Loading [Contrib]/a11y/accessibility-menu.js
Research article

Ostrowski type inequalities via some exponentially convex functions with applications

  • Received: 16 October 2019 Accepted: 14 January 2020 Published: 21 January 2020
  • MSC : 26A15, 26A51, 26D10

  • In this paper, we obtain ostrowski type inequalities for exponentially convex function and exponentially s-convex function in second sense. Applications to some special means are also obtain. Here we extend the results of some previous investigations.

    Citation: Naila Mehreen, Matloob Anwar. Ostrowski type inequalities via some exponentially convex functions with applications[J]. AIMS Mathematics, 2020, 5(2): 1476-1483. doi: 10.3934/math.2020101

    Related Papers:

    [1] Hengxiao Qi, Muhammad Yussouf, Sajid Mehmood, Yu-Ming Chu, Ghulam Farid . Fractional integral versions of Hermite-Hadamard type inequality for generalized exponentially convexity. AIMS Mathematics, 2020, 5(6): 6030-6042. doi: 10.3934/math.2020386
    [2] Wei Gao, Artion Kashuri, Saad Ihsan Butt, Muhammad Tariq, Adnan Aslam, Muhammad Nadeem . New inequalities via n-polynomial harmonically exponential type convex functions. AIMS Mathematics, 2020, 5(6): 6856-6873. doi: 10.3934/math.2020440
    [3] Attazar Bakht, Matloob Anwar . Ostrowski and Hermite-Hadamard type inequalities via $ (\alpha-s) $ exponential type convex functions with applications. AIMS Mathematics, 2024, 9(10): 28130-28149. doi: 10.3934/math.20241364
    [4] Anjum Mustafa Khan Abbasi, Matloob Anwar . Ostrowski type inequalities for exponentially s-convex functions on time scale. AIMS Mathematics, 2022, 7(3): 4700-4710. doi: 10.3934/math.2022261
    [5] Yu-Pei Lv, Ghulam Farid, Hafsa Yasmeen, Waqas Nazeer, Chahn Yong Jung . Generalization of some fractional versions of Hadamard inequalities via exponentially $ (\alpha, h-m) $-convex functions. AIMS Mathematics, 2021, 6(8): 8978-8999. doi: 10.3934/math.2021521
    [6] Muhammad Tariq, Soubhagya Kumar Sahoo, Jamshed Nasir, Hassen Aydi, Habes Alsamir . Some Ostrowski type inequalities via $ n $-polynomial exponentially $ s $-convex functions and their applications. AIMS Mathematics, 2021, 6(12): 13272-13290. doi: 10.3934/math.2021768
    [7] Attazar Bakht, Matloob Anwar . Hermite-Hadamard and Ostrowski type inequalities via $ \alpha $-exponential type convex functions with applications. AIMS Mathematics, 2024, 9(4): 9519-9535. doi: 10.3934/math.2024465
    [8] Gültekin Tınaztepe, Sevda Sezer, Zeynep Eken, Sinem Sezer Evcan . The Ostrowski inequality for $ s $-convex functions in the third sense. AIMS Mathematics, 2022, 7(4): 5605-5615. doi: 10.3934/math.2022310
    [9] Atiq Ur Rehman, Ghulam Farid, Sidra Bibi, Chahn Yong Jung, Shin Min Kang . $k$-fractional integral inequalities of Hadamard type for exponentially $(s, m)$-convex functions. AIMS Mathematics, 2021, 6(1): 882-892. doi: 10.3934/math.2021052
    [10] Hu Ge-JiLe, Saima Rashid, Muhammad Aslam Noor, Arshiya Suhail, Yu-Ming Chu . Some unified bounds for exponentially $tgs$-convex functions governed by conformable fractional operators. AIMS Mathematics, 2020, 5(6): 6108-6123. doi: 10.3934/math.2020392
  • In this paper, we obtain ostrowski type inequalities for exponentially convex function and exponentially s-convex function in second sense. Applications to some special means are also obtain. Here we extend the results of some previous investigations.


    Let $ \curlyvee:[h_1, h_2]\rightarrow\mathbb{R} $ be a differentiable mapping on $ (h_1, h_2) $ whose derivative $ \curlyvee':((h_1, h_2)\rightarrow\mathbb{R} $ is bounded on $ (h_1, h_2) $, i.e., $ |\curlyvee'(l)|\leq M $ for all $ l\in (h_1, h_2) $. Then the following inequality holds:

    $ \begin{equation} \curlyvee(l)-\frac{1}{h_2-h_1}\int_{h_1}^{h_2}\curlyvee(t)dt\leq \frac{M}{h_2-h_1}\left[ \frac{(l-h_1)^2+(h_2-l)^2}{2}\right] , \end{equation} $ (1.1)

    for all $ l\in [h_1, h_2] $. Many authors find the inequality (1.1) for other generalized convex functions. For more results and details see [1,3,4,5,6,8,9,10].

    Awan et al. [2] introduced following new class of convex functions.

    Definition 1.1. ([2]) A function $ \curlyvee: \mathcal{H}\subseteq \mathbb{R}\rightarrow \mathbb{R} $ is called exponentially convex, if

    $ \begin{equation} \curlyvee(\tau h_1+(1-\tau)h_2)\leq \tau\frac{\curlyvee(h_1)}{e^{\alpha h_1}}+(1-\tau)\frac{\curlyvee(h_2)}{e^{\alpha h_2}}, \end{equation} $ (1.2)

    for all $ h_1, h_2\in \mathcal{H} $, $ \tau\in[0, 1] $ and $ \alpha\in \mathbb{R} $. If the inequality (1.2) is in reversed order then $ \curlyvee $ is called exponentially concave.

    Mehreen and Anwar [7] introduced an other class of functions as:

    Definition 1.2. ([7]) Let $ s\in(0, 1] $ and $ \mathcal{H}\subset \mathbb{R}_{0} $ be an interval. A function $ \curlyvee:\mathcal{H}\rightarrow \mathbb{R} $ is called exponentially $ s $-convex in the second sense, if

    $ \begin{equation} \curlyvee(\tau h_1+(1-\tau)h_2) \leq \tau^s\frac{\curlyvee(h_1)}{e^{\alpha h_1}}+(1-\tau)^s\frac{\curlyvee(h_2)}{e^{\alpha h_2}}, \end{equation} $ (1.3)

    for all $ h_1, h_2\in \mathcal{H} $, $ \tau\in[0, 1] $ and $ \alpha\in \mathbb{R} $. If (1.3) is in reversed order then $ \curlyvee $ is called exponentially $ s $-concave.

    Example 1.1. A function $ \curlyvee:[0, \infty)\rightarrow \mathbb{R} $, defined by $ \curlyvee(l) = \ln(l) $ for $ s\in(0, 1) $ is an exponentially $ s $-convex in the second sense, for all $ \alpha\leq -1 $.

    Mehreen and Anwar [7] proved following Hadamard's inequality for exponentially $ s $-convex in second sense.

    Theorem 1.2. ([7]) Let $ \curlyvee:\mathcal{H}\subset \mathbb{R}_{0}\rightarrow \mathbb{R} $ be an integrable exponentially $ s $-convex function in the second sense on $ \mathcal{H}^\circ $. Then for $ h_1, h_2\in \mathcal{H} $ with $ h_1 < h_2 $ and $ \alpha\in\mathbb{R} $, we have

    $ \begin{equation} 2^{s-1}\curlyvee\left( \frac{h_1+h_2}{2}\right) \leq \frac{1}{h_2-h_1}\int_{h_1}^{h_2}\frac{\curlyvee(l)}{e^{\alpha l}}dl\leq A_1(\tau)\frac{\curlyvee(h_1)}{e^{\alpha h_1}}+A_2(\tau)\frac{\curlyvee(h_2)}{e^{\alpha h_2}}, \end{equation} $ (1.4)

    where

    $ \begin{equation*} A_1(\tau) = \int_{0}^{1}\frac{\tau^sd\tau}{e^{\alpha (\tau h_1+(1-\tau)h_2)}} \quad {\rm and} \quad A_2(\tau) = \int_{0}^{1}\frac{(1-\tau)^sd\tau}{e^{\alpha (\tau h_1+(1-\tau)h_2)}}. \end{equation*} $

    First we state the following lemma given in [3].

    Lemma 2.1. ([3]) Let $ \curlyvee:\mathcal{H}\rightarrow \mathbb{R} $ be a differentiable mapping on $ \mathcal{H}^\circ $ for $ h_1, h_2\in \mathcal{H} $ with $ h_1 < h_2 $. If $ \curlyvee'\in L_1[h_1, h_2] $, then the following equality holds:

    $ \begin{align} \begin{split} &\curlyvee(l)-\frac{1}{h_2-h_1}\int_{h_1}^{h_2}\curlyvee(t)dt \\ &\leq \frac{(l-h_1)^2}{h_2-h_1}\int_{0}^{1}\tau\curlyvee'(\tau l+(1-\tau)h_1)d\tau-\frac{(h_2-l)^2}{h_2-h_1}\int_{0}^{1}\tau\curlyvee'(\tau l+(1-\tau)h_2)d\tau, \end{split} \end{align} $ (2.1)

    for each $ l\in [h_1, h_2] $.

    Now we prove the following theorem.

    Theorem 2.1. Let $ \curlyvee:\mathcal{H}\rightarrow \mathbb{R} $ be a differentiable mapping on $ \mathcal{H}^\circ $ such that $ \curlyvee'\in[h_1, h_2] $ for $ h_1, h_2\in \mathcal{H} $ with $ h_1 < h_2 $. If $ \curlyvee' $ is exponentially $ s $-convex in second sense on $ [h_1, h_2] $ for some $ s\in(0, 1] $ and $ |\curlyvee'(l)|\leq M $, $ l\in [h_1, h_2] $, then the following inequality holds:

    $ \begin{align} \begin{split} &\left| \curlyvee(l)-\frac{1}{h_2-h_1}\int_{h_1}^{h_2}\curlyvee(t)dt\right| \\ &\leq \frac{M}{h_2-h_1}\left[\frac{(l-h_1)^2}{e^{\alpha l}(s+2)}+\frac{(l-h_1)^2}{e^{\alpha h_1}(s+1)(s+2)}+\frac{(h_2-l)^2}{e^{\alpha l}(s+2)}+\frac{(h_2-l)^2}{e^{\alpha h_2}(s+1)(s+2)} \right], \end{split} \end{align} $ (2.2)

    for each $ l\in [h_1, h_2] $.

    Proof. Using Lemma 2.1 and since $ \curlyvee' $ is exponentially $ s $-convex, we have

    $ \begin{align} \begin{split} &\left| \curlyvee(l)-\frac{1}{h_2-h_1}\int_{h_1}^{h_2}\curlyvee(t)dt\right| \\ &\leq \frac{(l-h_1)^2}{h_2-h_1}\int_{0}^{1}\tau|\curlyvee'(\tau l+(1-\tau)h_1)|d\tau+\frac{(h_2-l)^2}{h_2-h_1}\int_{0}^{1}\tau|\curlyvee'(\tau l+(1-\tau)h_2)|d\tau \\ & \leq\frac{(l-h_1)^2}{h_2-h_1}\int_{0}^{1}\tau\left[\tau^s\frac{|\curlyvee'(l)|}{e^{\alpha l}}+(1-\tau)^s\frac{|\curlyvee'(h_1)|}{e^{\alpha h_1}} \right]d\tau \\ & \quad +\frac{(h_2-l)^2}{h_2-h_1}\int_{0}^{1}\tau\left[\tau^s\frac{|\curlyvee'(l)|}{e^{\alpha l}}+(1-\tau)^s\frac{|\curlyvee'(h_2)|}{e^{\alpha h_2}} \right]d\tau \\ & \leq \frac{M(l-h_1)^2}{h_2-h_1}\left[\frac{1}{e^{\alpha l}(s+2)}+\frac{1}{e^{\alpha h_1}(s+1)(s+2)} \right] \\ & \quad +\frac{M(h_2-l)^2}{h_2-h_1}\left[\frac{1}{e^{\alpha l}(s+2)}+\frac{1}{e^{\alpha h_2}(s+1)(s+2)} \right] \\ & = \frac{M}{h_2-h_1}\left[\frac{(l-h_1)^2}{e^{\alpha l}(s+2)}+\frac{(l-h_1)^2}{e^{\alpha h_1}(s+1)(s+2)}+\frac{(h_2-l)^2}{e^{\alpha l}(s+2)}+\frac{(h_2-l)^2}{e^{\alpha h_2}(s+1)(s+2)} \right]. \end{split} \end{align} $ (2.3)

    Since

    $ \begin{equation*} \int_{0}^{1}\tau^{s+1}d\tau = \frac{1}{s+2} \quad {\rm and} \quad \int_{0}^{1}\tau(1-\tau)^sd\tau = \frac{1}{(s+1)(s+2)}. \end{equation*} $

    This completes the proof.

    Remark 2.1. In Theorem $ 2.1 $, by letting $ \alpha = 0 $, we get inequality $ 2.1 $ of Theorem $ 2 $ in [1].

    Corollary 2.1. Under the similar considerations of Theorem $ 2.1 $, by taking $ s = 1 $, we get

    $ \begin{align} \begin{split} &\curlyvee(l)-\frac{1}{h_2-h_1}\int_{h_1}^{h_2}\curlyvee(t)dt \\ &\leq \frac{M}{h_2-h_1}\left[\frac{(l-h_1)^2}{3e^{\alpha l}}+\frac{(l-h_1)^2}{6e^{\alpha h_1}}+\frac{(h_2-l)^2}{3e^{\alpha l}}+\frac{(h_2-l)^2}{6e^{\alpha h_2}} \right]. \end{split} \end{align} $ (2.4)

    Remark 2.2. In Corollary $ 2.1 $, by letting $ \alpha = 0 $, we get inequality $ (1.1) $.

    Theorem 2.2. Let $ \curlyvee:\mathcal{H}\rightarrow \mathbb{R} $ be a differentiable mapping on $ \mathcal{H}^\circ $ such that $ \curlyvee'\in[h_1, h_2] $ for $ h_1, h_2\in \mathcal{H} $ with $ h_1 < h_2 $. If $ |\curlyvee'|^q $ is exponentially $ s $-convex in the second sense on $ [h_1, h_2] $ for some $ s\in(0, 1] $, $ p $, $ q > 1 $, $ \frac{1}{p}+\frac{1}{q} = 1 $ and $ |\curlyvee'(l)|\leq M $, $ l\in [h_1, h_2] $, then the following inequality holds:

    $ \begin{align} \begin{split} &\left| \curlyvee(l)-\frac{1}{h_2-h_1}\int_{h_1}^{h_2}\curlyvee(t)dt\right| \\ &\leq \frac{M}{(h_2-h_1)(1+p)^{\frac{1}{p}}} \Bigg[(l-h_1)^2\left(\frac{1}{(s+1)e^{\alpha l}}+\frac{1}{(s+1)e^{\alpha h_1}} \right)^{\frac{1}{q}} \\ & \quad +(h_2-l)^2\left(\frac{1}{(s+1)e^{\alpha l}}+\frac{1}{(s+1)e^{\alpha h_2}} \right)^{\frac{1}{q}} \Bigg], \end{split} \end{align} $ (2.5)

    for each $ l\in [h_1, h_2] $.

    Proof. Let $ p > 1 $. From Lemma 2.1 and using H$ \ddot{o} $lder's inequality, we obtain

    $ \begin{align} \begin{split} &\left| \curlyvee(l)-\frac{1}{h_2-h_1}\int_{h_1}^{h_2}\curlyvee(t)dt\right| \\ &\leq \frac{(l-h_1)^2}{h_2-h_1}\int_{0}^{1}\tau|\curlyvee'(\tau l+(1-\tau)h_1)|d\tau+\frac{(h_2-l)^2}{h_2-h_1}\int_{0}^{1}\tau|\curlyvee'(\tau l+(1-\tau)h_2)|d\tau \\ &\leq \frac{(l-h_1)^2}{h_2-h_1}\left(\int_{0}^{1}\tau^pd\tau \right)^{\frac{1}{p}}\left(\int_{0}^{1}|\curlyvee'(\tau l+(1-\tau)h_1)|^q d\tau\right)^{\frac{1}{q}} \\ & \quad +\frac{(h_2-l)^2}{h_2-h_1}\left(\int_{0}^{1}\tau^pd\tau \right)^{\frac{1}{p}}\left(\int_{0}^{1}|\curlyvee'(\tau l+(1-\tau)h_2)|^q d\tau\right)^{\frac{1}{q}}. \end{split} \end{align} $ (2.6)

    Since $ |\curlyvee'|^q $ is exponentially $ s $-convex in the second sense and $ |\curlyvee'(l)|\leq M $, then we have

    $ \begin{align} \begin{split} \int_{0}^{1}|\curlyvee'(\tau l+(1-\tau)h_1)|^q d\tau& = \int_{0}^{1}\left[ \tau^s\frac{|\curlyvee'(l)|^q}{e^{\alpha l}}+(1-\tau)^s\frac{|\curlyvee'(h_1)|^q}{e^{\alpha h_1}}\right] d\tau \\ &\leq \frac{M^q}{(s+1)e^{\alpha l}}+\frac{M^q}{(s+1)e^{\alpha h_2}}, \end{split} \end{align} $ (2.7)

    and

    $ \begin{align} \begin{split} \int_{0}^{1}|\curlyvee'(\tau l+(1-\tau)h_2)|^q d\tau& = \int_{0}^{1}\left[ \tau^s\frac{|\curlyvee'(l)|^q}{e^{\alpha l}}+(1-\tau)^s\frac{|\curlyvee'(h_2)|^q}{e^{\alpha h_1}}\right] d\tau \\ &\leq \frac{M^q}{(s+1)e^{\alpha l}}+\frac{M^q}{(s+1)e^{\alpha h_2}}. \end{split} \end{align} $ (2.8)

    Hence using $ (2.7) $ and $ (2.8) $ in $ (2.6) $, we get $ (2.5) $

    Remark 2.3. In Theorem $ 2.2 $, by letting $ \alpha = 0 $, we get inequality $ 2.2 $ of Theorem $ 3 $ in [1].

    Corollary 2.2. Under the assumptions of Theorem $ 2.2 $, by taking $ s = 1 $, we get

    $ \begin{align} \begin{split} &\left| \curlyvee(l)-\frac{1}{h_2-h_1}\int_{h_1}^{h_2}\curlyvee(t)dt\right| \\ &\leq \frac{M}{(h_2-h_1)(1+p)^{\frac{1}{p}}} \Bigg[(l-h_1)^2\left(\frac{1}{2e^{\alpha l}}+\frac{1}{2e^{\alpha h_1}} \right)^{\frac{1}{q}} +(h_2-l)^2\left(\frac{1}{2e^{\alpha l}}+\frac{1}{2e^{\alpha h_2}} \right)^{\frac{1}{q}} \Bigg]. \end{split} \end{align} $ (2.9)

    Remark 2.4. In Corollary 2.2, by letting $ \alpha = 0 $, we get result for convex function.

    Theorem 2.3. Let $ \curlyvee:\mathcal{H}\rightarrow \mathbb{R} $ be a differentiable mapping on $ \mathcal{H}^\circ $ such that $ \curlyvee'\in[h_1, h_2] $ for $ h_1, h_2\in \mathcal{H} $ with $ h_1 < h_2 $. If $ |\curlyvee'|^q $ is exponentially $ s $-convex in second sense on $ [h_1, h_2] $ for some $ s\in(0, 1] $, $ q\geq 1 $ and $ |\curlyvee'(l)|\leq M $, $ l\in [h_1, h_2] $, then the following inequality holds:

    $ \begin{align} \begin{split} &\left| \curlyvee(l)-\frac{1}{h_2-h_1}\int_{h_1}^{h_2}\curlyvee(t)dt\right| \\ &\leq \frac{M}{(h_2-h_1)(2)^{1-\frac{1}{q}}} \Bigg[(l-h_1)^2\left(\frac{1}{(s+2)e^{\alpha l}}+\frac{1}{(s+1)(s+2)e^{\alpha h_1}} \right)^{\frac{1}{q}} \\ & \quad +(h_2-l)^2\left(\frac{1}{(s+2)e^{\alpha l}}+\frac{1}{(s+1)(s+2)e^{\alpha h_2}} \right)^{\frac{1}{q}} \Bigg], \end{split} \end{align} $ (2.10)

    for each $ l\in [h_1, h_2] $.

    Proof. Let $ p > 1 $. From Lemma 2.1 and using power mean inequality, we obtain

    $ \begin{align} \begin{split} &\left| \curlyvee(l)-\frac{1}{h_2-h_1}\int_{h_1}^{h_2}\curlyvee(t)dt\right| \\ &\leq \frac{(l-h_1)^2}{h_2-h_1}\int_{0}^{1}\tau|\curlyvee'(\tau l+(1-\tau)h_1)|d\tau+\frac{(h_2-l)^2}{h_2-h_1}\int_{0}^{1}\tau|\curlyvee'(\tau l+(1-\tau)h_2)|d\tau \\ &\leq \frac{(l-h_1)^2}{h_2-h_1}\left(\int_{0}^{1}\tau d\tau \right)^{1-\frac{1}{q}}\left(\int_{0}^{1}\tau|\curlyvee'(\tau l+(1-\tau)h_1)|^q d\tau\right)^{\frac{1}{q}} \\ & \quad +\frac{(h_2-l)^2}{h_2-h_1}\left(\int_{0}^{1}\tau d\tau \right)^{1-\frac{1}{q}}\left(\int_{0}^{1}\tau|\curlyvee'(\tau l+(1-\tau)h_2)|^q d\tau\right)^{\frac{1}{q}}. \end{split} \end{align} $ (2.11)

    Since $ |\curlyvee'|^q $ is exponentially $ s $-convex in the second sense and $ |\curlyvee'(l)|\leq M $, then we have

    $ \begin{align} \begin{split} \int_{0}^{1}\tau|\curlyvee'(\tau l+(1-\tau)h_1)|^q d\tau& = \int_{0}^{1}\tau\left[ \tau^s\frac{|\curlyvee'(l)|^q}{e^{\alpha l}}+(1-\tau)^s\frac{|\curlyvee'(h_1)|^q}{e^{\alpha h_1}}\right] d\tau \\ &\leq \frac{M^q}{(s+2)e^{\alpha l}}+\frac{M^q}{(s+1)(s+2)e^{\alpha h_1}}, \end{split} \end{align} $ (2.12)

    and

    $ \begin{align} \begin{split} \int_{0}^{1}\tau|\curlyvee'(\tau l+(1-\tau)h_2)|^q d\tau& = \int_{0}^{1}\tau\left[ \tau^s\frac{|\curlyvee'(l)|^q}{e^{\alpha l}}+(1-\tau)^s\frac{|\curlyvee'(h_2)|^q}{e^{\alpha h_2}}\right] d\tau \\ &\leq \frac{M^q}{(s+2)e^{\alpha l}}+\frac{M^q}{(s+1)(s+2)e^{\alpha h_2}}. \end{split} \end{align} $ (2.13)

    Hence using $ (2.12) $ and $ (2.13) $ in $ (2.11) $, we get $ (2.10) $

    Remark 2.5. In Theorem $ 2.3 $, by letting $ \alpha = 0 $, we get inequality $ (2.3) $ of Theorem $ 4 $ in [1].

    Corollary 2.3. Under the assumptions of Theorem $ 2.3 $, by taking $ s = 1 $, we get

    $ \begin{align} \begin{split} &\left| \curlyvee(l)-\frac{1}{h_2-h_1}\int_{h_1}^{h_2}\curlyvee(t)dt\right| \\ &\leq \frac{M}{(h_2-h_1)(2)^{1-\frac{1}{q}}} \Bigg[(l-h_1)^2\left(\frac{1}{3e^{\alpha l}}+\frac{1}{6e^{\alpha h_1}} \right)^{\frac{1}{q}} +(h_2-l)^2\left(\frac{1}{3e^{\alpha l}}+\frac{1}{6e^{\alpha h_2}} \right)^{\frac{1}{q}} \Bigg]. \end{split} \end{align} $ (2.14)

    Remark 2.6. In Corollary 2.3, by letting $ \alpha = 0 $, we get result for convex function.

    Remark 2.7. From previous inequalities, we can obtain several midpoint type inequalities by setting $ l = \frac{h_1+h_2}{2} $. However, the details are omitted for interested reader.

    Theorem 2.4. Let $ \curlyvee:\mathcal{H}\rightarrow \mathbb{R} $ be a differentiable mapping on $ \mathcal{H}^\circ $ such that $ \curlyvee'\in[h_1, h_2] $ for $ h_1, h_2\in \mathcal{H} $ with $ h_1 < h_2 $. If $ |\curlyvee'|^q $ is exponentially $ s $-concave on $ [h_1, h_2] $, $ p $, $ q > 1 $, $ \frac{1}{p}+\frac{1}{q} = 1 $, then the following inequality holds:

    $ \begin{align} \begin{split} &\left| \curlyvee(l)-\frac{1}{h_2-h_1}\int_{h_1}^{h_2}\curlyvee(t)dt\right| \\ &\leq \frac{2^{\frac{s-1}{q}}}{(h_2-h_1)(1+p)^{\frac{1}{p}}} \Bigg[(l-h_1)^2\left| \curlyvee'\left(\frac{l+h_1}{2}\right) \right| +(h_2-l)^2\left| \curlyvee'\left(\frac{l+h_2}{2}\right) \right| \Bigg], \end{split} \end{align} $ (2.15)

    for each $ l\in [h_1, h_2] $.

    Proof. Let $ p > 1 $. From Lemma 2.1 and using H$ \ddot{o} $lder's inequality, we obtain

    $ \begin{align} \begin{split} &\left| \curlyvee(l)-\frac{1}{h_2-h_1}\int_{h_1}^{h_2}\curlyvee(t)dt\right| \\ &\leq \frac{(l-h_1)^2}{h_2-h_1}\int_{0}^{1}\tau|\curlyvee'(\tau l+(1-\tau)h_1)|d\tau+\frac{(h_2-l)^2}{h_2-h_1}\int_{0}^{1}\tau|\curlyvee'(\tau l+(1-\tau)h_2)|d\tau \\ &\leq \frac{(l-h_1)^2}{h_2-h_1}\left(\int_{0}^{1}\tau^pd\tau \right)^{\frac{1}{p}}\left(\int_{0}^{1}|\curlyvee'(\tau l+(1-\tau)h_1)|^q d\tau\right)^{\frac{1}{q}} \\ & \quad +\frac{(h_2-l)^2}{h_2-h_1}\left(\int_{0}^{1}\tau^pd\tau \right)^{\frac{1}{p}}\left(\int_{0}^{1}|\curlyvee'(\tau l+(1-\tau)h_2)|^q d\tau\right)^{\frac{1}{q}}. \end{split} \end{align} $ (2.16)

    Since $ |\curlyvee'| $ is exponentially $ s $-concave and from inequality (1.4), we have

    $ \begin{align} \begin{split} \int_{0}^{1}|\curlyvee'(\tau l+(1-\tau)h_1)|^q d\tau\geq 2^{s-1}\left| \curlyvee'\left(\frac{l+h_1}{2}\right) \right|^q, \end{split} \end{align} $ (2.17)

    and

    $ \begin{align} \begin{split} \int_{0}^{1}|\curlyvee'(\tau l+(1-\tau)h_2)|^q d\tau\geq 2^{s-1}\left| \curlyvee'\left(\frac{l+h_2}{2}\right) \right|^q. \end{split} \end{align} $ (2.18)

    Using inequalities (2.18) and (2.17) in (2.16), we get (2.15).

    Remark 2.8. If one takes $ l = \frac{h_1+h_2}{2} $ in (2.15) then one gets inequality $ (2.8) $ in [1].

    Similarly, by letting $ s = 1 $ in (2.15) then one gets inequality $ (2.9) $ in [1].

    Consider some special means of two positive numbers $ h_1, h_2 $, $ h_1 < h_2 $:

    $ {\rm (1).} $ The arithmetic mean

    $ \begin{equation*} A(h_1, h_2) = \frac{h_1+h_2}{2}. \end{equation*} $

    $ {\rm (2).} $ The Identric mean

    $ \begin{align} \begin{split} I(h_1, h_2)& = \left\{ \begin{array}{ll} \frac{1}{e}\left( \frac{h_2^{h_2}}{h_1^{h_1}}\right)^\frac{1}{h_2-h_1} , & \hbox{$h_1\neq h_2$ } \\ h_1, & \hbox{ $h_1 = h_2$ .} \end{array} \right. \end{split} \end{align} $

    where $ h_1, h_2 > 0 $.

    $ {\rm (3).} $ The $ p $-logarithmic mean

    $ \begin{equation*} L_p(h_1, h_2) = \left( \frac{h_2^{p+1}-h_1^{p+1}}{(p+1)(h_2-h_1)}\right)^{\frac{1}{p}} , \ p\in \mathbb{R}\setminus\{-1, 0\}. \end{equation*} $

    Proposition 3.1. Let $ 0 < h_1 < h_2 $, $ q\geq 1 $ and $ 0 < s < 1 $. Then we have

    $ \begin{align} \begin{split} &|A^s(h_1, h_2)-L^s_s(h_1, h_2)| \\ &\leq\frac{M}{(h_2-h_1)(2)^{1-\frac{1}{q}}} \Bigg[(l-h_1)^2\left(\frac{1}{(s+2)e^{\alpha l}}+\frac{1}{(s+1)(s+2)e^{\alpha h_1}} \right)^{\frac{1}{q}} \\ & \quad +(h_2-l)^2\left(\frac{1}{(s+2)e^{\alpha l}}+\frac{1}{(s+1)(s+2)e^{\alpha h_2}} \right)^{\frac{1}{q}} \Bigg]. \end{split} \end{align} $ (3.1)

    Proof. the result holds by letting $ l = \frac{h_1+h_2}{2} $ in (2.10) with exponentially $ s $-convex function in second sense $ \curlyvee:(0, \infty)\rightarrow \mathbb{R} $, $ \curlyvee(l) = l^s $ for all $ \alpha\leq -1 $.

    Proposition 3.2. Let $ 0 < h_1 < h_2 $, $ q\geq 1 $ and $ 0 < s < 1 $. Then we have

    $ \begin{align} \begin{split} &|\ln A(h_1, h_2)-\ln I(h_1, h_2)| \\ &\leq\frac{M}{(h_2-h_1)(2)^{1-\frac{1}{q}}} \Bigg[(l-h_1)^2\left(\frac{1}{(s+2)e^{\alpha l}}+\frac{1}{(s+1)(s+2)e^{\alpha h_1}} \right)^{\frac{1}{q}} \\ & \quad +(h_2-l)^2\left(\frac{1}{(s+2)e^{\alpha l}}+\frac{1}{(s+1)(s+2)e^{\alpha h_2}} \right)^{\frac{1}{q}} \Bigg]. \end{split} \end{align} $ (3.2)

    Proof. the result holds by letting $ l = \frac{h_1+h_2}{2} $ in (2.10) with exponentially $ s $-convex function in second sense $ \curlyvee:(0, \infty)\rightarrow \mathbb{R} $, $ \curlyvee(l) = \ln(l) $ for all $ \alpha\leq -1 $.

    Remark 3.1. From Corollary 2.3 one can gets more applications to some special means for exponentially convex functions.

    From Corollaries 2.1, 2.2 and 2.3, we obtained new ostrowski's type inequalities for exponentially convex function. From Theorems 2.1, 2.2, 2.3 and 2.4, we obtained new ostrowski's type inequalities for exponentially $ s $-convex function. Some applications are obtained from Propositions 3.1 and 3.2.

    This research article is supported by National University of Sciences and Technology(NUST), Islamabad, Pakistan.

    The authors declare that there is no interest regarding the publication of this paper.



    [1] M. Alomari, M. Darus, S. S. Dragomir, et al. Ostrowski type inequalities for functions whose derivatives are s-convex in the second sense, Appl. Math. Lett., 23 (2010), 1071-1076. doi: 10.1016/j.aml.2010.04.038
    [2] M. U. Awan, M. A. Noor, K. I. Noor, Hermite-Hadamard inequalities for exponentially convex functions, Appl. Math. Inf. Sci., 12 (2018), 405-409. doi: 10.18576/amis/120215
    [3] P. Cerone, S. S. Dragomir, Ostrowski type inequalities for functions whose derivatives satisfy certain convexity assumptions, Demonstratio Math., 37 (2004), 299-308.
    [4] S. S. Dragomir, Th. M. Rassias, Ostrowski Type Inequalities and Applications in Numerical Integration, Kluwer Academic Publishers, Dordrecht, Boston, London, 2002.
    [5] S. S. Dragomir, Some Companions of Ostrowski's inequality for absplutely continuous functions and applications, Facta Universitatis, Ser. Math. Inform., 19 (2004), 1-16.
    [6] S. S. Dragomir and S. Wang, Applications of Ostrowski's inequality to the estimation of error bounds for some special means and for some numerical quadrature rules, Appl. Math. Lett., 11 (1998), 105-109.
    [7] N. Mehreen, M. Anwar, Hermite-Hadamard type inequalities for exponentially p-convex functions and exponentially s-convex functions in the second sense with applications, J. Inequal. Appl., 2019 (2019), 92.
    [8] M. E. Ozdemir, H. Kavurmacı, E. Set, Ostrowski's type inequalities for (α, m)-convex functions, Kyungpook Math. J., 50 (2010), 371-378. doi: 10.5666/KMJ.2010.50.3.371
    [9] B. G. Pachpatte, On an inequality of Ostrowski type in three independent variables, J. Math. Anal. Appl., 249 (2000), 583-591. doi: 10.1006/jmaa.2000.6913
    [10] E. Set, New inequalities of Ostrowski type for mappings whose derivatives are s-convex in the second sense via fractional integrals, Comput. Math. Appl., 63 (2012), 1147-1154. doi: 10.1016/j.camwa.2011.12.023
  • This article has been cited by:

    1. Anulika Sharma, Ram Naresh Saraswat, 2022, Chapter 6, 978-981-16-5951-5, 57, 10.1007/978-981-16-5952-2_6
    2. Svetlin GEORGİEV, Vahid DARVİSH, Eze NWAEZE, Ostrowski type inequalities via exponentially $s$-convexity on time scales, 2022, 6, 2587-2648, 502, 10.31197/atnaa.1021333
    3. Anjum Mustafa Khan Abbasi, Matloob Anwar, Ostrowski type inequalities for exponentially s-convex functions on time scale, 2022, 7, 2473-6988, 4700, 10.3934/math.2022261
    4. Naila Mehreen, Matloob Anwar, Some new inequalities via s-convex functions on time scales, 2021, 13, 2066-7752, 239, 10.2478/ausm-2021-0014
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4054) PDF downloads(538) Cited by(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog