Citation: Owais Khan, Nabiullah Khan, Kottakkaran Sooppy Nisar, Mohd. Saif, Dumitru Baleanu. Fractional calculus of a product of multivariable Srivastava polynomial and multi-index Bessel function in the kernel F3[J]. AIMS Mathematics, 2020, 5(2): 1462-1475. doi: 10.3934/math.2020100
[1] | Saad Ihsan Butt, Erhan Set, Saba Yousaf, Thabet Abdeljawad, Wasfi Shatanawi . Generalized integral inequalities for ABK-fractional integral operators. AIMS Mathematics, 2021, 6(9): 10164-10191. doi: 10.3934/math.2021589 |
[2] | Haoliang Fu, Muhammad Shoaib Saleem, Waqas Nazeer, Mamoona Ghafoor, Peigen Li . On Hermite-Hadamard type inequalities for n-polynomial convex stochastic processes. AIMS Mathematics, 2021, 6(6): 6322-6339. doi: 10.3934/math.2021371 |
[3] | Tekin Toplu, Mahir Kadakal, İmdat İşcan . On n-Polynomial convexity and some related inequalities. AIMS Mathematics, 2020, 5(2): 1304-1318. doi: 10.3934/math.2020089 |
[4] | Bandar Bin-Mohsin, Muhammad Uzair Awan, Muhammad Zakria Javed, Sadia Talib, Hüseyin Budak, Muhammad Aslam Noor, Khalida Inayat Noor . On some classical integral inequalities in the setting of new post quantum integrals. AIMS Mathematics, 2023, 8(1): 1995-2017. doi: 10.3934/math.2023103 |
[5] | Soubhagya Kumar Sahoo, Fahd Jarad, Bibhakar Kodamasingh, Artion Kashuri . Hermite-Hadamard type inclusions via generalized Atangana-Baleanu fractional operator with application. AIMS Mathematics, 2022, 7(7): 12303-12321. doi: 10.3934/math.2022683 |
[6] | M. Emin Özdemir, Saad I. Butt, Bahtiyar Bayraktar, Jamshed Nasir . Several integral inequalities for (α, s,m)-convex functions. AIMS Mathematics, 2020, 5(4): 3906-3921. doi: 10.3934/math.2020253 |
[7] | Sarah Elahi, Muhammad Aslam Noor . Integral inequalities for hyperbolic type preinvex functions. AIMS Mathematics, 2021, 6(9): 10313-10326. doi: 10.3934/math.2021597 |
[8] | Shuang-Shuang Zhou, Saima Rashid, Muhammad Aslam Noor, Khalida Inayat Noor, Farhat Safdar, Yu-Ming Chu . New Hermite-Hadamard type inequalities for exponentially convex functions and applications. AIMS Mathematics, 2020, 5(6): 6874-6901. doi: 10.3934/math.2020441 |
[9] | Hong Yang, Shahid Qaisar, Arslan Munir, Muhammad Naeem . New inequalities via Caputo-Fabrizio integral operator with applications. AIMS Mathematics, 2023, 8(8): 19391-19412. doi: 10.3934/math.2023989 |
[10] | Muhammad Samraiz, Kanwal Saeed, Saima Naheed, Gauhar Rahman, Kamsing Nonlaopon . On inequalities of Hermite-Hadamard type via n-polynomial exponential type s-convex functions. AIMS Mathematics, 2022, 7(8): 14282-14298. doi: 10.3934/math.2022787 |
The famous Young's inequality, as a classical result, state that: if a,b>0 and t∈[0,1], then
atb1−t≤ta+(1−t)b | (1.1) |
with equality if and only if a=b. Let p,q>1 such that 1/p+1/q=1. The inequality (1.1) can be written as
ab≤app+bqq | (1.2) |
for any a,b≥0. In this form, the inequality (1.2) was used to prove the celebrated Hölder inequality. One of the most important inequalities of analysis is Hölder's inequality. It contributes wide area of pure and applied mathematics and plays a key role in resolving many problems in social science and cultural science as well as in natural science.
Theorem 1 (Hölder inequality for integrals [11]). Let p>1 and 1/p+1/q=1. If f and g are real functions defined on [a,b] and if |f|p,|g|q are integrable functions on [a,b] then
∫ba|f(x)g(x)|dx≤(∫ba|f(x)|pdx)1/p(∫ba|g(x)|qdx)1/q, | (1.3) |
with equality holding if and only if A|f(x)|p=B|g(x)|q almost everywhere, where A and B are constants.
Theorem 2 (Hölder inequality for sums [11]). Let a=(a1,...,an) and b=(b1,...,bn) be two positive n-tuples and p,q>1 such that 1/p+1/q=1. Then we have
n∑k=1akbk≤(n∑k=1apk)1/p(n∑k=1bqk)1/q. | (1.4) |
Equality hold in (1.4) if and only if ap and bq are proportional.
In [10], İşcan gave new improvements for integral ans sum forms of the Hölder inequality as follow:
Theorem 3. Let p>1 and 1p+1q=1. If f and g are real functions defined on interval [a,b] and if |f|p, |g|q are integrable functions on [a,b] then
∫ba|f(x)g(x)|dx≤1b−a{(∫ba(b−x)|f(x)|pdx)1p(∫ba(b−x)|g(x)|qdx)1q+(∫ba(x−a)|f(x)|pdx)1p(∫ba(x−a)|g(x)|qdx)1q} | (1.5) |
Theorem 4. Let a=(a1,...,an) and b=(b1,...,bn) be two positive n-tuples and p,q>1 such that 1/p+1/q=1. Then
n∑k=1akbk≤1n{(n∑k=1kapk)1/p(n∑k=1kbqk)1/q+(n∑k=1(n−k)apk)1/p(n∑k=1(n−k)bqk)1/q}. | (1.6) |
Let E be a nonempty set and L be a linear class of real valued functions on E having the following properties
L1: If f,g∈L then (αf+βg)∈L for all α,β∈R;
L2: 1∈L, that is if f(t)=1,t∈E, then f∈L;
We also consider positive isotonic linear functionals A:L→R is a functional satisfying the following properties:
A1: A(αf+βg)=αA(f)+β A(g) for f,g∈L and α,β∈R;
A2: If f∈L, f(t)≥0 on E then A(f)≥0.
Isotonic, that is, order-preserving, linear functionals are natural objects in analysis which enjoy a number of convenient properties. Functional versions of well-known inequalities and related results could be found in [1,2,3,4,5,6,7,8,9,11,12].
Example 1. i.) If E=[a,b]⊆R and L=L[a,b], then
A(f)=∫baf(t)dt |
is an isotonic linear functional.
ii.)If E=[a,b]×[c,d]⊆R2 and L=L([a,b]×[c,d]), then
A(f)=∫ba∫dcf(x,y)dxdy |
is an isotonic linear functional.
iii.)If (E,Σ,μ) is a measure space with μ positive measure on E and L=L(μ) then
A(f)=∫Efdμ |
is an isotonic linear functional.
iv.)If E is a subset of the natural numbers N with all pk≥0, then A(f)=∑k∈Epkfk is an isotonic linear functional. For example; If E={1,2,...,n} and f:E→R,f(k)=ak, then A(f)=∑nk=1ak is an isotonic linear functional. If E={1,2,...,n}×{1,2,...,m} and f:E→R,f(k,l)=ak,l, then A(f)=∑nk=1∑ml=1ak,l is an isotonic linear functional.
Theorem 5 (Hölder's inequality for isotonic functionals [13]). Let L satisfy conditions L1, L2, and A satisfy conditions A1, A2 on a base set E. Let p>1 and p−1+q−1=1. If w,f,g≥0 on E and wfp,wgq,wfg∈L then we have
A(wfg)≤A1/p(wfp)A1/q(wgq). | (2.1) |
In the case 0<p<1 and A(wgq)>0 (or p<0 and A(wfp)>0), the inequality in (2.1) is reversed.
Remark 1. i.) If we choose E=[a,b]⊆R, L=L[a,b], w=1 on E and A(f)=∫ba|f(t)|dt in the Theorem 5, then the inequality (2.1) reduce the inequality (1.3).
ii.) If we choose E={1,2,...,n}, w=1 on E, f:E→[0,∞),f(k)=ak, and A(f)=∑nk=1ak in the Theorem 5, then the inequality (2.1) reduce the inequality (1.4).
iii.) If we choose E=[a,b]×[c,d],L=L(E), w=1 on E and A(f)=∫ba∫dc|f(x,y)|dxdy in the Theorem 5, then the inequality (2.1) reduce the following inequality for double integrals:
∫ba∫dc|f(x,y)||g(x,y)|dxdy≤(∫ba∫dc|f(x,y)|pdx)1/p(∫ba∫dc|g(x,y)|qdx)1/q. |
The aim of this paper is to give a new general improvement of Hölder inequality for isotonic linear functional. As applications, this new inequality will be rewritten for several important particular cases of isotonic linear functionals. Also, we give an application to show that improvement is hold for double integrals.
Theorem 6. Let L satisfy conditions L1, L2, and A satisfy conditions A1, A2 on a base set E. Let p>1 and p−1+q−1=1. If α,β,w,f,g≥0 on E, αwfg,βwfg,αwfp,αwgq,βwfp,βwgq,wfg∈L and α+β=1 on E, then we have
i.)
A(wfg)≤A1/p(αwfp)A1/q(αwgq)+A1/p(βwfq)A1/q(βwgq) | (3.1) |
ii.)
A1/p(αwfp)A1/q(αwgq)+A1/p(βwfp)A1/q(βwgq)≤A1/p(wfp)A1/q(wgq). | (3.2) |
Proof. ⅰ.) By using of Hölder inequality for isotonic functionals in (2.1) and linearity of A, it is easily seen that
A(wfg)=A(αwfg+βwfg)=A(αwfg)+A(βwfg)≤A1/p(αwfp)A1/q(αwgq)+A1/p(βwfp)A1/q(βwgq). |
ⅱ.) Firstly, we assume that A1/p(wfp)A1/q(wgq)≠0. then
A1/p(αwfp)A1/q(αwgq)+A1/p(βwfp)A1/q(βwgq)A1/p(wfp)A1/q(wgq)=(A(αwfp)A(wfp))1/p(A(αwgq)A(wgq))1/q+(A(βwfp)A(wfp))1/p(A(βwgq)A(wgq))1/q, |
By the inequality (1.1) and linearity of A, we have
A1/p(αwfp)A1/q(αwgq)+A1/p(βwfp)A1/q(βwgq)A1/p(wfp)A1/q(wgq)≤1p[A(αwfp)A(wfp)+A(βwfp)A(wfp)]+1q[A(αwgq)A(wgq)+A(βwgq)A(wgq)]=1. |
Finally, suppose that A1/p(wfp)A1/q(wgq)=0. Then A1/p(wfp)=0 or A1/q(wgq)=0, i.e. A(wfp)=0 or A(wgq)=0. We assume that A(wfp)=0. Then by using linearity of A we have,
0=A(wfp)=A(αwfp+βwfp)=A(αwfp)+A(βwfp). |
Since A(αwf),A(βwf)≥0, we get A(αwfp)=0 and A(βwfp)=0. From here, it follows that
A1/p(αwfp)A1/q(αwgq)+A1/p(βwfp)A1/q(βwgq)=0≤0=A1/p(wfp)A1/q(wgq). |
In case of A(wgq)=0, the proof is done similarly. This completes the proof.
Remark 2. The inequality (3.2) shows that the inequality (3.1) is better than the inequality (2.1).
If we take w=1 on E in the Theorem 6, then we can give the following corollary:
Corollary 1. Let L satisfy conditions L1, L2, and A satisfy conditions A1, A2 on a base set E. Let p>1 and p−1+q−1=1. If α,β,f,g≥0 on E, αfg,βfg,αfp,αgq,βfp,βgq,fg∈L and α+β=1 on E, then we have
i.)
A(fg)≤A1/p(αfp)A1/q(αgq)+A1/p(βfq)A1/q(βgq) | (3.3) |
ii.)
A1/p(αfp)A1/q(αgq)+A1/p(βfp)A1/q(βgq)≤A1/p(fp)A1/q(gq). |
Remark 3. i.) If we choose E=[a,b]⊆R, L=L[a,b], α(t)=b−tb−a,β(t)=t−ab−a on E and A(f)=∫ba|f(t)|dt in the Corollary 1, then the inequality (3.3) reduce the inequality (1.5).
ii.) If we choose E={1,2,...,n}, α(k)=kn,β(k)=n−kn on E, f:E→[0,∞),f(k)=ak, and A(f)=∑nk=1ak in the Theorem1, then the inequality (3.3) reduce the inequality (1.6).
We can give more general form of the Theorem 6 as follows:
Theorem 7. Let L satisfy conditions L1, L2, and A satisfy conditions A1, A2 on a base set E. Let p>1 and p−1+q−1=1. If αi,w,f,g≥0 on E, αiwfg,αiwfp,αiwgq,wfg∈L,i=1,2,...,m, and ∑mi=1αi=1 on E, then we have
i.)
A(wfg)≤m∑i=1A1/p(αiwfp)A1/q(αiwgq) |
ii.)
m∑i=1A1/p(αiwfp)A1/q(αiwgq)≤A1/p(wfp)A1/q(wgq). |
Proof. The proof can be easily done similarly to the proof of Theorem 6.
If we take w=1 on E in the Theorem 6, then we can give the following corollary:
Corollary 2. Let L satisfy conditions L1, L2, and A satisfy conditions A1, A2 on a base set E. Let p>1 and p−1+q−1=1. If αi,f,g≥0 on E, αifg,αifp,αigq,fg∈L,i=1,2,...,m, and ∑mi=1αi=1 on E, then we have
i.)
A(fg)≤m∑i=1A1/p(αifp)A1/q(αigq) | (3.4) |
ii.)
m∑i=1A1/p(αifp)A1/q(αigq)≤A1/p(fp)A1/q(gq). |
Corollary 3 (Improvement of Hölder inequality for double integrals). Let p,q>1 and 1/p+1/q=1. If f and g are real functions defined on E=[a,b]×[c,d] and if |f|p,|g|q∈L(E) then
∫ba∫dc|f(x,y)||g(x,y)|dxdy≤4∑i=1(∫ba∫dcαi(x,y)|f(x,y)|pdx)1/p(∫ba∫dcαi(x,y)|g(x,y)|qdx)1/q, | (3.5) |
where α1(x,y)=(b−x)(d−y)(b−a)(d−c),α2(x,y)=(b−x)(y−c)(b−a)(d−c),α3(x,y)=(x−a)(y−c)(b−a)(d−c),,α4(x,y)=(x−a)(d−y)(b−a)(d−c) on E
Proof. If we choose E=[a,b]×[c,d]⊆R2, L=L(E), α1(x,y)=(b−x)(d−y)(b−a)(d−c),α2(x,y)=(b−x)(y−c)(b−a)(d−c),α3(x,y)=(x−a)(y−c)(b−a)(d−c),α4(x,y)=(x−a)(d−y)(b−a)(d−c) on E and A(f)=∫ba∫dc|f(x,y)|dxdy in the Corollary 1, then we get the inequality (3.5).
Corollary 4. Let (ak,l) and (bk,l) be two tuples of positive numbers and p,q>1 such that 1/p+1/q=1. Then we have
n∑k=1m∑l=1ak,lbk,l≤4∑i=1(n∑k=1m∑l=1αi(k,l)apk,l)1/p(n∑k=1m∑l=1αi(k,l)bqk,l)1/q, | (3.6) |
where α1(k,l)=klnm,α2(k,l)=(n−k)lnm,α3(k,l)=(n−k)(m−l)nm,α4(k,l)=k(m−l)nm on E.
Proof. If we choose E={1,2,...,n}×{1,2,...,m}, α1(k,l)=klnm,α2(k,l)=(n−k)lnm,α3(k,l)=(n−k)(m−l)nm,α4(k,l)=k(m−l)nm on E, f:E→[0,∞),f(k,l)=ak,l, and A(f)=∑nk=1∑ml=1ak,l in the Theorem1, then we get the inequality (3.6).
In [14], Sarıkaya et al. gave the following lemma for obtain main results.
Lemma 1. Let f:Δ⊆R2→R be a partial differentiable mapping on Δ=[a,b]×[c,d] in R2with a<b and c<d. If ∂2f∂t∂s∈L(Δ), then the following equality holds:
f(a,c)+f(a,d)+f(b,c)+f(b,d)4−1(b−a)(d−c)∫ba∫dcf(x,y)dxdy−12[1b−a∫ba[f(x,c)+f(x,d)]dx+1d−c∫dc[f(a,y)+f(b,y)]dy]=(b−a)(d−c)4∫10∫10(1−2t)(1−2s)∂2f∂t∂s(ta+(1−t)b,sc+(1−s)d)dtds. |
By using this equality and Hölder integral inequality for double integrals, Sar\i kaya et al. obtained the following inequality:
Theorem 8. Let f:Δ⊆R2→R be a partial differentiable mapping on Δ=[a,b]×[c,d] in R2with a<b and c<d. If |∂2f∂t∂s|q,q>1, is convex function on the co-ordinates on Δ, then one has the inequalities:
|f(a,c)+f(a,d)+f(b,c)+f(b,d)4−1(b−a)(d−c)∫ba∫dcf(x,y)dxdy−A|≤(b−a)(d−c)4(p+1)2/p[|fst(a,c)|q+|fst(a,d)|q+|fst(b,c)|q+|fst(b,d)|q4]1/q, | (4.1) |
where
A=12[1b−a∫ba[f(x,c)+f(x,d)]dx+1d−c∫dc[f(a,y)+f(b,y)]dy], |
1/p+1/q=1 and fst=∂2f∂t∂s.
If Theorem 8 are resulted again by using the inequality (3.5), then we get the following result:
Theorem 9. Let f:Δ⊆R2→R be a partial differentiable mapping on Δ=[a,b]×[c,d] in R2with a<b and c<d. If |∂2f∂t∂s|q,q>1, is convex function on the co-ordinates on Δ, then one has the inequalities:
|f(a,c)+f(a,d)+f(b,c)+f(b,d)4−1(b−a)(d−c)∫ba∫dcf(x,y)dxdy−A|≤(b−a)(d−c)41+1/p(p+1)2/p{[4|fst(a,c)|q+2|fst(a,d)|q+2|fst(b,c)|q+|fst(b,d)|q36]1/q+[2|fst(a,c)|q+|fst(a,d)|q+4|fst(b,c)|q+2|fst(b,d)|q36]1/q+[2|fst(a,c)|q+4|fst(a,d)|q+|fst(b,c)|q+2|fst(b,d)|q36]1/q+[|fst(a,c)|q+2|fst(a,d)|q+2|fst(b,c)|q+4|fst(b,d)|q36]1/q}, | (4.2) |
where
A=12[1b−a∫ba[f(x,c)+f(x,d)]dx+1d−c∫dc[f(a,y)+f(b,y)]dy], |
1/p+1/q=1 and fst=∂2f∂t∂s.
Proof. Using Lemma 1 and the inequality (3.5), we find
|f(a,c)+f(a,d)+f(b,c)+f(b,d)4−1(b−a)(d−c)∫ba∫dcf(x,y)dxdy−A|≤(b−a)(d−c)4∫10∫10|1−2t||1−2s||fst(ta+(1−t)b,sc+(1−s))|dtds≤(b−a)(d−c)4{(∫10∫10ts|1−2t|p|1−2s|pdtds)1/p×(∫10∫10ts|fst(ta+(1−t)b,sc+(1−s))|qdtds)1/q+(∫10∫10t(1−s)|1−2t|p|1−2s|pdtds)1/p×(∫10∫10t(1−s)|fst(ta+(1−t)b,sc+(1−s))|qdtds)1/q+(∫10∫10(1−t)s|1−2t|p|1−2s|pdtds)1/p×(∫10∫10(1−t)s|fst(ta+(1−t)b,sc+(1−s))|qdtds)1/q+(∫10∫10(1−t)(1−s)|1−2t|p|1−2s|pdtds)1/p×(∫10∫10(1−t)(1−s)|fst(ta+(1−t)b,sc+(1−s))|qdtds)1/q}. | (4.3) |
Since |fst|q is convex function on the co-ordinates on Δ, we have for all t,s∈[0,1]
|fst(ta+(1−t)b,sc+(1−s))|q≤ts|fst(a,c)|q+t(1−s)|fst(a,d)|q+(1−t)s|fst(a,c)|q+(1−t)(1−s)|fst(a,c)|q | (4.4) |
for all t,s∈[0,1]. Further since
∫10∫10ts|1−2t|p|1−2s|pdtds=∫10∫10t(1−s)|1−2t|p|1−2s|pdtds=∫10∫10(1−t)s|1−2t|p|1−2s|pdtds | (4.5) |
=∫10∫10(1−t)(1−s)|1−2t|p|1−2s|pdtds=14(p+1)2, | (4.6) |
a combination of (4.3) - (4.5) immediately gives the required inequality (4.2).
Remark 4. Since η:[0,∞)→R,η(x)=xs,0<s≤1, is a concave function, for all u,v≥0 we have
η(u+v2)=(u+v2)s≥η(u)+η(v)2=us+vs2. |
From here, we get
I={[4|fst(a,c)|q+2|fst(a,d)|q+2|fst(b,c)|q+|fst(b,d)|q36]1/q+[2|fst(a,c)|q+|fst(a,d)|q+4|fst(b,c)|q+2|fst(b,d)|q36]1/q+[2|fst(a,c)|q+4|fst(a,d)|q+|fst(b,c)|q+2|fst(b,d)|q36]1/q+[|fst(a,c)|q+2|fst(a,d)|q+2|fst(b,c)|q+4|fst(b,d)|q36]1/q}≤2{[6|fst(a,c)|q+3|fst(a,d)|q+6|fst(b,c)|q+3|fst(b,d)|q72]1/q+[3|fst(a,c)|q+6|fst(a,d)|q+3|fst(b,c)|q+6|fst(b,d)|q72]1/q} |
≤4{[|fst(a,c)|q+|fst(a,d)|q+|fst(b,c)|q+|fst(b,d)|q16]1/q |
Thus we obtain
(b−a)(d−c)41+1/p(p+1)2/pI≤(b−a)(d−c)41+1/p(p+1)2/p4{[|fst(a,c)|q+|fst(a,d)|q+|fst(b,c)|q+|fst(b,d)|q16]1/q}≤(b−a)(d−c)4(p+1)2/p{[|fst(a,c)|q+|fst(a,d)|q+|fst(b,c)|q+|fst(b,d)|q4]1/q}. |
This shows that the inequality (4.2) is better than the inequality (4.1).
The aim of this paper is to give a new general improvement of Hölder inequality via isotonic linear functional. An important feature of the new inequality obtained here is that many existing inequalities related to the Hölder inequality can be improved. As applications, this new inequality will be rewritten for several important particular cases of isotonic linear functionals. Also, we give an application to show that improvement is hold for double integrals. Similar method can be applied to the different type of convex functions.
This research didn't receive any funding.
The author declares no conflicts of interest in this paper.
[1] | P. Agarwal, J. Nieto, Some fractional integral formulas for the Mittag-Leffler type function with four parameters, Open Math., 13 (2015), 537-546. |
[2] |
P. Agarwal, S. V. Rogosin, J. J. Trujillo, Certain fractional integral operators and the generalized multi-index Mittag-Leffler functions, Proceedings-Mathematical Sciences, 125 (2015), 291-306. doi: 10.1007/s12044-015-0243-6
![]() |
[3] | S. Ahmed, On the generalized fractional integrals of the generalized Mittag-Leffler function, Springer Plus, 3 (2014), 198. |
[4] | D. Baleanu, P. Agarwal, S. D. Purohit, Certain fractional integral formulas inmvolving the product of generalized Bessel functions, The Scientific World Journal, 2013 (2013), 1-9. |
[5] | A. Erdélyi, W. Magnus, F. Oberhettinger, et al. Higher Transcendental Functions, New York, 1953. |
[6] | C. Fox, The G and H functions as symmetrical Fourier kernels, Trans. Amer. Math. Soc., 98 (1961), 395-429. |
[7] | R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000. |
[8] |
M. Kamarujjama, O. Khan, Computation of new class of integrals involving generalized Galue type Struve function, J. Comput. Appl. Math., 351 (2019), 228-236. doi: 10.1016/j.cam.2018.11.014
![]() |
[9] |
M. Kamarujjama, N. U. Khan, O. Khan, The generalized p-k-Mittag-Leffler function and solution of fractional kinetic equations, J. Anal., 27 (2019), 1029-1046. doi: 10.1007/s41478-018-0160-z
![]() |
[10] | M. Kamarujjama, N. U. Khan, O. Khan, et al. Extended type k-Mittag-Leffler function and its applications, Int. J. Appl. Comput. Math., 5 (2019), 72. |
[11] | M. Kamarujjama, N. U. Khan, O. Khan, Fractional calculus of generalized p-k-Mittag-Leffler function using Marichev-Saigo-Maeda operators, Arab J. Math. Sci., 25 (2019), 156-168. |
[12] | O. Khan, N. U. Khan, D. Baleanu, et al. Computable solution of fractional kinetic equations using Mathieu-type series, Adv. Differ. Equ-NY, 2019 (2019), 234. |
[13] | A. A. Kilbas, M. Saigo, Fractional calculus of the H-function, Fukuoka Univ. Sci. Rep., 28 (1998), 41-51. |
[14] |
A. A. Kilbas, N. Sebastian, Generalized fractional integration of Bessel function of the first kind, Integr. Transf. Spec. F., 19 (2008), 869-883. doi: 10.1080/10652460802295978
![]() |
[15] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, Elsevier Amsterdam, 2006. |
[16] | V. Kiryakova, The special functions of fractional calculus as generalized fractional calculus operators of some basic functions, Comput. Math. Appl., 59 (2010), 128-141. |
[17] | O. L. Marichev, Volterra equation of Mellin convolution type with a horn function in the kernel, Izvestiya Akademii Nauk BSSR Seriya Fiziko-Matematicheskikh Nauk, 1 (1974), 128-129. |
[18] | V. N. Mishra, D. L. Suthar, S. D. Purohit, Marichev-Saigo-Maeda fractional calculus operators, Srivastava polynomials and generalized Mittag-Leffler function, Cogent Mathematics & Statistics, 4 (2107), 1320830. |
[19] | K. S. Nisar, S. D Purohit, R. K. Parmar, Fractional calculus and certain integrals of generalized multi-index Bessel function, arXiv:1706.08039, 2017. |
[20] | S. D. Purohit, D. L. Suthar, S. L. Kalla, Marichev Saigo Maeda fractional integration operators of Bessel, Matematiche (Catania), 61 (2012), 21-32. |
[21] | M. Saigo, A remark on integral operators involving the gauss hypergeometric functions, Math. Rep. Coll. Gen. Educ. Kyushu Univ., 11 (1978), 135-143. |
[22] | M. Saigo, N. Maeda, More generalization of fractional calculus. In: P. Rusev, I. Dimovski and V. Kiryakova (Eds.) Proceedings of the 2nd International Workshop on Transform Methods and Special Functions, Varna 1996, Institute of Mathematics and Informatics of the Bulgarian Academy of Sciences, Sofia, 1998. |
[23] | R. K. Saxena, K. Nishimoto, N-fractional calculus of generalized Mittag-Leffler functions, J. Fract. Calc., 37 (2010), 43-52. |
[24] | R. K. Saxena, T. K. Pogány, On fractional integration formulae for Aleph function, Appl. Math. Comput., 218 (2011), 985-990. |
[25] | R. K. Saxena, J. Ram, D. Kumar, Generalized fractional integration of the product of Bessel functions of first kind, Proceeding of the 9th Annual Conference SSFA, 9 (2010), 15-27. |
[26] | R. K. Saxena, M. Saigo, Certain properties of the fractional calculus associated with generalized Mittag-Leffler function, Fract. Calc. Appl. Anal., 8 (2005), 141-154. |
[27] | H. M. Srivastava, A contour integral involving Fox's H-function, Indian J. Math., 14 (1972), 1-6. |
[28] | H. M. Srivastava, M. Garg, Some integrals involving a general class of polynomials and the multivariable H-function, Rev. Roum. Phys., 32 (1987), 685-692. |
[29] | H. M. Srivastava, P. W. Karlsson, Multiple Gaussian hypergeometric series, Ellis Horwood Chichester, 1985. |
[30] | H. M. Srivastava, R. K. Saxena, Operators of fractional integration and their applications, Appl. Math. Comput., 118 (2001), 1-52. |
[31] | D. L. Suthar, H. Hababenon, H. Tadesse, Generalized fractional calculus formulas for a product of Mittag-Leffler function and multivariable polynomials, Int. J. Appl. Comput. Math., 4 (2018), 1-12. |
[32] | D. L. Suthar, S. D. Purohit, R. K. Parmar, Generalized fractional calculus of the multi-index Bessel function, Math. Nat. Sci., 1 (2017), 26-32. |
[33] | E. M. Wright, The asymptotic expansion of the generalized hypergeometric function, J. Lond. Math. Soc., 10 (1935), 257-270. |
1. | Aljawhara H. Almuqrin, Sherif M. E. Ismaeel, C. G. L. Tiofack, A. Mohamadou, Badriah Albarzan, Weaam Alhejaili, Samir A. El-Tantawy, Solving fractional physical evolutionary wave equations using advanced techniques, 2025, 2037-4631, 10.1007/s12210-025-01320-w | |
2. | Samir A. El-Tantawy, Sahibzada I. H. Bacha, Muhammad Khalid, Weaam Alhejaili, Application of the Tantawy Technique for Modeling Fractional Ion-Acoustic Waves in Electronegative Plasmas having Cairns Distributed-Electrons, Part (I): Fractional KdV Solitary Waves, 2025, 55, 0103-9733, 10.1007/s13538-025-01741-w |