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1. Introduction

Fractional differential equations (FDEs) provide more advantages than integer-order differential
equations. When it comes to explaining the changing laws of nature, these equations are both flexible
and exact. As a result, FDEs are commonly used in real-world situations [1-3]. However, the
development of the theory of FDEs is still in its early stages because various physical interpretations of
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FDE:s are still unknown due to the intricacies of their initial values. Nonetheless, these equations have
become a valid topic of debate among a number of researchers due to their wide range of practical
applications and theoretical significance. Atangana and Baleanu [4] introduced a new definition of
fractional derivatives with the nonlocal and non-singular kernel. In contrast, the properties of this
operator , such as convolution of the power law, exponential decay law, and generalized Mittag-Leffler
law with fractal derivative, are introduced by Atangana in [5]. For more details about the application
of the Atangana-Baleanu operator see [6]. Zhu [7] studied the stabilization problem of stochastic
nonlinear delay systems. Also, Zhu et al. [8] discussed the moment exponential stability problem for a
class of stochastic delay nonlinear systems. Hu et al. [9] studied the Razumikhin stability theorem for
a class of impulsive stochastic delay differential systems. In the last three decades, some researchers
introduced definitions of fractional calculus, including definitions of Riemann-Liouville (RL) and
Caputo, and less well-known definitions such as Erdelyi-Kober and Hadamard. In [10], Hilfer was
given generalization of FDs of RL and Caputo, which so-called the Hilfer FD of order n and a type
q € [0,1]. When we give ¢ = 0 and g = 1 respectively in the formula of Hilfer FD can get RL
and Caputo FDs. Such a derivative interpolate between the RL and Caputo FDs. For more details on
this FD above-mentioned can be found in [11, 12]. In 2018, Sousa and de Oliveira [13] introduced a
new FD with respect to another function ¢ called “iy-Hilfer FD” generalizes most of the previous FDs.
Some of the existence and stability results of fractional boundary value problems (BVPs) are addressed
in the recent literature; for instance, Benchohra et al. [14] studied the existence of solutions of a class
of BVPs for a nonlinear FDE

{ “Du(0) = flo,u(o)), o €l0,T], (1.1)

av(0) + bu(T) = c,

where 0 < @ < 1, a,b,c € R,a+ b # 0, and “D* is the Caputo FD of order @. Salim et al. [15]
discussed some existence and Ulam stability results for the implicit problem (1.1) with Caputo-Fabrizio
FD. Ashyralyev et al. [16] studied the existence and uniqueness of a fractional BVP of the form

{ CD(o) = f(o,v(o)), o €]0,b], (1.2)

Av(0) + Bu(b) = [’ g(s, u(s))ds,

where 0 < a < 1, “D? is the Caputo FD of order o, A,B € R™", f,g : [0,b] x R* — R" are

continuous. Sharifov et al. [17] investigated the existence and uniqueness of the solutions to the

fOllOWing fI'aCtional B \' P
Da g) = a, ag)), O € 0, b ,

AW(O) + [ n(s)u(s)ds + Bu(b) = C,

where 0 < a < 1, €D is the Caputo FD of order a, A, B,C € R™", f : [0,b] x R" — R" is continuous,
and n(s) : [0, b] — R™" is given matrices.

On the other hand, Sousa and de Oliveira [18] proved the existence and uniqueness of solutions of
the following Cauchy-type problem

{ Do) = flo,u(@), o € (a,bl, (1.4)

I'""u(o) =v,, y=a+B(1 -a),
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where 0 < < 1,0<<1,v, €R, Dg;ﬁ’w is the y-Hilfer FD, and f : [0, 5] X R — R is continuous.
The authors in [19] discussed the Ulam-Hyers (UH) stability of (1.4) for an integro-differential-type.
Furthermore, they proved the Ulam-Hyers-Rassias stability results of (1.4) for an implicit type in [20].
Abdo et al., in [21,22] investigated the existence and various types of stability theorems of fractional
Cauchy problem involving y-Hilfer FD, whereas, some qualitative analyses of -Hilfer type nonlocal
Cauchy problem have been investigated in [23]. Nonlocal fractional BVPs with y-Hilfer FDs have
been considered in [24, 25].
In this paper, we study the existence, uniqueness and UH stability results of the class of BVPs for
the following nonlinear FDE
y D" u(o) = F(o,u(o)), o elJ:=la,b], {
div(a) + d, fab K (u(s)ds + dzu(b) = dy, (1.5)

where 0 < < 1,0 < g < 1, g O is the k-Hilfer FD of order 1, and type ¢, F : /J XR — R is
continuous, d; € R (i = 1,2,3,4), ¥ (o) € C'(J,R) be an increasing function with «’(c) # 0 for all
oeJ

We concentrate on non-local problems because, in many cases, the non-local condition better
captures physical phenomena than classical initial (border) conditions. So, utilising Banach’s and
Krasnoseliskii’s fixed point theorems under the minimum assumptions, we analyze the result of
existence and uniqueness as well as UH stability results of the BVP (1.5). The work presented in
this article is current and adds to the literature, particularly in the area of nonlinear problems of the
k-Hilfer type.

In general, our results remain valid for various values of the function « and cover many
corresponding problems, for instance (Hilfer-Hadamard type problem for «(o) = logo), (Hilfer-
Katugampola type problem for «(0-) = o, p > 0), (Caputo-type problem for (o) = o, and ¢ = 1), and
(RL-type problem for (o) = o, and g = 0).

The content of this paper is organized as follows: Section 2 presents some required results and
preliminaries about k-Hilfer FD. Our main results for the «-Hilfer type BVP (1.5) are addressed in
Section 3. Some examples to explain the acquired results are constructed in Section 4. Ultimately, we
summarize our work in the conclusion section and suggest future directions.

2. Preliminaries

We set notations and certain fundamental facts in this part, which will be used in the proofs of the
following results.

Let C(J,R) and L(J,R) are the Banach space of continuous functions and Lebesgue integrable

functions from J into R with the norms

ol = sup{lv] : o € J), and

b
”U”L:f lu(o)l do,

respectively.
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Definition 2.1. [1] Letn > 0 and g € L'(J,R). The following expression

1™ g(0) = %’7) j; ) K (D(K(0) = k()" g,

is called left sided k-RL fractional integral of order n.
Definition 2.2. [13] The «k-Hilfer FD of order n and parameter q is defined by

1 d )
_)n I(l_q)(n_n)’Kg(O'),

1.43K = J9n-m«
n D" g(or) (K,(a) T

wheren—1<n<n0<¢g<1,0>a.

Lemma 2.3. [1,13] Letn, x, and 6 > 0. Then
(1) [T g(e) = I™¥g(cr).

(2) I (k(0) — k(a))’~' = r(rr;i)(s ) k(o) — k(@)™ !,

We note also that 5 D™ (k(0") — k(a))’™" = 0.

Lemma 2.4. [I3] Letg € L(a,b),n€ (n—1,n] (n € N), g € [0, 1], then

L k(@) = k@Y™ g

(I uD"g) () = 8(0) = ), oy & I ga),

k=0

where gt ™ = (S yn-Kg(q),

K (o) do

Lemma 2.5. Let v € C(J,R). Then, the unique solution of the k-Hilfer type BVP (1.5) is given by

W) = (o) - k(@)
ATG)

b
dy—d f K ()T F(s,v(s))ds — ds IT™F (b, v(b))

+ I F (o, u(o)), 2.1

where

A= d2+

(2.2)

vds ] (k(b) — k(a))”
k(b) —k(@)| T(y+1) ’

Proof. Let v be a solution of the first equation of «x-Hilfer type BVP (1.5). Applying 7" on the first
equation of k-Hilfer type BVP (1.5) with Lemma 2.4, and setting I' *u(a) = ¢,, we obtain

u(or) = ‘o

= k(o) — k(@))""" + I™F(o, v(0)), (2.3)
['(y)

where ¢, is an arbitrary constant. From condition d,v(a) + d, fa b K (s)v(s)ds + dsu(b) = d,, we have

b
dy = dlv(a)+d2f K (s)u(s)ds + dzu(b)
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b
= d, f K'(s) [i(K(S) — k(@) + TTF(s, v(s))] ds

I'(y)
+d; i(K(b) - K(a))V_1 + I F(b, v(b))]
()
b
= 0 [dz f K (5)(k(s) — k(a))’"'ds + dx(x(b) — K<a>)7‘1]
I'(y) a

b
+d, f K' ()T F(s,vu(s))ds + dz T F(b, v(b))

vds ] (k(b) — k(a))”
k(b) —k(@)]| T(y+1)

b
+d, f K ($)IT™F(s,v(s))ds + ds I F(b, u(b)).

= (o d2+

Hence ,
1 ‘ .
Co, =+ [d4 -d, f K ()T F(s,v(s))ds — ds IT""F(b, v(b))] .
Therefore,
(o) = : (k(0) — k(@)™
AL'(y)
b
dy—d, f K ($)IT™F(s,v(s))ds — dz ITTF(b, v(b))]
+I™F (o, u(0)).
This completes the proof. O

Here we can suffice to refer to Banach’s fixed point theorem [26] and Krasnoselskii’s fixed point
theorem [27].

3. Existence and uniqueness results

In this part, we demonstrate the results of the existence and uniqueness of the «-Hilfer type
BVP (1.5) by employing Banach’s and Krasnoselskii’s fixed point theorems.

To obtain our main results, the following conditions must be satisfied:

(H1) The function F is continuous and there exists A > 0 such that

IF(o,v1) = Flo, 1)l < vy = vaf,

for any vy, v, e Rand o € J.
For convenience purpose, we are setting two constant:

k(D) —k(a)™  d3 (k(b) —k(a))" (k(b) — k(a))"

N= e rotm+2) YA e T TaeD | G-1)
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Theorem 3.1. Assume that (H,) holds. Then the k-Hilfer type BVP (1.5) has at least one solution on J,
provided that
T <1, (3.2)

where (' was defined by (3.1).
Proof. In view of Lemma 2.5, we define operator I1 : C(J,R) — C(J,R) by

_ -1 b
() (o) = KD K@ [d4—d2 f K () TTF (s, v(s))ds — dsT™F(cr, u(0))(b)
AI'(y) a

+ I F (o, u(o)).

Consider the closed ball B; = {v € C(J,R) : ||[v|| < ¢}, with

T,
0> ,
-,

where

(D) = w(@)"™  dy (k(b) ~k(@)"  (k(b) = K(@))"
PAT()E(+2)  AL(y) T(+1) TG+ 1)
(k(b) — x(a@))’!

T )

and N = max,¢, [F(c,0)|. Now, we define the operators I1;, [, such that IT = II; + 11, on B; as follows
(ITyv) (o) = IT™F(o,v(0)), o€ J

and

_ -1 b
(ILv) (o) = (K(a)/\rgc)l))y [d4 —d f K (I F(s,v(s))ds — ds I"F (o, u(0))(D)|.

By using (H;), we obtain

IF(o,v(0))| < |F(o,v(0)) —F(o,0) + F(o,0)]
< Alw(o)| + |F(o,0)]
<

Alv(o)| + N.
For any v, v* € Bs, we have

I(ITv) + (L)

_ y-1 b
ilg{('((a)/\rg;’)) di +dy f K ()T |F(s. v(s))| ds

+d3 I |F (o, v(0)(D)]] + T |F (o, v(o)l}
(k(b) = k(@)™ N ds  (k(b) — k(a))"
AT()I(m+2)  A'(y) T(p+1)

IA

IA

(Allvll + N) |d>
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(k(b) = k@) (kD) = «(@))"

o o Al )
k(b) — k(@)™ ds (k(b) — k(@) (k(b) - k()"
= ﬁ”"”[dzAr<y>r<n+2> YATG) T+ T T+ ]
N[ S &D) k@)™ ds (k(b) - k@) (x(b)—x(a»"]
AT +2)  AT(y) T(p+1) T+ 1)
1, O =K@
AT (y)
< 5 [ b KO =K@y ds (b) k@) <K<b>—x<a>>"l
AT +2)  AT(y) T+ 1) T(n+1)
N [ KO =K@y dy (kb) = k@)' (k) - K<a)>"]
AT +2)  AT(y) T@+1) T+ 1)
(k(b) — k(@)™

d
AT )
< 0T+ T, L0

This shows that IT;v + II,v* € B;.

Next, due to continuity of F, we conclude that I1; is continuous too. Also, I1; is uniformly bounded
on Bs as
_ 7
((b) = k(@)
I'p+1)

In addition, we prove the compactness of II; as follows. Let 01,0, € J such that o; < 0. Then

I <

|ILv)(o2) = () (o)
f K ()[(k(02) = k()" = (k1) = k(5))™ ' TIF (s, v(5)))ds

IA

T(n)
+ f K (8)((k(0) = k()" F(s, v(s))l ds

(16 + N)

<
- I'(n+1)

[I(k(0r2) — k(@))" — (k(or1) — k(@))"]] -
The last inequality with o, — oy — 0, gives
|(ILv)(02) — (w) (o)l = 0, as o = 07y, v € Bs.

Then, II; is relatively compact on Bs. An application of the Arzel-Ascoli theorem, I1; is compact
on B;.

Now, we will show that I, is a contraction. Let v, v* € Bs. Then, by (H;) for o € J, we have
|Iv) (o) = (ILv") (o)
_ y-1 b
< sup{(K(‘T) A"+ d f K ()T |F (s, u(s)) — F(s, v"(s))] ds
oelJ a

AL'(y)
+d3 I |F (0, v(0))(D) = F(o, v (0)D)I]}
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(k(b) — k(a))™ N dy  (k(b) — k()"
AT(WI(m+2)  Al'(y) T(n+1)

IA

Ay = vl |d>

IA

*
Trllv—vl.
Hence, I1, is a contraction in Bs. Thus, all conditions in Krasnoselskii’s fixed point theorem are

satisfied. So, the x-Hilfer type BVP (1.5) has at least one solution on J. O

Theorem 3.2. Assume that (H,) holds. Then the k-Hilfer type BVP (1.5) has unique solution on J,

provided that
T <1, (3.3)

where (' was defined by (3.1).

Proof. We shall show that IT has a unique fixed point by using Banach theorem [26]. By Theorem 3.1,
we have

< 0

|| < (I ]| + [T

Thus, I1(Bs) € Bs. Now, we show that I is a contraction. For v, v* € Bs and o € J, we have

|(TTv) — (I1v")|]

< [|[dLv) = L)l + [|[d1v) — ALyY)||
_ —1 b

< sup {(K(“) WG PR f K ()T |F(s, u(s)) — F(s, v"(s))| ds

oeJ AF(Y) a

+d3 1" |F (o, v(0)) — F(o, v (o)) + I |F(o, u(0)) = F(o, v* (o))}
< -2 [d2 (k(b) = k(a))™ N d;  (k(b) — k(a))" N (k(D) — k(a))"

ATV +2)  Al'ty) T(n+1) I(n+1)

< Tillv-vl,

which implies that [|ITv — ITv*|| < 7y |lv — v*||. By (3.2), we realize that II is a contraction. Then,
by Krasnoselskii Theorem [26], the k-Hilfer type BVP (1.5) has a unique solution on J. O

Special cases

According to our previous results, in this subsection we present several special cases:
Case (1): If k(o) = o, then the «-Hilfer type BVP (1.5) is reduced to the following Hilfer type
problem

{ uDMu(o) = F(o,u(0)), o €J:=]a,b], (3.4)

dv(a) +d, fab v(s)ds + dzu(b) = d4,

where 5 D"%7 is the Hilfer FD of order n, F : J X R — R is continuous function, d; € R (i = 1,2, 3,4).
The solution of the Hilfer type BVP (3.4) is given by

AIMS Mathematics Volume 7, Issue 2, 1856—-1872.



1864

| b
wo) = % [d4 —dy f TF(s. v(s))ds — dsT™F(b, v(b))
+1"F (o, v(0)),
where )
B vds | (b—a)”
A= [d2+ (b—a)] F(’y+ 1) # 0.

Then the following corollary is extracted from the Theorem 3.2.

Corollary 3.3. Assume that (H,) is satisfied. Then the BVP (3.4) has a unique solution on J provided
that | < 1, where

T =t T AT T+ ) T T D

[ (b —a)™ d; (b-a)' (b-a)

Case (2): If k(o) = logo, then the «x-Hilfer type BVP (1.5) is reduced to the following Hilfer-
Hadamard type problem

,q,log o — =
{ y D v(o) = F(o,u(0)), oe€lJ:=]a,b], 3.5

dv(a) +d, fab v(s)ds + dzu(b) = d4,

where ;D"%'°27 is the Hilfer-Hadamard FD of order i, F : J/ X R — R is continuous function, d; € R
(i=1,2,3,4). The solution of the Hilfer-Hadamard type BVP (3.5) is given by

v(o) = M [d —d fb TTOTF (s u(s))ds — ds T F(b, u(b))
T oAt [ ’ o

+ I TF (g u(0),

where

’}/d3 (IOg Z)V
(log g)] T+

Then the following corollary is deduced from the Theorem 3.2.

A:ldz-i-

Corollary 3.4. Assume that (H,) is satisfied. Then the BVP (3.5) has a unique solution on J provided
that Y7 < 1, where

(log 2)7” d; (log?2)y"  (log 2y
+ + :
ATMEm+2)  AT(MIm+1) T+ 1)

T =2 ldz

Case (3): If k(o) = o, p > 0, then the k-Hilfer type BVP (1.5) is reduced to the following Hilfer-
Katugumpola type problem
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P _ —
{ DM y(o) = F(o, u(o)), o €J:=[a,b], (3.6)

dyv(a) + ds [ v(s)ds + dsu(b) = dy,

where D™ is the Hilfer-Katugumpola FD of order n,p > 0, F : / X R — R is continuous function,
d; e R (i =1,2,3,4). The solution of the Hilfer-Katugumpola type BVP (3.6) is given by

o) M[d 4 f 119 (s o)) — dsT™F(b, v(b))
T AT |74, ’ T

+IF(o, u(0r)),

where

A= d2+

ydy | (B —a)
(bv - ap)] To+1) ~ 0

Then the next corollary is a special case of the Theorem 3.2.

Corollary 3.5. Assume that (H,) is satisfied. Then the BVP (3.6) has a unique solution on J provided
that (7™ < 1, where

(B — aP)T™ . dy (B —af) . (b — )
AT(I(+2)  AL(y) Tp+1)  T@m+1 |

T = [dz

4. Stability analysis

In this part, we discuss various types of stability like UH, GUH, UHR and GUHR. First of all, we
introduce the following definitions. Let € > 0 such that

|ln D" (o) — F(o,v(0))| < €, 4.1)

|1 DMT() — F(or, 5(0))| < €6.(c), 8, € C(J,R). 4.2)

Definition 4.1. Let v € C(J,R) be a function satisfies (4.1) corresponding to a solution v € C(J,R) of
k-Hilfer type BVP (1.5). If there exists 0 < 7 € R such that

(o) — v(o)| £ Te, ogelJ e€>0,

then,
a D" (o) = F(o, v(0)), “4.3)

is UH stable.

Remark 4.2. A function v € C(J,R) satisfies (4.1) if and only if there exist a functions z € C(J,R)
such that

(i) lz(o) <€ o€,

(ii) gD vu(0o) = F(o,v(0)) + z(0), » € J.
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Lemma 4.3. Ifv € C(J,R) is a solution to inequality (4.1), then v satisfies the following inequality

(o) — O, < €l,

where
_ 1 _ -1
Q; = AT) k(o) = k(@)
b
ds — dy f K ()T F(s,v(s))ds — d3 T""F(b, v(b))]
+I™F (o, vu(0)),
and

. ( ! [@ o g, KO =K@ b - K(a»n] , (k) - K(a»")
A'(y) | € I'(n+2) I'n+1) 'm+1)

Proof. In view of Remark 4.2, we have
n D" u(o) = F(or, u(0)) + z(%)
b
div(a) + dzf K (s)v(s)ds + dzu(b) = d,.

Then, by Lemma 2.5, we get

(k(0) = k(@)
AL'(y)

b
dy—d, f K ()T z(s)ds — d3 T ";Kz(b)]

v(io) = 0,+

+ 1" 7(0),

which implies
€ _ -1
ATH) (D) — k(a))
ds k(D) — k(a))" (x(D) — k(@)
[?+d2 ro+h S TToeDn ]
+€(K(b) — k(@))"
rn+1)
dy v d, k(D) — k(a))™ ‘s (D) - K(a))”] N (D) - K(a))”)

€ I'n+2) I'n+1) I'nr+1)

lu(o) — O,

IA

IA

6(—
GH.

IA

Theorem 4.4. Assume that (HI) holds. Under the Lemma 4.3, the following equation
HDn’q;KU(O-) = F(O-’ U(O-))’ (oaNS [av b], (44)
is UH stable as well as GUH provided that Yy < 1.
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Proof. v € C(J,R) be a function satisfies (4.1), let v € C(J,R) be the unique solution of the

following problem
n D" (o) = F(o,u(o)), oe€J:=]a,b],
div(a) + d; fab K'($)v(s)ds + dzu(b) = dy,
v(o) =v(o),o € J: =a,b].
Then, by Lemma 2.5, we get

v(o) = 0,.
It follows from Theorem 3.2, that
lv—=vll = supluv(o) — Oy < sup u(o) — O, + sup O, — O
oeJ 7€0 €U

< ell+ 7 |lv—-1.

Thus
llv—v|| < Te,

where -
= > 0.
1-7,

Now, by choosing ¢(€) = Cye such that ¢(0) = 0, then the problem (4.4) is GUH stability. O

To prove the Ulam-Heyrs-Rassias stability, we need the following hypotheses:
(H,) There exists an increasing function ¢, € C(J, R) and there exists ‘W > 0 such that for any o € J

T76(0) < Wo (o). 4.5)

Definition 4.5. Let v € C(J,R) be a function satisfies inequality (4.2) corresponding to a solution
v € C(J,R) of k-Hilfer type BVP (1.5). If there exists 0 < N € R and non-decreasing function 6,(0)
such that

lv -7l < Ned (o), T€TU, €>0,

then, the problem (4.4) is UHR stable with respect to 6,(0).

Remark 4.6. A function v € C(J,R) satisfies (4.2) if and only if there exist a functions z € C(J,R)
such that

(i) lz(D)| < €6(0), o € J,

(ii) y D" u(0o) = F(o,v(0)) + z(t), T € U.

Lemma 4.7. Ifv € C(J,R) is a solution to inequality (4.2), then v satisfies the following inequality
lu(o) — Ol < eWé (o),

Proof. Indeed, by Remark 4.6 and Lemma 2.5, one can easily prove that
lu(o) — Ol < eWé (o),

where

d
= 4 dok(b) + ds
€

1),
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Theorem 4.8. Suppose that (HIl) and (H2) are satisfied. If Ty < 1, then Eq (4.4) is UHR and

generalized UHR stable.
Proof. Let v be satisfies (4.2), let v € C(J,R) be unique solution of the following problem

g DM u(o) = F(o,v(o)), o€ J:=]a,b],
dv(a) +d, fab K (s)v(s)ds + dsu(b) = dy,
v(o) =v(o),o € J: =a,b].

Then, by Lemma 2.5, we get
v(o) = 0,,

It follows from Theorem 3.2, that

llv -l sup [u(0) — Og| < sup [u(0) — O, + sup |®, — O
oeJ oelJ 7€U0

eWo (o) + T |lv-1l.

IA

Thus
llv -l < Ned (o),
where w
N = > 0.
1-"14

Hence, the problem (4.4) is UHR stable as well as generalized UHR stable.

5. An example

In the end, we support our main results by suggesting an example to show the applicability of the
outcomes numerically. In fact, the reported results acquired in Theorems 3.1, 3.2, 4.4 and 4.8 are
guaranteed by an example.

Example 5.1. Consider the following problem

HZ)%% VU+1U(O')3: (%) % + Lz, o € [1, %], (5 1)
wrD)+2 7 5 %(Ir+lv(0')d0'+ v =1,
where
1 5 — 3
77:—,6]:—» K(O-): O-+15J_[la_]’
3 6 2
1 2 5
di=—,d==,dy==,ds =1
1 10 2 3 3 7 4

From these settings, we compute constants as y = g, A =0.89 # 0. For vy,v, € R*, we have

g U1 %)
F(o,v1) —Flo,v)| = (—)‘ -
IF(or, v1) = F(o, vy)] o) T5o  Tro,
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< ( )l |
(% U
9 1 2
< 15| |
v U] .
> 1 2

Hence, (Hy)holds with A = é > 0. Also, the condition (3.2) is fulfilled, i.e. [y = 0.18 < 1. Therefore,
by the applying Banach’s fixed point theorem, we conclude that the problem (5.1) has a unique solution
von|l, %]. Finally, we see that the inequality

|l D" (o) — F(o, v(0))| < €

is satisfied. Then the Eq (5.1) is Ulam-Hyers stable with

lv—1| £ Te, oel, e>0,
where
I1
T = T, >0,
_ 1 |ds (k(b) — k(a))™ (k(b) — k(a))"|  (k(b) — k(a))"
H‘(Arm [ e T Tary T Ta ]+ T+ )>0’

and (' = 0.18 < 1. Finally, we consider 6,(c) = k(o) — k(a), for o € [1, %]. Then, 6, : [1, %] — Ris
continuous nondecreasing function. Hence by Lemma 2.3, we get

I56.(0) I (k(o) = k(@)

F(2) +1
m(K(O') — k(@)
|x) = k(D)]’

I'n+2)
Wé (o), forall x € T,

0,(0)

H—k(D)]” . .
where ‘W = %_:;))] > (0. Therefore, Theorem 4.8 applicable. Moreover, for € > 0 and a continuous

function ¢, : [1, %]—)R* we find that
e D" v(0) — F(o, u(0))| < €6,(0)
is satisfied. Then Eq (5.1) is UHR stable with
llv —vl| < Neo (o)

where
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6. Conclusions

In this research work, a newly nonlinear fractional differential equation with two-point and integral
boundary conditions in the k-Hilfer fractional derivative frame has been investigated. The existence and
uniqueness results of the x-Hilfer type BVP (1.5) have been obtained using Krasnoselskii and Banach’s
fixed point theorems. Different types of stability of the x-Hilfer type BVP (1.5) have been discussed
by using some mathematical methodologies. An example is presented to confirm the viability of our
obtained results.

The acquired results in this paper are more general and cover many of the parallel problems that
contain special cases of function «, because our proposed system contains a global fractional derivative
that integrates many classic fractional derivatives, for instance, the x-Hilfer type BVP (1.5) for various
values of a function « and parameter ¢ includes the study of a problem of FDEs involving the Hilfer,
Hadamard, Katugampola, and many other fractional derivative operators which are described in the
introduction. In future work, we will extend this work by replacing the constants d; (i = 1,2,3,4)
with matrices.
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