In this paper we establish new Ostrowski type inequalities related to the notion s-φ-convex functions (see [
Citation: Praveen Agarwal, Miguel Vivas-Cortez, Yenny Rangel-Oliveros, Muhammad Aamir Ali. New Ostrowski type inequalities for generalized s-convex functions with applications to some special means of real numbers and to midpoint formula[J]. AIMS Mathematics, 2022, 7(1): 1429-1444. doi: 10.3934/math.2022084
[1] | Gültekin Tınaztepe, Sevda Sezer, Zeynep Eken, Sinem Sezer Evcan . The Ostrowski inequality for $ s $-convex functions in the third sense. AIMS Mathematics, 2022, 7(4): 5605-5615. doi: 10.3934/math.2022310 |
[2] | Serap Özcan, Saad Ihsan Butt, Sanja Tipurić-Spužević, Bandar Bin Mohsin . Construction of new fractional inequalities via generalized $ n $-fractional polynomial $ s $-type convexity. AIMS Mathematics, 2024, 9(9): 23924-23944. doi: 10.3934/math.20241163 |
[3] | Naila Mehreen, Matloob Anwar . Ostrowski type inequalities via some exponentially convex functions with applications. AIMS Mathematics, 2020, 5(2): 1476-1483. doi: 10.3934/math.2020101 |
[4] | Muhammad Tariq, Soubhagya Kumar Sahoo, Jamshed Nasir, Hassen Aydi, Habes Alsamir . Some Ostrowski type inequalities via $ n $-polynomial exponentially $ s $-convex functions and their applications. AIMS Mathematics, 2021, 6(12): 13272-13290. doi: 10.3934/math.2021768 |
[5] | Anjum Mustafa Khan Abbasi, Matloob Anwar . Ostrowski type inequalities for exponentially s-convex functions on time scale. AIMS Mathematics, 2022, 7(3): 4700-4710. doi: 10.3934/math.2022261 |
[6] | Attazar Bakht, Matloob Anwar . Ostrowski and Hermite-Hadamard type inequalities via $ (\alpha-s) $ exponential type convex functions with applications. AIMS Mathematics, 2024, 9(10): 28130-28149. doi: 10.3934/math.20241364 |
[7] | Humaira Kalsoom, Muhammad Idrees, Artion Kashuri, Muhammad Uzair Awan, Yu-Ming Chu . Some New $(p_1p_2,q_1q_2)$-Estimates of Ostrowski-type integral inequalities via n-polynomials s-type convexity. AIMS Mathematics, 2020, 5(6): 7122-7144. doi: 10.3934/math.2020456 |
[8] | Thanin Sitthiwirattham, Muhammad Aamir Ali, Hüseyin Budak, Sotiris K. Ntouyas, Chanon Promsakon . Fractional Ostrowski type inequalities for differentiable harmonically convex functions. AIMS Mathematics, 2022, 7(3): 3939-3958. doi: 10.3934/math.2022217 |
[9] | Suphawat Asawasamrit, Muhammad Aamir Ali, Hüseyin Budak, Sotiris K. Ntouyas, Jessada Tariboon . Quantum Hermite-Hadamard and quantum Ostrowski type inequalities for $ s $-convex functions in the second sense with applications. AIMS Mathematics, 2021, 6(12): 13327-13346. doi: 10.3934/math.2021771 |
[10] | Yu-Pei Lv, Ghulam Farid, Hafsa Yasmeen, Waqas Nazeer, Chahn Yong Jung . Generalization of some fractional versions of Hadamard inequalities via exponentially $ (\alpha, h-m) $-convex functions. AIMS Mathematics, 2021, 6(8): 8978-8999. doi: 10.3934/math.2021521 |
In this paper we establish new Ostrowski type inequalities related to the notion s-φ-convex functions (see [
Ostrowski's Inequality. Let f:I⊂[0,+∞)→R be a differentiable function on int(I), such that f′∈L[a,b], where a,b∈I with a<b. If |f′(x)|≤M for all x∈[a,b], then the inequality:
|f(x)−1b−a∫baf(t)dt|≤M(b−a)[14+(x−a+b2)2(b−a)2], ∀x∈[a,b] | (1.1) |
holds for all x∈[a,b]. This inequality was introduced by Alexander Ostrowski in [26], and with the passing of the years, generalizations on the same, involving derivatives of the function under study, have taken place. It is playing a very important role in all the fields of mathematics, especially in the theory approximations. Thus such inequalities were studied extensively by many researches and numerous generalizations, extensions and variants of them for various kind of functions like bounded variation, synchronous, Lipschitzian, monotonic, absolutely continuous and n-times differentiable mappings etc.
For recent results and generalizations concerning Ostrowski's inequality, we refer the reader to the recent papers [1,3,4,31,32]. The convex functions play a significant role in many fields, for example in biological system, economy, optimization and so on [2,16,19,24,29,34,39]. And many important inequalities are established for these class of functions. Also the evolution of the concept of convexity has had a great impact in the community of investigators. In recent years, for example, generalized concepts such as s-convexity (see[10]), h-convexity (see [30,33]), m-convexity (see [7,15]), MT-convexity (see[21]) and others, as well as combinations of these new concepts have been introduced.
The role of convex sets, convex functions and their generalizations are important in applied mathematics specially in nonlinear programming and optimization theory. For example in economics, convexity plays a fundamental role in equilibrium and duality theory. The convexity of sets and functions have been the object of many studies in recent years. But in many new problems encountered in applied mathematics the notion of convexity is not enough to reach favorite results and hence it is necessary to extend the notion of convexity to the new generalized notions. Recently, several extensions have been considered for the classical convex functions such that some of these new concepts are based on extension of the domain of a convex function (a convex set) to a generalized form and some of them are new definitions that there is no generalization on the domain but on the form of the definition. Some new generalized concepts in this point of view are pseudo-convex functions [22], quasi-convex functions [5], invex functions [17], preinvex functions [25], B-vex functions [20], B-preinvex functions [8], E-convex functions [38], Ostrowski Type inequalities for functions whose derivatives are (m,h1,h2)-convex [35], Féjer Type inequalities for (s,m)-convex functions in the second sense [36] and Hermite-Hadamard-Féjer Type inequalities for strongly (s,m)-convex functions with modulus C, in the second sense [9]. In numerical analysis many quadrature rules have been established to approximate the definite integrals. Ostrowski inequality provides the bounds of many numerical quadrature rules [13].
In this paper we have established new Ostrowski's inequality given by Badreddine Meftah in [23] for s-φ-convex functions with f∈Cn([a,b]) such that f(n)∈L([a,b]) and we give some applications to some special means, the midpoint formula and some examples for the case n=2.
Recall that a real-valued function f defined in a real interval J is said to be convex if for all x,y∈J and for any t∈[0,1] the inequality
f(tx+(1−t)y)≤tf(x)+(1−t)f(y) | (2.1) |
holds. If inequality 2.1 is strict when we say that f is strictly convex, and if inequality 2.1 is reversed the function f is said to be concave. In [37] we introduced the notion of s-φ-convex functions as a generalization of s-convex functions in first sense.
Definition 1. Let 0<s≤1. A function f:I⊂R→R is called s-φ-convex with respect to bifunction φ:R×R→R (briefly φ-convex), if
f(tx+(1−t)y)≤f(y)+tsφ(f(x),f(y)) | (2.2) |
for all x,y∈I and t∈[0,1].
Example 1. Let f(x)=x2, then f is convex and 12-φ- convex with φ(u,v)=2u+v, indeed
f(tx+(1−t)y)=(tx+(1−t)y)2=t2x2+2t(1−t)xy+(1−t)2y2≤y2+tx2+2txy=y2+t12[t12x2+2t12xy]. |
On the other hand;
0<t<1⟹0<t12<1⟹t12x2+2t12xy≤x2+2xy≤x2+x2+y2. |
Hence,
f(tx+(1−t)y)≤y2+t12[2x2+y2]=f(y)+t12φ(f(x),f(y)). |
Example 2. Let f(x)=xn and 0<s≤1, then f is convex and s-φ- convex with φ(u,v)=∑nk=1(nk)v1−kn(u1n−v1n)n, indeed
f(tx+(1−t)y)=f(y+t(x−y))=(y+t(x−y))n=yn+n∑k=1(nk)yn−k(t(x−y))n=yn+ts[n∑k=1(nk)tn−syn−k(x−y)n]≤yn+ts[n∑k=1(nk)(yn)n−kn((xn)1n−(yn)1n)n]. |
Remark 1. If f is increasing monotone in [a,b], then f is s-φ- convex for φ(x,y)=K, where K∈[0,+∞) and s∈(0,1].
In this section, we give some integral approximation of f∈Cn([a,b]) such that f(n)∈L([a,b]), for n≥1 using the following lemma as the main tool (see [11]).
Lemma 1. Let f:[a,b]→R be a differentiable mapping such that f(n−1) is absolutely continuous on [a,b]. Then for all x∈[a,b] we have the identity
∫baf(t)dt=n∑k=0[(b−x)k+1+(−1)k(x−a)k+1(k+1)!]f(k)(x)+(−1)n∫baKn(x,t)f(n)(t)dt, |
where the kernel Kn:[a,b]2→R is given by
Kn(x,t)={(t−a)nn!ift∈[a,x](t−b)nn!ift∈(x,b] |
with x∈[a,b] and n is natural number, n≥1.
Theorem 1. Let f:I→R be n-times differentiable on [a,b] such that f(n)∈L([a,b]) with n≥1 and 0<s≤1. If |f(n)| is s-φ-convex, then the following inequality
|∫baf(t)dt−n∑k=0[(b−x)k+1+(−1)k(x−a)k+1(k+1)!]f(k)(x)|≤(x−a)n+1n!(1n+1|f(n)(a)|+1n+s+1φ(|f(n)(a)|,|f(n)(x)|))+(b−x)n+1n![|f(n)(x)|n+1+n∑k=0(nk)(−1)k1k+s+1φ(|f(n)(x)|,|f(n)(b)|)] |
holds for all x∈[a,b].
Proof. From Lemma 1, properties of modulus, making the changes of variables u=(1−t)a+tx in the first integral and u=(1−t)x+tb in the second integral we have that,
|∫baf(t)dt−n∑k=0[(b−x)k+1+(−1)k(x−a)k+1(k+1)!]f(k)(x)|≤∫xa(u−a)nn!|f(n)(u)|du+∫bx(b−u)nn!|f(n)(u)|du=(x−a)n+1n!∫10tn |f(n)((1−t)a+tx)|dt+(b−x)n+1n!∫10(1−t)n |f(n)((1−t)x+tb)|dt. |
Since |f(n)| is s-φ- convex (2.2) gives
|∫baf(t)dt−n∑k=0[(b−x)k+1+(−1)k(x−a)k+1(k+1)!]f(k)(x)|≤(x−a)n+1n!∫10tn(|f(n)(a)|+tsφ(|f(n)(a)|,|f(n)(x)|))dt+(b−x)n+1n!∫10(1−t)n(|f(n)(x)|+tsφ(|f(n)(x)|,|f(n)(b)|))dt=(x−a)n+1n!(1n+1|f(n)(a)|+1n+s+1φ(|f(n)(a)|,|f(n)(x)|))+(b−x)n+1n![|f(n)(x)|n+1+n∑k=0(nk)(−1)k1k+s+1φ(|f(n)(x)|,|f(n)(b)|)] |
which is the desired result. The proof is completed.
Remark 2. If we take s=1 then obtain a result of Meftah B. (see Theorem 2.1 in [23]).
Corollary 1. Let f:I→R be n-times differentiable on [a,b] such that f(n)∈L([a,b]) with n≥1 and 0<s≤1. If |f(n)| is s-convex in the first sense, we have the following estimate
|∫baf(t)dt−n∑k=0[(b−x)k+1+(−1)k(x−a)k+1(k+1)!]f(k)(x)|≤s(n+1)!(n+s+1)|f(n)(a)|+(b−x)n+1n!|f(n)(b)|n∑k=0(nk)(−1)kk+s+1+(n+1)[(x−a)n+1(n+s+1)(n+1)!+(b−x)n+1(n+1)!(1n+1−n∑k=0(nk)(−1)kk+s+1)]|f(n)(x)|. |
Proof. Taking φ(u,v)=v−u in Theorem 1.
Remark 3. It is important to notice that if s=1 we have that |f(n)| is convex and then obtain the corollary 2.2 of Meftah see [23].
Theorem 2. Let f:I→R be n-times differentiable on [a,b] such that f(n)∈L([a,b]) with n≥1, 0<s≤1 and let q>1 with 1p+1q=1. If |f(n)|q is s-φ-convex, then the following inequality holds
|∫baf(t)dt−n∑k=0[(b−x)k+1+(−1)k(x−a)k+1(k+1)!]f(k)(x)|≤(x−a)n+1(s+1)1q(np+1)1pn!((s+1)|f(n)(a)|q+φ(|f(n)(a)|q,|f(n)(x)|q))1q+(b−x)n+1(s+1)1q(np+1)1pn!((s+1)|f(n)(x)|q+φ(|f(n)(x)|q,|f(n)(b)|q))1q. |
Proof. From Lemma 1, properties of modulus, and Holder's inequality, we have
|∫baf(t)dt−n∑k=0[(b−x)k+1+(−1)k(x−a)k+1(k+1)!]f(k)(x)|≤∫xa(u−a)nn!|f(n)(u)|du+∫bx(b−u)nn!|f(n)(u)|du=(x−a)n+1n!∫10tn |f(n)((1−t)a+tx)|dt+(b−x)n+1n!∫10(1−t)n |f(n)((1−t)x+tb)|dt≤(x−a)n+1n!(∫10tnpdt)1p(∫10|f(n)((1−t)a+tx)|qdt)1q+(b−x)n+1n!(∫10(1−t)npdt)1p(∫10|f(n)((1−t)x+tb)|qdt)1q=(x−a)n+1(np+1)1pn!(∫10|f(n)((1−t)a+tx)|qdt)1q+(b−x)n+1(np+1)1pn!(∫10|f(n)((1−t)x+tb)|qdt)1q. |
Since |f(n)|q is s-φ-convex, we deduce
|∫baf(t)dt−n∑k=0[(b−x)k+1+(−1)k(x−a)k+1(k+1)!]f(k)(x)|≤(x−a)n+1(np+1)1pn!(∫10(|f(n)(a)|q+tsφ(|f(n)(a)|q,|f(n)(x)|q))dt)1q+(b−x)n+1(np+1)1pn!(∫10(|f(n)(x)|q+tsφ(|f(n)(x)|q,|f(n)(b)|q))dt)1q |
=(x−a)n+1(s+1)1q(np+1)1pn!((s+1)|f(n)(a)|q+φ(|f(n)(a)|q,|f(n)(x)|q))1q+(b−x)n+1(s+1)1q(np+1)1pn!((s+1)|f(n)(x)|q+φ(|f(n)(x)|q,|f(n)(b)|q))1q. |
Corollary 2. Let f:I→R be n-times differentiable on [a,b] such that f(n)∈L([a,b]) with n≥1, 0<s≤1 and let q>1 with 1p+1q=1. If |f(n)|q is s-convex in the first sense, then the following inequality holds
|∫baf(t)dt−n∑k=0[(b−x)k+1+(−1)k(x−a)k+1(k+1)!]f(k)(x)|≤(x−a)n+1(s+1)1q(np+1)1pn!(s|f(n)(a)|q+|f(n)(x)|q)1q+(b−x)n+1(s+1)1q(np+1)1pn!(s|f(n)(x)|q+|f(n)(b)|q)1q. | (3.1) |
Proof. Taking φ(u,v)=v−u in Theorem 1.
Corollary 3. Let f:I→R be n-times differentiable on [a,b] such that f(n)∈L([a,b]) with n≥1, 0<s≤1 and let q>1 with 1p+1q=1. If |f(n)|q is s-convex in the first sense, then the following inequality holds
|∫baf(t)dt−n∑k=0[(b−x)k+1+(−1)k(x−a)k+1(k+1)!]f(k)(x)|≤(x−a)n+1(s+1)1q(np+1)1pn!(s|f(n)(a)|+|f(n)(x)|)+(b−x)n+1(s+1)1q(np+1)1pn!(s|f(n)(x)|+|f(n)(b)|). |
Proof. Taking φ(u,v)=v−u in Theorem 1, we obtain 3.1. Then using the following algebraic inequality for all a,b≥0, and 0≤α≤1 we have (a+b)α≤aα+bα, we get the desired result.
Theorem 3. Let q>1 and f:I→R be n-times differentiable on [a,b] such that f(n)∈L([a,b]) with n≥1, 0<s≤1. If |f(n)|q is s-φ−convex, then the following inequality
|∫baf(t)dt−n∑k=0[(b−x)k+1+(−1)k(x−a)k+1(k+1)!]f(k)(x)|≤(n+1)1q(x−a)n+1(n+1)!(1n+1|f(n)(a)|q+1n+s+1φ(|f(n)(a)|q,|f(n)(x)|q))1q+(n+1)1q(b−x)n+1(n+1)!(1n+1|f(n)(x)|q+φ(|f(n)(x)|q,|f(n)(b)|q)n∑k=0(nk)(−1)kk+s+1)1q |
holds for all x∈[a,b].
Proof. From Lemma 1, properties of modulus, and power mean inequality, we have
|∫baf(t)dt−n∑k=0[(b−x)k+1+(−1)k(x−a)k+1(k+1)!]f(k)(x)|≤∫xa(u−a)nn!|f(n)(u)|du+∫bx(b−u)nn!|f(n)(u)|du=(x−a)n+1n!∫10tn |f(n)((1−t)a+tx)|dt+(b−x)n+1n!∫10(1−t)n |f(n)((1−t)x+tb)|dt |
≤(x−a)n+1n!(∫10tndt)1−1q(∫10tn |f(n)((1−t)a+tx)|qdt)1q+(b−x)n+1n!(∫10(1−t)ndt)1−1q(∫10(1−t)n |f(n)((1−t)x+tb)|qdt)1q=(n+1)1q(x−a)n+1(n+1)!(∫10tn |f(n)((1−t)a+tx)|qdt)1q+(n+1)1q(b−x)n+1(n+1)!(∫10(1−t)n |f(n)((1−t)x+tb)|qdt)1q. |
Since |f(n)|q is s-φ-convex, we deduce
|∫baf(t)dt−n∑k=0[(b−x)k+1+(−1)k(x−a)k+1(k+1)!]f(k)(x)|≤(n+1)1q(x−a)n+1(n+1)!(|f(n)(a)|q∫10tndt+φ(|f(n)(a)|q,|f(n)(x)|q)∫10tn+sdt)1q+(n+1)1q(b−x)n+1(n+1)!(|f(n)(x)|q∫10(1−t)ndt+φ(|f(n)(x)|q,|f(n)(b)|q)∫10ts(1−t)ndt)1q=(n+1)1q(x−a)n+1(n+1)!(1n+1|f(n)(a)|q+1n+s+1φ(|f(n)(a)|q,|f(n)(x)|q))1q+(n+1)1q(b−x)n+1(n+1)!(1n+1|f(n)(x)|q+φ(|f(n)(x)|q,|f(n)(b)|q)n∑k=0(nk)(−1)kk+s+1)1q. |
The proof is completed.
Remark 4. If we take s=1 then obtain a result of Meftah B. (see Theorem 2.6 in [23]).
Corollary 4. Let f:I→R be n-times differentiable on [a,b] such that f(n)∈L([a,b]) with n≥1, 0<s≤1 and let q>1. If |f(n)|q is s-convex in the first sense, then the following inequality
|∫baf(t)dt−n∑k=0[(b−x)k+1+(−1)k(x−a)k+1(k+1)!]f(k)(x)|≤(n+1)1q(x−a)n+1(n+s+1)1q(n+1)!(s|f(n)(a)|qn+1+|f(n)(x)|q)1q+(n+1)1q(b−x)n+1(n+1)!(1n+1|f(n)(x)|q+[|f(n)(b)|q−|f(n)(x)|q]n∑k=0(nk)(−1)kk+s+1)1q |
holds for all x∈[a,b].
Proof. Taking φ(u,v)=v−u in Theorem 3.
Theorem 4. Let f:I→R be n-times differentiable on [a,b] such that f(n)∈L([a,b]) with n≥1, 0<s≤1 and let q>1. If |f(n)|q is s-φ-convex, then the following inequality
|∫baf(t)dt−n∑k=0[(b−x)k+1+(−1)k(x−a)k+1(k+1)!]f(k)(x)|≤(x−a)n+1n!(1qn+1|f(n)(a)|q+1qn+s+1φ(|f(n)(a)|q,|f(n)(x)|q))1q+(b−x)n+1n!(1qn+1|f(n)(x)|q+qn∑k=0(qnk)(−1)kk+s+1φ(|f(n)(x)|q,|f(n)(b)|q))1q |
holds for all x∈[a,b].
Proof. From Lemma 1, properties of modulus, and power mean inequality, we have
|∫baf(t)dt−n∑k=0[(b−x)k+1+(−1)k(x−a)k+1(k+1)!]f(k)(x)|≤∫xa(u−a)nn!|f(n)(u)|du+∫bx(b−u)nn!|f(n)(u)|du=(x−a)n+1n!∫10tn |f(n)((1−t)a+tx)|dt+(b−x)n+1n!∫10(1−t)n |f(n)((1−t)x+tb)|dt≤(x−a)n+1n!(∫10dt)1−1q(∫10tqn |f(n)((1−t)a+tx)|qdt)1q+(b−x)n+1n!(∫10dt)1−1q(∫10(1−t)qn |f(n)((1−t)x+tb)|qdt)1q=(x−a)n+1n!(∫10tqn |f(n)((1−t)a+tx)|qdt)1q+(b−x)n+1n!(∫10(1−t)qn |f(n)((1−t)x+tb)|qdt)1q. |
Since |f(n)|q is s-φ-convex, we deduce
|∫baf(t)dt−n∑k=0[(b−x)k+1+(−1)k(x−a)k+1(k+1)!]f(k)(x)|≤(x−a)n+1n!(|f(n)(a)|q∫10tqndt+φ(|f(n)(a)|q,|f(n)(x)|q)∫10tqn+sdt)1q+(b−x)n+1n!(|f(n)(x)|q∫10(1−t)qndt+φ(|f(n)(x)|q,|f(n)(b)|q)∫10ts(1−t)qndt)1q |
=(x−a)n+1n!(1qn+1|f(n)(a)|q+1qn+s+1φ(|f(n)(a)|q,|f(n)(x)|q))1q+(b−x)n+1n!(1qn+1|f(n)(x)|q+qn∑k=0(qnk)(−1)kk+s+1φ(|f(n)(x)|q,|f(n)(b)|q))1q |
which in the desired result.
Remark 5. If we take s=1 then obtain a result of Meftah B. (see Theorem 2.9 in [23]).
Corollary 5. Let f:I→R be n-times differentiable on [a,b] such that f(n)∈L([a,b]) with n≥1, 0<s≤1 and let q>1. If |f(n)|q is s-convex in the first sense, then the following inequality
|∫baf(t)dt−n∑k=0[(b−x)k+1+(−1)k(x−a)k+1(k+1)!]f(k)(x)|≤(x−a)n+1n!(1qn+1|f(n)(a)|q+|f(n)(x)|q−|f(n)(a)|qqn+s+1)1q+(b−x)n+1n!(1qn+1|f(n)(x)|q+qn∑k=0(qnk)(−1)kk+s+1(|f(n)(b)|q−|f(n)(x)|q))1q |
holds for all x∈[a,b].
Proof. Taking φ(u,v)=v−u in Theorem 4.
In this section, using [12] we define s-φb-convex function as generalized form of s-φ convex functions [37] and give some results.
Definition 2. Let R+ be the set of nonnegative real numbers and b:R×R×[0,1]→R+ be a function with tsb(x,y,t)∈[0,1] for all x,y∈R, t∈[0,1] and s∈(0,1]. A function f:I→R is called s-φb-convex if
f(tx+(1−t)y)≤f(y)+tsb(x,y,t)φ(f(x),f(y)) |
for all x,y∈R and t∈[0,1].
Remark 6. If b(x,y,z)=1 then the definition of s-φb-convex function matches the definition of s-φ-convex function.
Theorem 5. Consider a function f:I→R and b:R×R×[0,1]→R+ be a function with tsb(x,y,t)∈[0,1] for all x,y∈R and s,t∈[0,1]. Then the following assertions are equivalent:
(i) f is s-φb-convex for some b and s∈[0,1].
(ii) f is φ-quasiconvex.
Proof. (i)→(ii) For any x,y∈I and t∈[0,1],
f(tx+(1−t)y)≤f(y)+tsb(x,y,t)φ(f(x),f(y))≤max{f(y),f(y)+φ(f(x),f(y))}. |
(ii)→(i) For x,y∈I and t∈[0,1], define
b(x,y,t)={1ts if t∈[0,1] and f(y)≤f(y)+φ(f(x),f(y))0 if t=0 or f(y)>f(y)+φ(f(x),f(y)) |
Notice that tsb(x,y,t)∈[0,1]. For a such function b we have
f(tx+(1−t)y)≤max{f(y),f(y)+φ(f(x),f(y))}=tsb(x,y,t)[f(y)+φ(f(x),f(y))+(1−tsb(x,y,t))]f(y)=f(y)+tsb(x,y,t)φ(f(x),f(y)). |
Remark 7. Let f:I→R be a s-φ-convex function. For x1,x2∈I and α1+α2=1, we have f(α1x1+α2x2)≤f(x2)+αs1φ(f(x1),f(x2)). Aso when n>2, for x1,x2,...,xn∈I, ∑ni=1αi=1 and Ti=∑ij=1αj, we have
f(n∑i=1αixi)=f((Tn−1n−1∑i=1αiTn−1xi)+αnxn)≤f(xn)+Tsn−1φ(f(n−1∑i=1αiTn−1xi),f(xn)). | (4.1) |
Theorem 6. Let f:I→R be a s-φ-convex function and φ be nondecreasing nonnegatively sublinear in first variable. If Ti=∑ij=1αj for i=1,2,...,n such that Tn=1, then
f(n∑i=1αixi)≤f(xn)+n−1∑i=1Tsiφf(xi,xi+1,...,xn), |
where φf(xi,xi+1,...,xn)=φ(φf(xi,xi+1,...,xn−1),f(xn)) and φf(x)=f(x) for all x∈I.
Proof. Since φ is nondecreasing nonnegatively sublinear on first variable, so from (4.1) it follows that:
f(n∑i=1αixi)=f((Tn−1n−1∑i=1αiTn−1xi)+αnxn)≤f(xn)+Tsn−1φ(f(n−1∑i=1αiTn−1xi),f(xn))=f(xn)+(Tn−1)sφ(f(Tn−2Tn−1n−2∑i=1αiTn−2xi+αn−1Tn−1xn−1),f(xn))≤f(xn)+(Tn−1)sφ(f(xn−1)+(Tn−2Tn−1)sφ(f(n−2∑i=1αiTn−2xi),f(xn−1)),f(xn))≤f(xn)+(Tn−1)sφ(f(xn−1),f(xn))+(Tn−2)sφ(φ(f(n−2∑i=1αiTn−2xi),f(xn−1)),f(xn))≤... |
≤f(xn)+(Tn−1)sφ(f(xn−1),f(xn))+(Tn−2)sφ(φ(f(xn−2),f(xn−1)),f(xn))+...+Ts1φ(φ(...φ(φ(f(x1),f(x2)),f(x3)...),f(xn−1)),f(xn))=f(xn)+(Tn−1)sφf(xn−1,xn)+(Tn−2)sφf(xn−2,xn−1,xn)+...+(T1)sφf(x1,x2,...,xn−1,xn)=f(xn)+n−1∑i=1Tsiφf(xi,xi+1,...,xn). |
Example 3. Consider f(x)=x2 and φ(x,y)=2x+y for x,y∈R+=[0,+∞). The function φ is nondecreasing nonnegatively sublinear in first variable and f is 12-φ-convex (see Example 1). Now for x1,x2,...,xn∈R+ and α1,α2,...,αn with ∑ni=1αi=1 according to Theorem 6 we have
(n∑i=1αixi)2≤(xn)2+n−1∑i=1T12iφf(xi,xi+1,...,xn)≤(xn)2+n−1∑i=1T12i[2[...2[2x2i+x2i+1]+x2i+2]+...+x2n]. |
In this section we give some applications for the special case where n=2 and the function φ(f(x),f(y))=f(y)−f(x), in this case we have that f is s-convex in the first sense.
Example 4. Let s∈(0,1) and p,q,r∈R, we define the function f:[0,+∞)→R as
f(t)={pift=0qts+rift>0, |
we have that if q≥0 and r≤p, then f is s-convex in the first sense (see [18]). If we do φ(f(x),f(y))=f(x)−f(y), then f is s-φ-convex, but is not φ-convex because f is not convex.
Example 5. In the previous example if s=12, p=1, q=2 and r=1 we have that f:[0,+∞)→R,f(t)=2t12+1 is 12-φ-convex. Then if we define g:[0,+∞)→R, g(t)=815t52+t22, we have to g″(t)=2t12+1 is 12-φ-convex in [0,+∞) with φ(f(x),f(y))=f(x)−f(y). Using Theorem 1, for a,b∈[0,+∞) with a<b and x∈[a,b], we get
|16(b72−a72)+35(a3−b3)√x+35(b2−a2)x32+21(a−b)x52|≤352(1+2√b)(b−x)3−103(72+√a+6√b)(a−x)3. |
Remark 6. In particular if we choose a=0 and b=1, we have for x∈[0,1], we get a graphic representation of the Example 5.
![]() |
Example 6. If we define g(t)=t412 we have that g″(t) is 12-φ- convex with φ(u,v)=2u+v (see example 1) and by Theorem 1, for a,b∈R with a<b and x∈[a,b], we have that
|b5−a560−(b−a)12x4−[b2−2x(b−a)−a23]x3−[(b−x)3+(x−a)36]x2|≤(x−a)3[x2−56a2]+(b−x)3[19210x2+8105b2]. |
Moreover, if choose x=a+b2, we obtain that
|b5−a560−(b−a)(a+b)4192−(b−a)3(a+b)296|≤(b−a)316[a23+9a2+2ab+b214+(a+b)212+8a2+16ab+24b2105]. |
Then
|(a−b)5|≤(b−a)37(477a2+194ab+161b2). |
Therefore
(a−b)2≤477a2+194ab+161b27. |
Example 7. If we define g(t)=36913√2 t136 we have that |g″(t)|3 is 12-φ-convex with φ(u,v)=2u+v (see example 1) and by Theorem 4, for a,b∈R with a<b and x∈[a,b], we have
|2161729[b196−a196]−36x13691(b−a)+6x7614[(b−x)2−(x−a)2]+x166[(b−x)3+(x−a)3]|≤(x−a)323√48(a12+2x12)13+(b−x)323√48(x12+2b12)13. |
In this paper we have established new Ostrowski's inequality given by Badreddine Meftah in [23] for s−φ−convex functions with f∈Cn([a,b]) such that f(n)∈L([a,b]) with n≥1 and we give some applications to some special means, the midpoint formula and some examples for the case n=2. We expect that the ideas and techniques used in this paper may inspire interested readers to explore some new applications of these newly introduced explore some new applications of these newly introduced functions in various fields of pure and applied sciences.
The authors want to give thanks to the Dirección de investigación from Pontificia Universidad Católica del Ecuador for technical support to our research project entitled: "Algunas desigualdades integrales para funciones convexas generalizadas y aplicaciones".
The authors declare that they have no conflicts of interest.
[1] |
R. Agarwal, M. Luo, R. K. Raina, On Ostrowski Type inequalities, Fasciculli Mathematici, 56 (2016), 5–27. doi: 10.1515/fascmath-2016-0001. doi: 10.1515/fascmath-2016-0001
![]() |
[2] |
P. Agarwal, M. Kadakal, İ. İşcan, Y. M. Chu, Better approaches for n-times differentiable convex functions, Mathematics, 8 (2020), 950. doi:10.3390/math8060950. doi: 10.3390/math8060950
![]() |
[3] | M. Alomari, M. Darus, Ostrowski type inequalities for quasi-convex functions with applications to special means, RGMIA Res. Rep. Coll, 3 (2010), 1–9. |
[4] |
M. Alomari, M. Darus, S. Dragomir, P. Cerone, Ostrowski type inequalities for functions whose derivatives are s-convex in the second sense, Appl. Math. Lett., 23 (2010), 1071–1076. doi:10.1016/j.aml.2010.04.038. doi: 10.1016/j.aml.2010.04.038
![]() |
[5] | K. Arrow, A. Enthoven, Quasi-Concave Programming, Econometrica, 29 (1961), 779–800. doi:0012-9682(196110)29:4<779:QP>2.0.CO;2-R. |
[6] |
M. Badreddine, New Ostrowski's inequalties, Revista Colombiana de Matemáticas, 51 (2017), 57–69. doi:10.15446/recolma.v51n1.66835. doi: 10.15446/recolma.v51n1.66835
![]() |
[7] |
R. Bai, F. Qi, B. Xi, Hermite-Hadamard type inequalities for the m- and (α,m)-logarithmically convex functions, Filomat, 27 (2013), 1–7. doi:10.2298/FIL1301001B. doi: 10.2298/FIL1301001B
![]() |
[8] |
C. Bector, C. Singh, B-vex functions, J. Optimiz. Theory. App., 71 (1991), 237–254. doi: 10.1007/BF00939919. doi: 10.1007/BF00939919
![]() |
[9] |
M. Bracamonte, J. Giménez, M. Vivas, Hermite-Hadamard-Féjer Type inequalities for strongly (s,m)-convex functions with modulus C, in the second sense, Appl. Math. Inf. Sci., 10 (2016), 2045–2053. doi:10.18576/amis/100606. doi: 10.18576/amis/100606
![]() |
[10] | W. Breckner, Stetigkeitsaussagen fur eine Klasse verallgemeinerter konvexer funktionen in topologischen linearen R aumen, Pub. Inst. Math., 23 (1978), 13–20. |
[11] |
P. Cerone, S. Dragomir, J. Roumeliotis, Some Ostrowski type inequalities for n-time differentiable mappings and applications, Demonstratio Math, 32 (1999), 697–712. doi:org/10.1515/dema-1999-0404. doi: 10.1515/dema-1999-0404
![]() |
[12] |
M. Gordji, M. Delavar, M. De La Sen, On φ-convex functions, J. Math. Inequal., 10 (2016), 173–183. doi:10.7153/jmi-10-15. doi: 10.7153/jmi-10-15
![]() |
[13] | S. Dragomir, Ostrowski-Type inequality for Lebesgue integral: A survey of recent results, Aust. J. Math. Anal. Appl., 14 (2017), 1–287. |
[14] |
S. Dragomir, An Ostrowski Type inequality for convex functions, Univ. Beograd. Publ. Elektrotehn, 16 (2005), 12–25. doi:10.2298/PETF0516012D. doi: 10.2298/PETF0516012D
![]() |
[15] |
S. Dragomir, On some new inequalities of Hermite-Hadamard type for m-convex functions, Tamkang J. Math., 1 (2002), 55–65. doi:10.5556/j.tkjm.33.2002.304. doi: 10.5556/j.tkjm.33.2002.304
![]() |
[16] |
M. Grinalatt, J. Linnainmaa, Jensen's Inequality, parameter uncertainty and multiperiod investment, Rev. Asset Pricing St., 1 (2011), 1–34. doi:10.1093/rapstu/raq001. doi: 10.1093/rapstu/raq001
![]() |
[17] |
M. A. Hanson, On sufficiency of the Kuhn-Tucker conditions, J. Math. Anal. Appl., 80 (1981), 545–550. doi:10.1016/0022-247X(81)90123-2. doi: 10.1016/0022-247X(81)90123-2
![]() |
[18] |
H. Hudzik, L. Maligranda, Some remarks on s−convex functions, Aequationes Math., 48 (1994), 100–111. doi:10.1007/BF01837981. doi: 10.1007/BF01837981
![]() |
[19] |
S. Jain, K. Mehrez, D. Baleanu, P. Agarwal, Certain Hermite–Hadamard inequalities for logarithmically convex functions with applications, Mathematics, 7 (2019), 63. doi: 10.3390/math7020163. doi: 10.3390/math7020163
![]() |
[20] |
X. Li, J. Dong, Q. Liu, Lipschitz B-vex functions and nonsmooth programming, J. Optimiz. Theory. App., 3 (1997), 557–573. doi:10.1023/A:1022643129733. doi: 10.1023/A:1022643129733
![]() |
[21] |
W. Liu, W. Wen, J. Park, Hermite-Hadamard type Inequalities for MT-convex functions via classical integrals and fractional integrals, J. Nonlinear Sci. Appl., 9 (2016), 766–777. doi:10.22436/jnsa.009.03.05. doi: 10.22436/jnsa.009.03.05
![]() |
[22] |
O. Mangasarian, Pseudo-Convex Functions, SIAM. J. Control, 3 (1965), 281–290. doi:10.1137/0303020. doi: 10.1137/0303020
![]() |
[23] |
B. Meftah, New Ostrowski's inequalties, Revista Colombiana de Matemáticas, 51 (2017), 57–69. doi:10.15446/recolma.v51n1.66835. doi: 10.15446/recolma.v51n1.66835
![]() |
[24] |
K. Mehrez, P. Agarwal, New Hermite–Hadamard type integral inequalities for convex functions and their applications, J. Comput. Appl. Math., 350 (2019), 274–285. doi:10.1016/j.cam.2018.10.022. doi: 10.1016/j.cam.2018.10.022
![]() |
[25] |
S. Mohan, S. Neogy, On invex sets and preinvex functions, J. Math. Anal. Appl., 189 (1995), 901–908. doi:10.1006/jmaa.1995.1057. doi: 10.1006/jmaa.1995.1057
![]() |
[26] | A. Ostrowski, Uber die Absolutabweichung einer differentienbaren Funktionen von ihren Integralmittelwert, Comment. Math. Hel., 10 (1938), 226–227. |
[27] |
M. Özdemir, C. Yildiz, A. Akdemir, E. Set, On some inequalities for s-convex functions and applications, J. Inequal. Appl., 48 (2013), 1–11. doi:10.1186/1029-242X-2013-333. doi: 10.1186/1029-242X-2013-333
![]() |
[28] | J. Pecaric, F. Proschan, Y. Tong, Convex functions, partial orderings, and statistical applications, Mathematics in Science and Engineering, Academic Press, Inc., Boston, 187, 1992. doi: 10.1016/s0076-5392(08)x6162-4. |
[29] |
J. Ruel, M. Ayres, Jensen's inequality predicts effects of environmental variations, Trends Ecol. Evol., 9 (1999), 361–366. doi:10.1016/s0169-5347(99)01664-x. doi: 10.1016/s0169-5347(99)01664-x
![]() |
[30] |
M. Sarikaya, H. Filiz, M. Kiris, On some generalized integral inequalities for Riemann Lioville Fractional Integral, Filomat, (2015), 1307–1314. doi:10.2298/FIL1506307S. doi: 10.2298/FIL1506307S
![]() |
[31] |
E. Set, New inequalities of Ostrowski type for mapping whose derivatives are s-convex in the second sense via fractional integrals, Comput. Math. Appl., 63 (2012), 1147–1154. doi:10.1016/j.camwa.2011.12.023. doi: 10.1016/j.camwa.2011.12.023
![]() |
[32] |
M. Tunç, Ostrowski type inequalities via h-convex functions with applications to special means, J. Inequal. Appl., 326 (2013), 1–10. doi:10.1186/1029-242X-2013-326. doi: 10.1186/1029-242X-2013-326
![]() |
[33] |
S. Varoˆsanec, On h-convexity, J. Math. Anal. Appl., 1 (2007), 303–311. doi:10.1016/j.jmaa.2006.02.086. doi: 10.1016/j.jmaa.2006.02.086
![]() |
[34] |
M. Vivas-Cortez, M. A. Ali, H Budak, H. Kalsoom, P. Agarwal, Some New Hermite–Hadamard and Related Inequalities for Convex Functions via (p,q)-Integral, Entropy, 23 (2021), 828. doi:10.3390/e23070828. doi: 10.3390/e23070828
![]() |
[35] |
M. Vivas, C. García, Ostrowski Type inequalities for functions whose derivatives are (m,h1,h2)-convex, Appl. Math. Inf. Sci., 1 (2017), 79–86. doi:10.18576/amis/110110. doi: 10.18576/amis/110110
![]() |
[36] |
M. Vivas, Féjer Type inequalities for (s,m)-convex functions in the second sense, Appl. Math. Inf. Sci., 5 (2016), 1689–1696. doi:10.18576/amis/100507. doi: 10.18576/amis/100507
![]() |
[37] |
Y. C. Rangel-Oliveros, M. J. Vivas-Cortez, Ostrowski type inequalities for functions whose second derivative are convex generalized, Appl. Math. Inform. Sci., 6 (2018), 1117–1126. doi:10.18576/amis/120606. doi: 10.18576/amis/120606
![]() |
[38] |
E. Youness, E-convex sets, E-convex functions and E-convex programming, J. Optimiz. Theory. App., 102 (1999), 439–450. doi:10.1023/A:1021792726715. doi: 10.1023/A:1021792726715
![]() |
[39] |
X. X. You, M. A. Ali, H. Budak, P. Agarwal, Y. M. Chu, Extensions of Hermite–Hadamard inequalities for harmonically convex functions via generalized fractional integrals, J. Inequal. Appl., 102 (2021). doi:10.1186/s13660-021-02638-3. doi: 10.1186/s13660-021-02638-3
![]() |
1. | Abdul Wakil Baidar, Mehmet Kunt, Some Hermite–Hadamard type inequalities for GA ‐ s ‐convex functions in the fourth sense , 2023, 46, 0170-4214, 5466, 10.1002/mma.8846 | |
2. | Fatih HEZENCİ, A Note on Fractional Midpoint Type Inequalities for Co-ordinated (s1, s2)-Convex Functions, 2022, 43, 2587-2680, 477, 10.17776/csj.1088703 | |
3. | Hasan KARA, Hüseyin BUDAK, Muhammad Aamir ALİ, Fatih HEZENCİ, On inequalities of Simpson's type for convex functions via generalized fractional integrals, 2022, 71, 1303-5991, 806, 10.31801/cfsuasmas.1004300 | |
4. | A. Senguttuvan, D. Mohankumar, R. R. Ganapathy, K. R. Karthikeyan, Coefficient Inequalities of a Comprehensive Subclass of Analytic Functions With Respect to Symmetric Points, 2022, 16, 1823-8343, 437, 10.47836/mjms.16.3.03 | |
5. | Muhammad Samraiz, Maria Malik, Saima Naheed, Ahmet Ocak Akdemir, Error estimates of Hermite‐Hadamard type inequalities with respect to a monotonically increasing function, 2023, 46, 0170-4214, 14527, 10.1002/mma.9334 | |
6. | YANRONG AN, MUHAMMAD AAMIR ALI, CHENCHEN XU, WEI LIU, FANGFANG SHI, LOCAL FRACTIONAL OSTROWSKI-TYPE INEQUALITIES FOR GENERALIZED s-φ-CONVEX FUNCTION ON FRACTAL SETS, 2025, 33, 0218-348X, 10.1142/S0218348X25500203 |