alzabut, A. Küçükaslan, Existence and κ-Mittag-Leffler-Ulam-Hyers stability results for implicit coupled (κ,ϑ)-fractional differential systems, 2024, 31, 2576-5299, 225, 10.1080/25765299.2024.2334130 | |
12. | Ayub Samadi, Sotiris K. Ntouyas, Jessada Tariboon, Fractional Sequential Coupled Systems of Hilfer and Caputo Integro-Differential Equations with Non-Separated Boundary Conditions, 2024, 13, 2075-1680, 484, 10.3390/axioms13070484 |