
In this study, we use quantum calculus to prove Hermite-Hadamard and Ostrowski type inequalities for s-convex functions in the second sense. The newly proven results are also shown to be an extension of comparable results in the existing literature. Furthermore, it is provided that how the newly discovered inequalities can be applied to special means of real numbers.
Citation: Suphawat Asawasamrit, Muhammad Aamir Ali, Hüseyin Budak, Sotiris K. Ntouyas, Jessada Tariboon. Quantum Hermite-Hadamard and quantum Ostrowski type inequalities for s-convex functions in the second sense with applications[J]. AIMS Mathematics, 2021, 6(12): 13327-13346. doi: 10.3934/math.2021771
[1] | Khalid K. Ali, K. R. Raslan, Amira Abd-Elall Ibrahim, Mohamed S. Mohamed . On study the fractional Caputo-Fabrizio integro differential equation including the fractional q-integral of the Riemann-Liouville type. AIMS Mathematics, 2023, 8(8): 18206-18222. doi: 10.3934/math.2023925 |
[2] | Xiulin Hu, Lei Wang . Positive solutions to integral boundary value problems for singular delay fractional differential equations. AIMS Mathematics, 2023, 8(11): 25550-25563. doi: 10.3934/math.20231304 |
[3] | Manal Elzain Mohamed Abdalla, Hasanen A. Hammad . Solving functional integrodifferential equations with Liouville-Caputo fractional derivatives by fixed point techniques. AIMS Mathematics, 2025, 10(3): 6168-6194. doi: 10.3934/math.2025281 |
[4] | Chuanli Wang, Biyun Chen . An hp-version spectral collocation method for fractional Volterra integro-differential equations with weakly singular kernels. AIMS Mathematics, 2023, 8(8): 19816-19841. doi: 10.3934/math.20231010 |
[5] | Idris Ahmed, Sotiris K. Ntouyas, Jessada Tariboon . Separated boundary value problems via quantum Hilfer and Caputo operators. AIMS Mathematics, 2024, 9(7): 19473-19494. doi: 10.3934/math.2024949 |
[6] | Reny George, Sina Etemad, Ivanka Stamova, Raaid Alubady . Existence of solutions for [p,q]-difference initial value problems: application to the [p,q]-based model of vibrating eardrums. AIMS Mathematics, 2025, 10(2): 2321-2346. doi: 10.3934/math.2025108 |
[7] | Weerawat Sudsutad, Wicharn Lewkeeratiyutkul, Chatthai Thaiprayoon, Jutarat Kongson . Existence and stability results for impulsive (k,ψ)-Hilfer fractional double integro-differential equation with mixed nonlocal conditions. AIMS Mathematics, 2023, 8(9): 20437-20476. doi: 10.3934/math.20231042 |
[8] | Ravi P. Agarwal, Bashir Ahmad, Hana Al-Hutami, Ahmed Alsaedi . Existence results for nonlinear multi-term impulsive fractional q-integro-difference equations with nonlocal boundary conditions. AIMS Mathematics, 2023, 8(8): 19313-19333. doi: 10.3934/math.2023985 |
[9] | Sadia Arshad, Iram Saleem, Ali Akgül, Jianfei Huang, Yifa Tang, Sayed M Eldin . A novel numerical method for solving the Caputo-Fabrizio fractional differential equation. AIMS Mathematics, 2023, 8(4): 9535-9556. doi: 10.3934/math.2023481 |
[10] | Zaid Laadjal, Fahd Jarad . Existence, uniqueness and stability of solutions for generalized proportional fractional hybrid integro-differential equations with Dirichlet boundary conditions. AIMS Mathematics, 2023, 8(1): 1172-1194. doi: 10.3934/math.2023059 |
In this study, we use quantum calculus to prove Hermite-Hadamard and Ostrowski type inequalities for s-convex functions in the second sense. The newly proven results are also shown to be an extension of comparable results in the existing literature. Furthermore, it is provided that how the newly discovered inequalities can be applied to special means of real numbers.
Jackson [25] introduced quantum calculus. Then, it was later developed by Al-Salam who started fitting the concept of q–fractional calculus [7]. Agarwal continued studying certain q–fractional integrals and derivatives [3]. Furthermore, some researchers have also studied q–difference equations (for more details, see [1,2,5,6,8,9,15,23,24,26,27,33,39,40]). On the one hand, fractional differential equations have gained a considerable importance due to their applications in various fields of sciences, such as physics, mechanics, chemistry, and engineering (see [17,18,19,20,21]). In [22], El-Sayed discussed a class of nonlinear functional differential equations of arbitrary orders, and Lakshmikantham [30] initiated the basic theory for fractional functional differential equations.
In 1996, Delbosco et al. investigated Dβu(t)=ℏ(t,u) with initial condition: u(a)=η, where a>0, η∈R and β∈J:=(0,1) [16]. In 2005, Bai et al. presented the boundary problem:
Dβ0u(t)=h(t,u(t)), |
under conditions: u(0)=u(1)=0, where t∈J, 0<β≤2, and Dβ0 is the Riemann-Liouville standard derivative [11]. In 2008, Qiu et al. studied the equation with conditions: u(0)=u′(1)=u″(1)=0, where t∈J, 2<β<3, Dβ0+ is the Caputo derivative and h:ˉJ×[0,∞)→[0,∞), here ˉJ:=[0,1], is such that limt→0+h(t,.)=∞ [34]. In 2010, Agarwal et al. considered the singular fractional Dirichlet problem:
Dβu(t)+h(t,u(t),Dγu(t))=0, |
with the boundary value condition: u(0)=u(1)=0, where β∈(1,2], γ>0, β−γ≥1, h∈Car(ˉJ×(0,∞)×R), h is positive and singular at t=0, and D is the usual Riemann-Liouville derivative [4]. In 2012, Cabada et al. investigated the existence of positive solution for the following nonlinear fractional differential equation:
{Dβu(t)=h(t,u(t))u(0)=u″(1)=0,u(1)=∫10u(ξ)dξ, |
where 0<t<1, 2<β<3 and h:ˉJ×[0,∞)→[0,∞) is a continuous function [13]. In 2014, Li reviewed the problem:
CDβu(t)+h(t,u(t),Dγu(t))=0, |
for each t∈J, under conditions: u(0)=u′(0)=0 and u′(1)=CDβu(1), where β∈(2,3), γ∈J, h:(0,1]×R2→R is continuous function that may be singular at t=0, CDβ is the standard Caputo derivative [31]. In 2016, the fractional integro-differential equation
Dγu(t)=h(t,u(t),u′(t),Dαu(t),Iβu(t)), |
under conditions u′(0)=u(η), u(1)=∫ν0u(ξ)dξ and u(i)(0)=0 for i=2,…,[γ]−1 was investigated, where t∈J, γ∈[2,3), u∈ˉB=C1(ˉJ), α,η,ν∈J, β>1 and h:ˉJ×R4→R is a function such that h(t,.,.,.,.) is singular at some point t∈ˉJ [44]. In 2017, Shabibi et al. studied the singular fractional integro-differential equation:
CDβu(t)+h(t,u(t),u′(t),cDγu(t),μ(u(t)))=0, |
where μ(u(t))=∫t0f(ξ)u(ξ)dξ, under boundary conditions: u(0)=u′(0) and u(1)=CDγu(t), where t∈J, u∈ˉB, β>2, 0<γ,a<1, f∈ˉL=L1(ˉJ), ‖f‖1=m, h(t,u1,u2,u3,u4) is singular at some points t∈ˉJ and CDβ is the Caputo fractional derivative [45]. In 2020, Samei considered the singular system of q–differential equations:
{Dα1qu(t)=g1(t,u(t),v(t)),Dα2qv(t)=g2(t,u(t),v(t)), |
with conditions: u(0)=v(0)=0, u(i)(0)=v(i)(0)=0, for i=2,…,n−1 and
u(1)=[Iγ1q(w1(t)u(t))]t=1,v(1)=[Iγ2q(w2(t)v(t))]t=1, |
where Dαjq is the q–derivative of fractional order αj, αj∈(n,n+1] with n≥3, Iγjq is the q–integral of fractional order γj, γj≥1, gj∈C(E), gj are singular at t=0 and satisfy the local Carathéodory condition on E=(0,1]×(0,∞)×(0,∞), and wj∈ˉL are non-negative such that
[Iγjq(wj(t))]t=1∈[0,12), |
for j=1,2 [37]. Also, Liang et al. [32] investigated a nonlinear problem of regular and singular fractional q–differential equation:
cDαqu(t)=h(t,u(t),u′(t),cDβqu(t)), |
with conditions: u(0)=c1u(1), u′(0)=c2cDβqu(1) and u(k)(0)=0 for all 2≤k≤n−1, here n−1<α<n with n≥3, β,q,c1∈J, 0<c2<Γq(2−β), function h is a Lκ-Carathéodory and h(t,u1,u2,u3) may be singular. Similarly, some related results have been obtained in [28,36,38]. Dassios et al. used a generalized system of differential equations of fractional order:
Tλdλ(t)dt=−Hdλ(t)+KE(ωref−ωCol(t)), |
to incorporate memory into an electricity market model by constructing the fractional-order dynamical model, studying its solutions, and providing the closed formulas of solutions, where dλ(t)dt, λ(t) are the marginal electricity price and electricity price, respectively, ωref represents the reference frequency, ωCol(t) represents the frequency of the Col, that is, ωref−ωCol(t) is the deviation frequency of the CoI with respect to the reference frequency, Tλ is the time constant, Hd is the deviation with respect to a perfect tracking integrator, and for a low-pass filter, it is Hd=1, and KE can be used as feedback gain [14].
Using the ideas from these works, we investigate the existence of solutions for the following nonlinear pointwise defined fractional q–integro-differential equation:
Dαqu(t)=w(t,u(t),Dβqu(t),∫t0f(ξ)u(ξ)dξ,φ(u(t))), | (1.1) |
for q∈J, under boundary conditions: ∫b0u(r)dr=0, u′(1)=u(a) and u(j)(0)=0 for j≥2, here α≥2, a,b,β∈J, φ:ˉB→ˉB is a map such that
‖φ(u1)−φ(u2)‖≤c1‖u1−u2‖+c2‖u′1−u′2‖, |
for some non-negative real numbers c1 and c2 belonging to [0,∞) and all u1,u2∈ˉB, where Dαq and Dβq are the Caputo fractional q–derivatives of order α and β, respectively, which are defined in (2.11), and w∈ˉL is singular at some points t∈ˉJ.
In fact, the non-constant real-valued function u on the interval I=[a,b] is said to be singular on I, if it is continuous, and there exists a set S⊆I of measure 0 such that for all t outside of S, u′(t) exists, and it is zero, that is, the derivative of u vanish almost everywhere. We say that, Dαqu(t)+g(t)=0 is a pointwise defined equation on ˉJ if there exists set S⊂ˉJ such that the measure of Sc is zero, and the equation holds on S [44].
In Section 2, we recall some essential definitions of Caputo fractional q–derivative. Section 3 contains our main results of this work, while an example is presented to support the validity of our obtained results. An application with some needed algorithms for the problems are given in Section 4. In Section 5, conclusion is presented.
Throughout the paper, we apply the notations of time scales calculus [12]. The Caputo fractional q–derivative is considered here on
Ts0={0}∪{s:s=s0qℵ}, |
for all ℵ∈N, s0∈R and q∈J. If there is no confusion concerning s0, we denote Ts0 by T. Let p∈R. Let us define [p]q=(1−qp)(1−q)−1 [25]. The q–factorial function (v−w)(ℵ)q with ℵ∈N0 is defined by
(v−w)(ℵ)q=ℵ−1∏k=0(v−wqk),(∀v,w∈R), | (2.1) |
and (v−w)(0)q=1, where N0:={0,1,2,3,…} [2]. Also, for σ∈R, we have:
(v−w)(σ)q=vσ∞∏k=0v−wqkv−wqσ+k,(∀v,w∈R). | (2.2) |
In [10], the authors proved that (v−w)(σ+ν)q=(v−w)(σ)q(v−qσw)(ν)q and
(av−aw)(σ)q=aσ(v−w)(σ)q, |
for each v,w∈R. If w=0, then it is clear that v(σ)=vσ. The q–Gamma function is given by
Γq(v)=(1−q)1−v(1−q)(v−1)q, |
where v∈R∖{⋯,−2,−1,0} [25]. In fact, by using (2.2), we have
Γq(v)=(1−q)1−v∞∏k=01−qk+11−qv+k−1,(∀v∈R). | (2.3) |
Note that, Γq(v+1)=[v]qΓq(v) [10]HY__HY, Lemma 1]. For a function u:T→R, the q–derivative of u, is
Dq[u](t)=(ddt)qu(t)=u(t)−u(qt)(1−q)t, | (2.4) |
for all t∈T∖{0}, and Dq[u](0)=limt→0Dq[u](t) [2]. Also, the higher order q–derivative of the function u is defined by Dnq[u](t)=Dq[Dn−1q[u]](t), for all n≥1, where D0q[u](t)=u(t) [2]. In fact,
Dnq[u](t)=1tn(1−q)nn∑k=0(1−q−n)(k)q(1−q)(k)qqku(tqk), | (2.5) |
for t∈T∖{0} [9].
Remark 2.1. By using Eq (2.1), we can change Eq (2.5) into the following:
Dnq[u](t)=1tn(1−q)nn∑k=0∏k−1i=0(1−qi−n)∏k−1i=0(1−qi+1)qku(tqk). | (2.6) |
The q–integral of the function u is defined by
Iq[u](t)=∫t0u(ξ)dqξ=t(1−q)∞∑k=0qku(tqk), | (2.7) |
for 0≤t≤b, provided that the series is absolutely convergent [2]. If a is in [0,b], then
∫bau(ξ)dqξ=Iq[u](b)−Iq[u](a)=(1−q)∞∑k=0qk[bu(bqk)−au(aqk)], | (2.8) |
whenever the series converges. The operator Inq is given by I0q[u](t)=u(t) and
Inq[u](t)=Iq[In−1q[u]](t), |
for n≥1 and u∈C([0,b]) [2]. It has been proven that
Dq[Iq[u]](t)=u(t),Iq[Dq[u]](t)=u(t)−u(0), |
whenever the function u is continuous at t=0 [2]. The fractional Riemann-Liouville type q–integral of the function u is defined by
Iσq[u](t)=1Γq(σ)∫t0(t−ξ)(σ−1)qu(ξ)dqξ,I0q[u](t)=u(t), | (2.9) |
Remark 2.2. By using Eqs (2.2), (2.3) and (2.7), we obtain:
1Γq(σ)∫t0(t−ξ)(σ−1)qu(ξ)dqξ=1Γq(σ)∫t0tσ−1∞∏i=0t−ξqit−ξqσ+i−1u(ξ)dqξ=tσ(1−q)σ∞∏i=01−qσ+i−11−qi+1∞∑k=0qk∞∏i=01−qk+i1−qσ+k+i−1u(tqk). |
Therefore, we have:
Iσq[u](t)=tσ(1−q)σlimn→∞n∑k=0qkn∏i=0(1−qσ+i−1)(1−qk+i)(1−qi+1)(1−qσ+k+i−1)u(tqk), | (2.10) |
The Caputo fractional q–derivative of the function u is defined by
CDσq[u](t)=I[σ]−σq[D[σ]q[u]](t)=1Γq([σ]−σ)∫t0(t−ξ)([σ]−σ−1)qD[σ]q[u](ξ)dqξ | (2.11) |
for t∈ˉJ and σ>0 [23,35]. It has been proven that
Iνq[Iσq[u]](t)=Iσ+νq[u](t),CDσq[Iσq[u]](t)=u(t), |
where σ,ν≥0 [23]. Also,
Iσq[Dnq[u]](t)=Dnq[Iσq[u]](t)−n−1∑k=0tσ+k−nΓq(σ+k−n+1)Dkq[u](0), |
where σ>0 and n≥1 [23].
Remark 2.3. From Eq (2.3), Remark 2.1, and Eq (2.10) in Remark 2.2, we obtain:
1Γq([σ]−σ)∫t0(t−ξ)([σ]−σ−1)qD[σ]q[u](ξ)dqξ=1Γq([σ]−σ)∫t0t[σ]−σ−1[∞∏i=0t−sqit−sq[σ]−σ−1+i]×(1t[σ](1−q)[σ][σ]∑k=0[k−1∏i=0(1−qi−[σ])(1−qi+1)]qku(xqk))dqs=1tσ(1−q)σ−[σ]∞∑k=0([∞∏i=0(1−q[σ]−σ+i−1)(1−qk+i)(1−qi+1)(1−q[σ]−σ−1+k+i)]×([σ]∑m=0[m−1∏i=0(1−qi−[σ])(1−qi+1)]qmu(tqk+m))). |
Thus, we have:
CDσq[u](t)=1tσ(1−q)σ−[σ]limn→∞n∑k=0([n∏i=0(1−q[σ]−σ+i−1)(1−qk+i)(1−qi+1)(1−q[σ]−σ−1+k+i)]×([σ]∑m=0[m−1∏i=0(1−qi−[σ])(1−qi+1)]qmu(tqk+m))). | (2.12) |
The authors in [41] presented all algorithms and MATLAB code's lines to simplify q–factorial functions (v−w)(n)q, (v−w)(σ)q, Γq(v), Iq[u](t), and some necessary equations.
Lemma 2.4. [27,29] For σ>0, the general solution of the fractional q–differential equation CDσu(t)=0 is given by u(t)=∑n−1i=0eiti, where ei∈R for i=0,1,2,…,n−1 and n=[σ]+1 here [σ] denotes the integer part of the real number σ.
We use the three norms: ‖u‖=supt∈ˉJ|u(t)|,
‖(u,u′)‖∗=max{‖u‖,‖u′‖}, |
and ‖u‖1=∫ˉJ|u(ξ)|dξ in ˉA=C(ˉJ), ˉB=C1(ˉJ), and ˉL=L1(ˉJ), respectively. Let Ψ be the family of nondecreasing functions ψ:[0,∞)→[0,∞) such that ∑∞n=1ψn(t)<∞, for all t>0. Let T:X→X and α:X×X→(0,∞). T is called an α-admissible mapping if α(u1,u2)≥1 implies that α(T(u1),T(u2))≥1 for each u1,u2 in X.
Definition 2.5. [42] Let (X,ρ) be a metric space, where ψ∈Ψ and α:X2→[0,∞) is a map. A self-map T defined on X is called an α-ψ-contraction whenever
α(u1,u2)ρ(T(u1),T(u2))≤ψ(ρ(u1,u2)), |
for each u1,u2∈X.
Lemma 2.6. [42]Let (X,ρ) be a complete metric space and T:X→X be a continuous, α−admissible and α–ψ–contraction, then T has a fixed point whenever there exists u0∈X such that α(u0,T(u0))≥1.
Lemma 2.7. [43,46]If x∈ˉA∩ˉL with Dαqx∈A∩L, then
IαqDαqu(t)=u(t)+n∑i=1citα−i, |
where [α]≤n<[α]+1, and ci is some real number.
Let us first prove the following essential lemma:
Lemma 3.1. Suppose that α≥2, q∈J and g∈ˉL. The solution of the boundary value problem: Dαqu(t)=g(t) with boundary conditions is expressed as:
{u(j)(0)=0;j=2,3,4,…,u′(1)=u(a);∀a∈J,∫b0u(ξ)dξ=0;∀b∈J, |
is
u(t)=∫10Gq(t,ξ)g(ξ)dqξ, |
on a time scale Tt0 where Gq(t,s) is expressed as:
{−A0(t−s)(α−1)q+A1(t)(1−s)(α−2)q+A2(t)(a−s)(α−1)q+A3(t)(b−s)(α)qs≤min{a,b};−A0(t−s)(α−1)q+A1(t)(1−s)(α−2)q+A2(t)(a−s)(α−1)qb≤s≤a;−A0(t−s)(α−1)q+A1(t)(1−s)(α−2)q+A3(t)(b−s)(α)qa≤s≤b;−A0(t−s)(α−1)q+A1(t)(1−s)(α−2)qs≥max{a,b}; | (3.1) |
whenever 0≤s≤t≤1,
{A1(t)(1−s)(α−2)q+A2(t)(a−s)(α−1)q+A3(b−s)(α)qs≤min{a,b};A1(t)(1−s)(α−2)q+A2(t)(a−s)(α−1)qb≤s≤a;A1(t)(1−s)(α−2)q+A3(t)(b−s)(α)qa≤s≤b;A1(t)(1−s)(α−2)qs≥max{a,b}; | (3.2) |
whenever 0≤t≤s≤1. Also
{A0=1Γq(α),A1(t)=b(1−a+t)−μ(a,b)μ(a,b)Γq(α−1),A2(t)=μ(a,b)+b(a+t−1)μ(a,b)Γq(α),A3(t)=μ(a,b)(1−a)+tμ(a,b)Γq(α+1), | (3.3) |
and
μ(a,b)=b(1−a)+b22>0. | (3.4) |
Proof. Consider the problem: Dαqu(t)=g(t). Using Lemma 2.7, it is deduced that u(t)=−Iαqg(t)+c0+c1t, where c0, c1 are some real numbers, and Iαq is Riemann-Liouville type q–integral of order α. Hence, u′(t)=−Iα−1qg(t)+c1 where Iα−1q is a fractional Riemann-Liouville type q–integral of order α−1. By applying condition u′(1)=u(a), we get:
−Iα−1qg(1)+c1=−Iαqg(a)+c0+c1a, |
and so c0=−Iα−1qg(1)+Iαqg(a)+(1−a)c1. one can easily check that
∫b0u(r)dr=−Iα+1qg(b)−bIα−1qg(1)+μIαqg(a)+bc1(1−a)+12c1b2. |
Since ∫b0u(r)dr=0, we get:
c1=1μ(a,b)Iα+1qg(b)+bμ(a,b)Iα−1qg(1)−bμ(a,b)Iα+1qg(a). |
Thus,
c0=−Iα−1qg(1)+Iαqg(a)+1−aμ(a,b)Iα+1qg(b)+b(1−a)μ(a,b)Iα−1qg(1)−b(1−a)μ(a,b)Iαqg(a) |
and so
u(t)=−Iαqg(t)−Iα−1qg(1)+Iαqg(a)+1−aμ(a,b)Iα+1qg(b)+b(1−a)μ(a,b)Iα−1qg(1)−b(1−a)μ(a,b)Iαqg(a)+tμ(a,b)Iα+1qg(b)+btμ(a,b)Iα−1qg(1)−btμ(a,b)Iαqg(a). |
Hence,
u(t)=−Iαqg(t)+A1(t)Iα−1qg(1)+A2(t)Iαqg(a)+A3(t)Iα+1qg(b). |
Now, some easy evaluations show us that u(t)=∫10Gq(t,s)g(s)dqs.
Remark 3.2. Note that, the mappings Gq(t,s) and ∂Gq(t,s)∂t are continuous with respect to t. Let w be a map on ˉJ×ˉB2 such that w is singular at some points of ˉJ. Let us define the function Θu:ˉB→ˉB by
Θu(t)=−Iαqw(t,u(t),Dβqu(t),∫t0f(ξ)u(ξ)dξ,φ(u(t)))+A1(t)Iα−1qw(1,u(1),Dβqu(1),∫10f(ξ)u(ξ)dξ,φ(u(1)))+A2(t)Iαqw(a,u(a),Dβqu(a),∫a0f(ξ)u(ξ)dξ,φ(u(a)))+A3(t)Iα+1qw(b,u(b),Dβqu(b),∫b0f(ξ)u(ξ)dξ,φ(u(b))), |
for all t∈ˉJ, where Iαq is the fractional Riemann-Liouville q–integral of order α which is defined in (2.9), and Dβq is the Caputo fractional q–derivative of order β which is defined in (2.11). Then, by taking the first order derivative related to t, we have:
Θ′u(t)=∫10∂Gq(t,ξ)∂tw(s,u(s),Dβqu(s),∫s0f(ξ)u(ξ)dξ,φ(u(s)))dqs=−Iα−1qw(t,u(t),Dβqu(t),∫t0f(ξ)u(ξ)dξ,φ(u(t)))+bμ(a,b)Iα−1qw(1,u(1),Dβqu(1),∫10f(ξ)u(ξ)dξ,φ(u(1)))+bμ(a,b)Iαqw(a,u(a),Dβqu(a),∫a0f(ξ)u(ξ)dξ,φ(u(a)))+1μ(a,b)Iα+1qw(b,u(b),Dβqu(b),∫b0f(ξ)u(ξ)dξ,φ(u(b))). |
Obviously, the singular pointwise defined Eq (1.1) has a solution iff the map Θu has a fixed point.
Now, we give our main result as follows:
Theorem 3.3. Assume that α≥2, [α]=n−1, a,b,q∈J, f∈ˉL with ‖f‖1=m, φ:ˉB→R is such that
|φ(u(t))−φ(v(t))|≤c1|u(t)−v(t)|+c2|u′(t)−v′(t)|, |
for some c1,c2∈[0,∞). Let Ω:ˉJ×ˉB5→R be a mapping which is singular on some points ˉJ and
|w(t,u1,…,u5)−w(t,v1,…,v5)|≤k0∑i=1μi(t)Ωi(u1−v1,…,u5−v5), |
for all u1,u2,v1,v2∈ˉB and almost all t∈ˉJ, where k0 is a natural number, μi:ˉJ→R+, ˆμi∈ˉL,
ˆμi(s)=(1−s)α−2qμi(s), |
Ωi:ˉB5→R+ is a nondecreasing mapping with respect to all components with
Ωi(ν,ν,ν,ν,ν)νγi→pi, |
as ν→0+ for some γi>0, pi∈R+ with 1≤i≤k0. Suppose that
|w(t,u1,…,u5)|≤h(t)T(u1,…,u5), |
for all (u1,…,u5)∈ˉB5 and almost all t∈ˉJ, where h:ˉJ→R+, ˆh∈ˉL, T:ˉB5→R+ is a nondecreasing mapping respect all their components such that
limν→0+T(ν,ν,ν,ν,ν)ν∈[0,τ), |
whereτ=(ℓ‖ˆh‖1Mα,a,b)−1,
ℓ=max{1,1Γq(2−β),m,c1+c2}, |
μ(a,b) define by Eq (3.4) in Lemma 3.1 and
Mα,a,b=max{1Γq(α)+b(2−a)−μ(a,b)μ(a,,b)Γq(α−1)+μ(a,b)+abμ(a,b)Γq(α)+μ(a,b)(1−a)+1μ(a,b)Γq(α+1),1Γq(α−1)+bμ(a,b)Γq(α−1)+bμ(a,b)Γq(α)+1μ(a,b)Γq(α+1)}. |
If
Mα,a,bk0∑i=1piℓγi‖ˆμi‖ˉJ<1, |
then the pointwise defined Eq (1.1) under boundary conditions: u(j)(0)=0 for j≥2, ∫b0u(r)dr=0 and u′(1)=u(a) has a solution.
Proof. Let u,v∈ˉB. Then, we get:
|Θu(t)−Θv(t)|≤|−Iαqw(t,u(t),u′(t),Dβqu(t),∫t0f(r)u(r)dr,φ(u(t)))+A1(t)Iα−1qw(1,u(1),u′(1),Dβqu(1),∫10f(r)u(r)dr,φ(u(1)))+A2(t)Iαqw(a,u(a),u′(a),Dβqu(a),∫a0f(r)u(r)dr,φ(u(a)))+A3(t)Iα+1qw(b,u(b),u′(b),Dβqu(b),∫10f(r)u(r)dr,φ(u(b)))+Iαqw(t,v(t),v′(t),Dβqv(t),∫t0f(r)v(r)dr,φ(v(t)))−A1(t)Iα−1qw(1,v(1),v′(1),Dβqv(1),∫10f(r)v(r)dr,φ(v(1)))−A2(t)Iαqw(a,v(a),v′(a),Dβqv(a),∫a0f(r)v(r)dr,φ(v(a)))−A3(t)Iα+1qw(b,v(b),v′(b),Dβqv(b),∫10f(r)v(r)dr,φ(v(b)))|≤Iαq|w(t,u(t),u′(t),Dβqu(t),∫t0f(r)u(r)dr,φ(u(t)))−w(t,v(t),v′(t),Dβqv(t),∫t0f(r)v(r)dr,φ(v(t)))|+A1(t)[Iα−1q|w(1,u(1),u′(1),Dβqu(1),∫10f(r)u(r)dr,φ(u(1)))−w(1,v(1),v′(1),Dβqv(1),∫10f(r)v(r)dr,φ(v(1)))|]+A2(t)[Iαq|w(a,u(a),u′(a),Dβqu(a),∫a0f(r)u(r)dr,φ(u(a)))−w(a,v(a),v′(a),Dβqv(a),∫a0f(r)v(r)dr,φ(v(a)))|]+A3(t)[Iα+1q|w(b,u(b),u′(b),Dβqu(b),∫10f(r)u(r)dr,φ(u(b)))−w(b,v(b),v′(b),Dβqv(b),∫10f(r)v(r)dr,φ(v(b)))|]≤Iαq(k0∑i=1μi(t)[Ωi(u(t)−v(t),u′(t)−v′(t),Dβqu(t)−Dβqv(t),∫t0f(r)u(r)dr−∫t0f(r)v(r)dr,φ(u(t))−φ(v(t)))])+A1(t)Iα−1q(k0∑i=1μi(1)×[Ωi(u(1)−v(1),u′(1)−v′(1),Dβqu(1)−Dβqv(1),∫10f(r)u(r)dr−∫10f(r)v(r)dr,φ(u(1))−φ(v(1)))])+A2(t)Iαq(k0∑i=1μi(a)×[Ωi(u(a)−v(a),u′(a)−v′(a),Dβqu(a)−Dβqv(a),∫a0f(r)u(r)dr−∫q0f(r)v(r)dr,φ(u(a))−φ(v(a)))])+A3(t)Iα+1q(k0∑i=1μi(b)×[Ωi(u(b)−v(b),u′(b)−v′(b),Dβqu(b)−Dβqv(b),∫b0f(r)u(r)dr−∫b0f(r)v(r)dr,φ(u(b))−φ(v(b)))])≤k0∑i=1Iαq(μi(t)[Ωi(|u(t)−v(t)|,|u′(t)−v′(t)|,|Dβqu(t)−Dβqv(t)|,|∫t0f(r)u(r)dr−∫t0f(r)v(r)dr|,|φ(u(t))−φ(v(t))|)])+A1(t)k0∑i=1Iα−1q(μi(1)×[Ωi(|u(1)−v(1)|,|u′(1)−v′(1)|,|Dβqu(1)−Dβqv(1)|,|∫10f(r)u(r)dr−∫10f(r)v(r)dr|,|φ(u(1))−φ(v(1))|)])+A2(t)k0∑i=1Iαq(μi(a)×[Ωi(|u(a)−v(a)|,|u′(a)−v′(a)|,|Dβqu(a)−Dβqv(a)|,|∫a0f(r)u(r)dr−∫q0f(r)v(r)dr|,|φ(u(a))−φ(v(a))|)])+A3(t)k0∑i=1Iα+1q(μi(b)×[Ωi(|u(b)−v(b)|,|u′(b)−v′(b)|,|Dβqu(b)−Dβqv(b)|,|∫b0f(r)u(r)dr−∫b0f(r)v(r)dr|,|φ(u(b))−φ(v(b))|)]). |
Since Dβqu(t)=I1−βqu′(t) for β∈J, we have
|Dβqu(t)|≤I1−βq|u′(t)|≤‖u′‖I1−βq(1)=‖u′‖Γq(2−β), |
and so
|Dβqu(t)−Dβqv(t)|=|Dβq(u(t)−v(t))|≤‖u′−v′‖Γq(2−β). |
Thus, by considering ξ=‖u−v‖∗, we have:
|Θu(t)−Θv(t)|≤k0∑i=1IαqΩi(‖u−v‖,‖u′−v′‖,‖u′−v′‖Γq(2−β),m‖u−v‖,c1‖u−v‖+c2‖u′−v′‖)+A1(t)k0∑i=1Iα−1q(μi(1)[Ωi(‖u−v‖,‖u′−v′‖,‖u′−v′‖Γq(2−β),m‖u−v‖,c1‖u−v‖+c2‖u′−v′‖)])+A2(t)k0∑i=1Iαq(μi(a)[Ωi(‖u−v‖,‖u′−v′‖,‖u′−v′‖Γq(2−β),m‖u−v‖,c1‖u−v‖+c2‖u′−v′‖)])+A3(t)k0∑i=1Iα+1q(μi(b)[Ωi(‖u−v‖,‖u′−v′‖,‖u′−v′‖Γq(2−β),m‖u−v‖,c1‖u−v‖+c2‖u′−v′‖)])≤k0∑i=1Ωi(ξ,ξ,ξΓq(2−β),mξ,c1ξ+c2ξ)Iαqμi(t)+A1(t)k0∑i=1Ωi(ξ,ξ,ξΓq(2−β),mξ,c1ξ+c2ξ)Iα−1qμi(1)+A2(t)k0∑i=1Ωi(ξ,ξ,ξΓq(2−β),mξ,c1ξ+c2ξ)Iαqμi(a)+A3(t)k0∑i=1Ωi(ξ,ξ,ξΓq(2−β),mξ,c1ξ+c2ξ)Iα+1qμi(b)≤k0∑i=1Ωi(ℓξ,ℓξ,ℓξ,ℓξ,ℓξ)Iαqμi(1)+A1(t)k0∑i=1Ωi(ℓξ,ℓξ,ℓξ,ℓξ,ℓξ)Iα−1qμi(1)+A2(t)k0∑i=1Ωi(ℓξ,ℓξ,ℓξ,ℓξ,ℓξ)Iαqμi(1)+A3(t)k0∑i=1Ωi(ℓξ,ℓξ,ℓξ,ℓξ,ℓξ)Iα+1qμi(1)=A0k0∑i=1‖ˆμi‖1Ωi(ℓξ,ℓξ,ℓξ,ℓξ,ℓξ)+A1(t)k0∑i=1‖ˆμi‖1Ωi(ℓξ,ℓξ,ℓξ,ℓξ,ℓξ)+A2(t)k0∑i=1‖ˆμi‖1Ωi(ℓξ,ℓξ,ℓξ,ℓξ,ℓξ)+A3(t)k0∑i=1‖ˆμi‖1Ωi(ℓξ,ℓξ,ℓξ,ℓξ,ℓξ)=k0∑i=1‖ˆμi‖1Ωi(ℓξ,ℓξ,ℓξ,ℓξ,ℓξ)×[A0+A1(t)+A2(t)+A3(t)]. |
This implies that
‖Θu−Θv‖≤[A0+A1(t)+A2(t)+A3(t)]k0∑i=1‖ˆμi‖1Ωi(ℓξ,ℓξ,ℓξ,ℓξ,ℓξ). |
Assume that u,v∈ˉB. Then, we get:
|Θ′u−Θ′v|≤|−Iα−1qw(t,u(t),u′(t),Dβqu(t),∫t0f(r)u(r)dr,φ(u(t)))+bμ(a,b)Iα−1qw(1,u(1),u′(1),Dβqu(1),∫10f(r)u(r)dr,φ(u(1)))+bμ(a,b)Iαqw(a,u(a),u′(a),Dβqu(a),∫a0f(r)u(r)dr,φ(u(a)))+1μ(a,b)Iα+1qw(b,u(b),u′(b),Dβqu(b),∫b0f(r)u(r)dr,φ(u(b)))+Iα−1qw(t,v(t),v′(t),Dβqv(t),∫t0f(r)v(r)dr,φ(v(t)))−bμ(a,b)Iα−1qw(1,v(1),v′(1),Dβqv(1),∫10f(r)v(r)dr,φ(v(1)))−bμ(a,b)Iαqw(a,v(a),v′(a),Dβqv(a),∫a0f(r)v(r)dr,φ(v(a)))−1μ(a,b)Iα+1qw(b,v(b),v′(b),Dβqv(b),∫b0f(r)v(r)dr,φ(u(b)))|≤Iα−1q|w(t,u(t),u′(t),Dβqu(t),∫t0f(r)u(r)dr,φ(u(t)))−w(t,v(t),v′(t),Dβqv(t),∫t0f(r)v(r)dr,φ(v(t)))|+bμ(a,b)Iα−1q|w(1,u(1),u′(1),Dβqu(1),∫10f(r)u(r)dr,φ(u(1)))−Iα−1qw(1,v(1),v′(1),Dβqv(1),∫10f(r)v(r)dr,φ(v(1)))|+bμ(a,b)Iαq|w(a,u(a),u′(a),Dβqu(a),∫a0f(r)u(r)dr,φ(u(a)))−Iαqw(a,v(a),v′(a),Dβqv(a),∫a0f(r)v(r)dr,φ(v(a)))|+1μ(a,b)Iq3α+1|w(b,u(b),u′(b),Dβqu(b),∫b0f(r)u(r)dr,φ(u(b)))−w(b,v(b),v′(b),Dβqv(b),∫b0f(r)v(r)dr,φ(u(b)))|≤Iα−1qk0∑i=1μi(t)[Ωi(u(t)−v(t),u′(t)−v′(t),Dβqu(t)−Dβqv(t),∫t0f(r)u(r)dr−∫t0f(r)v(r)dr,φ(u(t))−φ(v(t)))]+bμ(a,b)Iα−1qk0∑i=1μi(1)×[Ωi(u(1)−v(1),u′(1)−v′(1),Dβqu(1)−Dβqv(1),∫10f(r)u(r)dr−∫10f(r)v(r)dr,φ(u(1))−φ(v(1)))]+bμ(a,b)Iαqk0∑i=1μi(a)×[Ωi(u(a)−v(a),u′(a)−v′(a),Dβqu(a)−Dβqv(a),∫a0f(r)u(r)dr−∫a0f(r)v(r)dr,φ(u(a))−φ(v(a)))] |
\begin{array}{l} &+ \frac{1}{\mu(a, b)} \mathbb{I}_q^{\alpha+1} \sum\limits_{i = 1}^{k_0} \mu_i(b)\\ & \times \bigg[ \Omega_i \bigg( u(b) - v(b), u'(b) - v'(b), \mathbb{D}_q^{\beta} u(b) - \mathbb{D}_q^{\beta} v(b),\\ & \int_0^b f(r) u(r) \, \mathrm{d}r - \int_0^b f(r) v(r) \, \mathrm{d}r, \varphi(u(b)) - \varphi( v(b)) \bigg)\bigg]\\ & \leq \sum\limits_{i = 1}^{k_0} \mathbb{I}_q^{\alpha -1} \mu_i(t) \bigg[ \Omega_i \bigg( | u(t) - v(t)|, |u'(t)- v'(t)|, | \mathbb{D}_q^{\beta} (u(t) - v(t))|,\\ & \bigg|\int_0^t f(r) (u(r) - v(r) ) \, \mathrm{d}r \bigg|, |\varphi( u(t)) - \varphi(v(t)) | \bigg)\bigg] \\ & + \frac{b}{\mu(a, b)} \sum\limits_{i = 1}^{k_0} \mathbb{I}_q^{\alpha -1} \mu_i(1) \\ & \times \bigg[ \Omega_i \bigg( | u(1) - v(1)|, |u'(1)- v'(1)|, | \mathbb{D}_q^{\beta} (u(1) - v(1))|,\\ & \bigg|\int_0^1 f(r) (u(r) - v(r) ) \, \mathrm{d}r \bigg|, |\varphi( u(1)) - \varphi(v(1)) | \bigg)\bigg] \\ & + \frac{b}{\mu(a, b)} \sum\limits_{i = 1}^{k_0} \mathbb{I}_q^\alpha \mu_i(1) \\ & \times \bigg[ \Omega_i \bigg( | u(1) - v(1)|, |u'(1)- v'(1)|, | \mathbb{D}_q^{\beta} (u(1) - v(1))|,\\ & \bigg|\int_0^1 f(r) (u(r) - v(r) ) \, \mathrm{d}r \bigg|, |\varphi( u(1)) - \varphi(v(1)) | \bigg)\bigg] \\ & + \frac{1}{\mu(a, b)} \sum\limits_{i = 1}^{k_0} \mathbb{I}_q^{\alpha+1} \mu_i(1)\\ & \times \bigg[ \Omega_i \bigg( | u(1) - v(1)|, |u'(1)- v'(1)|, | \mathbb{D}_q^{\beta} (u(1) - v(1))|,\\ & \bigg|\int_0^1 f(r) (u(r) - v(r) ) \, \mathrm{d}r \bigg|, |\varphi( u(1)) - \varphi(v(1)) | \bigg)\bigg] \\ & \leq \sum\limits_{i = 1}^{k_0} \mathbb{I}_q^{\alpha-1} \bigg[ \Omega_i \bigg( \| u(t) - v(t)\|, \|u'(t) - v'(t)\|, \frac{\| u'(t) - v'(t)\|}{\Gamma_q( 2- \beta)}, \\ & m \|u(t)-v(t)\|, c_1 \|u(t) - v(t)\|+ c_2 \|u'(t)-v'(t)\| \bigg) \bigg]\\ & + \frac{b}{\mu(a, b)} \sum\limits_{i = 1}^{k_0} \mathbb{I}_q^{\alpha-1} \bigg[ \Omega_i \bigg( \| u(1) - v(1)\|, \|u'(1) - v'(1)\|, \frac{\| u'(1) - v'(1)\|}{\Gamma_q( 2- \beta)}, \\ & m \|u(1) - v(1)\|, c_1 \| u (1)- v(1)\|+ c_2 \|u'(1) - v'(1)\| \bigg) \bigg]\\ & + \frac{b}{\mu(a, b)} \sum\limits_{i = 1}^{k_0} \mathbb{I}_q^{\alpha} \bigg[ \Omega_i \bigg( \| u(a) - v(a)\|, \|u'(a) - v'(a)\|, \frac{\| u'(a) - v'(a)\|}{\Gamma_q( 2- \beta)}, \\ & m \|u(a) - v(a)\|, c_1 \|u(a) - v(a)\|+ c_2 \|u'(a) - v'(a)\| \bigg) \bigg]\\ & + \frac{1}{\mu(a, b)} \sum\limits_{i = 1}^{k_0} \mathbb{I}_q^{\alpha+1} \bigg[ \Omega_i \bigg( \| u(b) - v(b)\|, \|u'(b) - v'(b)\|, \frac{\| u'(b) - v'(b)\|}{\Gamma_q( 2- \beta)}, \\ & m \|u(b) - v(b)\|, c_1 \|u(b) - v(b)\|+ c_2 \|u'(b) - v'(b)\| \bigg) \bigg]\\ & \leq \sum\limits_{i = 1}^{k_0} \Omega_i \bigg( \xi, \xi, \frac{\xi}{ \Gamma_q(2- \beta)}, m \xi, c_1 \xi + c_2 \xi \bigg) \mathbb{I}_q^{\alpha - 1} \mu_i(t)\\ & + \frac{b}{\mu(a, b)} \sum\limits_{i = 1}^{k_0} \Omega_i \bigg( \xi, \xi, \frac{\xi}{ \Gamma_q(2- \beta)}, m \xi, c_1 \xi + c_2 \xi\bigg) \mathbb{I}_q^{\alpha - 1} \mu_i(1)\\ & + \frac{b}{\mu(a, b)} \sum\limits_{i = 1}^{k_0} \Omega_i \bigg( \xi, \xi, \frac{\xi}{ \Gamma_q(2- \beta)}, m \xi, c_1 \xi+ c_2 \xi \bigg) \mathbb{I}_q^{\alpha } \mu_i(a) \\ & + \frac{1}{\mu(a, b)} \sum\limits_{i = 1}^{k_0} \Omega_i \bigg(\xi, \xi, \frac{\xi}{ \Gamma_q(2- \beta)}, m \xi, c_1 \xi+ c_2 \xi \bigg) \mathbb{I}_q^{\alpha+1} \mu_i(b)\\ & \leq \sum\limits_{i = 1}^{k_0} \Omega_i \bigg( \ell \xi \ell \xi, \ell \xi, \ell \xi, \ell \xi \bigg) \mathbb{I}_q^{\alpha - 1} \mu_i(1)\\ & + \frac{b}{\mu(a, b)} \sum\limits_{i = 1}^{k_0} \Omega_i \bigg( \ell \xi, \ell \xi, \ell \xi, \ell \xi, \ell \xi \bigg) \mathbb{I}_q^{\alpha - 1} \mu_i(1)\\ & + \frac{b}{\mu(a, b)} \sum\limits_{i = 1}^{k_0} \Omega_i \bigg( \ell \xi , \ell \xi , \ell \xi , \ell \xi,\ell \xi \bigg) \mathbb{I}_q^{\alpha } \mu_i(1)\\ & + \frac{1}{\mu(a, b)} \sum\limits_{i = 1}^{k_0} \Omega_i \bigg(\ell \xi, \ell \xi, \ell\xi, \ell \xi, \ell \xi \bigg) \mathbb{I}_q^{\alpha+1} \mu_i(1)\\ & = \frac{1}{\Gamma_q(\alpha-1)} \sum\limits_{i = 1}^{k_0} \|\hat{\mu}_i\|_1 \Omega_i \big(\ell \xi, \ell \xi, \ell \xi, \ell \xi, \ell \xi\big) \\ & + \frac{b}{\mu(a, b) \Gamma_q(\alpha-1 )} \sum\limits_{i = 1}^{k_0} \|\hat{\mu}_i\|_1 \Omega_i \big(\ell \xi, \ell \xi, \ell \xi, \ell \xi, \ell \xi \big) \\ & + \frac{b}{\mu(a, b)\Gamma_q(\alpha)} \sum\limits_{i = 1}^{k_0} \|\hat{\mu}_i\|_1 \Omega_i \big(\ell \xi, \ell \xi, \ell \xi, \ell \xi, \ell \xi \big) \\ & + \frac{1}{\mu(a, b)\Gamma_q(\alpha+1)} \sum\limits_{i = 1}^{k_0} \|\hat{\mu}_i\|_1 \Omega_i \big(\ell \xi, \ell \xi, \ell \xi, \ell \xi, \ell \xi \big) \\ & = \sum\limits_{i = 1}^{k_0} \|\hat{\mu}_i\|_1 \Omega_i \big(\ell \xi, \ell \xi, \ell \xi, \ell \xi, \ell \xi \big) \bigg[\frac{1}{\Gamma_q(\alpha-1)} \\ & + \frac{b} {\mu(a,b) \Gamma_q(\alpha-1 )} + \frac{b}{\mu(a,b) \Gamma_q(\alpha )} +\frac{1}{\mu(a,b) \Gamma_q(\alpha+1 )} \bigg].\end{array} |
Hence,
\begin{align*} \|\Theta'_u - \Theta'_v\| & \leq \sum\limits_{i = 1}^{k_0} \|\hat{\mu}_i\|_1 \Omega_i \big(\ell \xi, \ell\xi, \ell \xi, \ell \xi, \ell \xi \big) \bigg[\frac{1}{\Gamma_q(\alpha-1)} \\ & \quad+ \frac{b} {\mu(a,b) \Gamma_q(\alpha-1 )} + \frac{b}{\mu(a,b) \Gamma_q(\alpha )} +\frac{1}{\mu(a,b) \Gamma_q(\alpha+1 )} \bigg] \end{align*} |
and so
\begin{align*} \| \Theta_{u} - \Theta_{v} \|_{*} & \leq \sum\limits_{i = 1}^{k_0} \|\hat{\mu}_i\|_1 \Omega_i \big(\ell \xi, \ell \xi, \ell \xi, \ell \xi, \ell \xi \big) \max \bigg\{ \frac{1}{\Gamma_q(\alpha)} \\ & \quad + \frac{b (2- a) - \mu(a,b)}{\mu(a , b)\Gamma_q(\alpha - 1)} + \frac{\mu(a, b) +ab }{\mu(a, b)\Gamma_q(\alpha)} + \frac{\mu(a,b)(1-a)+1 }{\mu(a, b) \Gamma_q(\alpha+1)}, \\ & \quad \frac{1}{\Gamma_q(\alpha - 1)} + \frac{b}{\mu(a, b) \Gamma_q(\alpha - 1)} + \frac{b}{\mu(a, b) \Gamma_q(\alpha)} \\ & \quad + \frac{1}{\mu(a, b) \Gamma_q (\alpha + 1)} \bigg\}. \end{align*} |
If
\begin{align*} M_{\alpha, a, b}& = \max \bigg\{ \frac{1}{\Gamma_q(\alpha)} + \frac{b (2- a) - \mu(a,b)}{\mu(a, b)\Gamma_q(\alpha - 1)} + \frac{\mu(a, b) +ab }{\mu(a, b)\Gamma_q(\alpha)} \\ & \quad + \frac{\mu(a,b)(1-a)+1 }{\mu(a, b) \Gamma_q(\alpha+1)}, \frac{1}{\Gamma_q(\alpha - 1)} + \frac{b}{\mu(a, b) \Gamma_q(\alpha - 1)} \\ & \quad+ \frac{b}{\mu(a, b) \Gamma_q(\alpha)} + \frac{1}{\mu(a, b) \Gamma_q (\alpha + 1)} \bigg\}, \end{align*} |
then
\begin{align} \| \Theta_{u} - \Theta_{v} \|_{*} & \leq M_{\alpha, a, b} \sum\limits_{i = 1}^{k_0} \|\hat{\mu}_i\|_1 \Omega_i \big(\ell \xi, \ell \xi, \ell \xi, \ell \xi, \ell \xi \big). \end{align} | (3.5) |
Let 0 < \varepsilon \leq 1 be given. Since
\lim\limits_{\nu \to 0^{+}} \frac{\Omega_i(\nu,\nu,\nu,\nu,\nu)}{\nu^{\gamma_i}} = p_i, |
for 1 \leq i \leq k_0 , \exists \; \delta_i = \delta_i(\varepsilon) such that \nu \in (0, \delta_i] implies
\left| \frac{\Omega_i(\nu,\nu , \nu, \nu, \nu)}{\nu^{\gamma_i}} - p_i \right| < \varepsilon, |
and so \Omega_i(\nu, \nu, \nu, \nu, \nu)/ \nu^{\gamma_i} < \varepsilon + p_i . This consequents
0 \leq \Omega_i(\nu,\nu ,\nu, \nu, \nu) < ( \varepsilon + p_i) \nu^{\gamma_i}. |
We take \delta = \min \{ \delta_1, \dots, \delta_{k_0}, \varepsilon \} . In this case, \nu \in (0, \delta] implies
\begin{align} 0 & \leq \Omega_i(\nu, \nu, \nu, \nu, \nu) < ( \varepsilon + p_i) \nu^{\gamma_i} \end{align} | (3.6) |
for all 1\leq i \leq k_0 . By using (3.6), we obtain:
\begin{align} \Omega_i(\ell \xi, \dots, \ell \xi) & \leq ( \varepsilon + p_i ) (\ell \xi)^{\gamma_i} \leq ( \varepsilon + p_i ) \ell^{\gamma_i} \varepsilon^{\gamma_i}. \end{align} | (3.7) |
At present, by applying (3.5) and (3.7), we obtain:
\| \Theta_{u} - \Theta_{v} \|_{*} \leq M_{\alpha, a, b} \sum\limits_{i = 1}^{k_0} \|\hat{\mu}_i\|_1 ( \varepsilon + p_i ) \ell^{\gamma_i} \varepsilon^{\gamma_i}. |
Now, we consider: \gamma = \min \{\gamma_1, \cdots, \gamma_{k_0} \} . Hence,
\left\| \Theta_{u} - \Theta_{v} \right\|_{*} \leq \varepsilon^\gamma M_{\alpha, a, b} \sum\limits_{i = 1}^{k_0} \|\hat{\mu}_i \|_1 (\varepsilon + p_i ) \ell^{\gamma_i}. |
Therefore, this implies that \Theta is continuous. Since
M_{\alpha, a, b} \sum\limits_{i = 1}^{k_0} \|\hat{\mu}_i\|_1 p_i \ell^{\gamma_i} < 1, |
there is \varepsilon_1 > 0 such that
M_{\alpha, a, b} \sum\limits_{i = 1}^{k_0} \|\hat{\mu}_i\|_1 (p_i + \varepsilon_1) \ell^{\gamma_i} < 1. |
Let
\lambda = \lim\limits_{\nu \to 0^{+}} \frac{T(\nu, \nu, \nu, \nu, \nu)}{\nu } \, \in [0, \tau). |
Then, we have:
\lambda = \lim\limits_{\nu \to 0^{+}} T(\ell \nu, \dots, \ell \nu)/ (\ell \nu), |
and so for each \varepsilon > 0 there exists \delta(\epsilon) > 0 such that \nu \in (0, \delta(\varepsilon)] implies
0 \leq \frac{ T(\ell \nu, \dots, \ell \nu)}{\ell \nu} - \lambda < \varepsilon. |
Hence, 0 \leq T(\ell \nu, \dots, \ell \nu) < (\lambda + \varepsilon) \ell \nu and
0 \leq T(\ell \delta(\varepsilon), \dots, \ell \delta( \varepsilon)) < ( \lambda + \varepsilon) \ell \delta(\varepsilon). |
Since \lambda \in [0, \tau) , choose \varepsilon_0 > 0 such that \lambda + \varepsilon_0 < \tau . Assume that
\eta_0 = \min \Big\{ \delta(\varepsilon_0), \delta(\varepsilon_1) \Big\}. |
Then, \eta \leq \eta_0 implies 0 \leq T(\ell \eta, \dots, \ell \eta) < (\lambda + \varepsilon_0) \ell \eta . Since
\lim\limits_{\nu \to 0^{+}} \frac{ \Omega_i(\nu, \nu, \nu, \nu, \nu)}{\nu^{\gamma_i}} = p_i, |
there exists \eta_1 > 0 such that \nu \in (0, \eta_1] implies
\begin{align} \Omega_i(\ell \nu, \dots, \ell \nu) & < (p_i + \varepsilon_0) (\ell \nu)^{\gamma_i} \end{align} | (3.8) |
for i = 1, \dots, k_0 . Let \eta = \min \{\eta_0, \frac{\eta_1}{ 2}, \frac{1}{2} \} and
E = \Big\{ u \in \bar{\mathcal{B}} : \|u\|_{*}\leq \eta \Big\}. |
Define \alpha: \bar{\mathcal{B}}^2 \to \mathbb{R} by
\alpha (u,v) = \begin{cases} 1 &u = v,\\ 0 &u \neq v. \end{cases} |
Assume that u, v \in \bar{\mathcal{B}} be given. If \alpha(u, v) \geq 1 , then for every t \in \bar{J} , we have:
\begin{align*} |\Theta_{u} (t) | & \leq \int^t_0 |G_q(t, s)| w\bigg(s, u(s), u'(s), \mathbb{D}_q^{\beta} u(s), \int_{0}^s f(r) u(r) \, \mathrm{d}r, \varphi(u(s)) \bigg) \, \mathrm{d}_qs \\ & \leq \mathbb{I}_q^\alpha \bigg|w\bigg(t, u(t), u'(t), \mathbb{D}_q^{\beta} u(t), \int_{0}^t f(r) u(r) \, \mathrm{d}r, \varphi(u(t)) \bigg)\bigg|\\ & \quad + A_1(t) \mathbb{I}_q^{\alpha-1} \bigg|w\bigg(1, u(1), u'(1), \mathbb{D}_q^{\beta} u(1), \int_{0}^1 f(r) u(r) \, \mathrm{d}r, \varphi(u(1)) \bigg)\bigg|\\ & \quad + A_2(t) \mathbb{I}_q^{\alpha} \bigg|w\bigg(a, u(a), u'(a), \mathbb{D}_q^{\beta} u(a), \int_{0}^a f(r) u(r) \, \mathrm{d}r, \varphi(u(a)) \bigg)\bigg|\\ & \quad + A_3(t) \mathbb{I}_q^{\alpha+1} \bigg| w\bigg(b, u(b), u'(b), \mathbb{D}_q^{\beta} u(b), \int_{0}^b f(r) u(r) \, \mathrm{d}r, \varphi(u(b)) \bigg)\bigg|\\ & \leq \mathbb{I}_q^\alpha \bigg( h(t) T\bigg(u(t), u'(t), \mathbb{D}_q^{\beta} u(t), \int_{0}^t f(r) u(r) \, \mathrm{d}r, \varphi(u(t)) \bigg) \bigg)\\ & \quad + A_1(t) \mathbb{I}_q^{\alpha-1} \bigg( h(1) T\bigg(u(1), u'(1), \mathbb{D}_q^{\beta} u(1), \int_{0}^1 f(r) u(r) \, \mathrm{d}r, \varphi(u(1)) \bigg)\bigg)\\ & \quad + A_2(t) \mathbb{I}_q^{\alpha} \bigg(h(a) T\bigg(u(a), u'(a), \mathbb{D}_q^{\beta} u(a), \int_{0}^a f(r) u(r) \, \mathrm{d}r, \varphi(u(a)) \bigg)\bigg)\\ & \quad + A_3(t) \mathbb{I}_q^{\alpha+1} \bigg(h(b) T\bigg(u(b), u'(b), \mathbb{D}_q^{\beta} u(b), \int_{0}^b f(r) u(r) \, \mathrm{d}r, \varphi(u(b)) \bigg)\bigg)\\ & \leq \mathbb{I}_q^\alpha \bigg( h(t) T\bigg(|u(t)|, |u'(t)|, | \mathbb{D}_q^{\beta} u(t)|, \int_{0}^t |f(r)|| u(r)| \, \mathrm{d}r, |\varphi(u(t))| \bigg) \bigg)\\ & \quad + A_1(t) \mathbb{I}_q^{\alpha-1} \bigg( h(1) T\bigg(|u(1)|, |u'(1)|, | \mathbb{D}_q^{\beta} u(1)|,\\ & \quad \int_{0}^1 |f(r)| |u(r)| \, \mathrm{d}r, |\varphi(u(1))| \bigg)\bigg)\\ & \quad + A_2(t) \mathbb{I}_q^{\alpha} \bigg(h(a) T\bigg(|u(a)|, |u'(a)|, | \mathbb{D}_q^{\beta} u(a)|,\\ & \quad \int_{0}^a |f(r)| |u(r)| \, \mathrm{d}r, |\varphi(u(a))| \bigg)\bigg)\\ & \quad + A_3(t) \mathbb{I}_q^{\alpha+1} \bigg(h(b) T\bigg(|u(b)|, |u'(b)|, | \mathbb{D}_q^{\beta} u(b)|,\\ & \quad \int_{0}^b |f(r)| |u(r)| \, \mathrm{d}r, |\varphi(u(b))| \bigg)\bigg)\\ & \leq \mathbb{I}_q^\alpha \bigg( h(t) T\bigg(\|u(t)\|, \|u'(t)\|, \frac{\|u'(t)\|}{\Gamma_q(2 - \beta) } , \\ & \quad m \|u(t)\| , c_1 \| u(t)\| + c_2 \| u'(t)\| \bigg) \bigg)\\ & \quad + A_1(t) \mathbb{I}_q^{\alpha-1} \bigg( h(1) T\bigg(\|u(t)\|, \|u'(t)\|,\\ & \quad \frac{\|u'(t)\|}{\Gamma_q(2 - \beta) } , m \|u(t)\| , c_1 \| u(t)\| + c_2 \| u'(t)\| \bigg) \bigg)\\ & \quad + A_2(t) \mathbb{I}_q^{\alpha} \bigg(h(a) T\bigg(\|u(t)\|, \|u'(t)\|,\\ & \quad \frac{\|u'(t)\|}{\Gamma_q(2 - \beta) } , m \|u(t)\| , c_1 \| u(t)\| + c_2 \| u'(t)\| \bigg)\bigg)\\ & \quad + A_3(t) \mathbb{I}_q^{\alpha+1} \bigg(h(b) T\bigg(\|u(t)\|, \|u'(t)\|,\\ & \quad \frac{\|u'(t)\|}{\Gamma_q(2 - \beta) } , m \|u(t)\| , c_1 \| u(t)\| + c_2 \| u'(t)\| \bigg)\bigg)\\ & \leq T\bigg(\|u(t)\|, \|u'(t)\|, \frac{\|u'(t)\|}{\Gamma_q(2 - \beta) } , \\ & \quad m \|u(t)\| , c_1 \| u(t)\| + c_2 \| u'(t)\| \bigg) \mathbb{I}_q^\alpha h(t) \\ & \quad + A_1(t) T\bigg(\|u(t)\|, \|u'(t)\|, \frac{\|u'(t)\|}{\Gamma_q(2 - \beta) }, \\ & \quad m \|u(t)\| , c_1 \| u(t)\| + c_2 \| u'(t)\| \bigg) \mathbb{I}_q^{\alpha-1} h(1) \\ & \quad + A_2(t) T\bigg(\|u(t)\|, \|u'(t)\|, \frac{\|u'(t)\|}{\Gamma_q(2 - \beta) } , \\ & \quad m \|u(t)\| , c_1 \| u(t)\| + c_2 \| u'(t)\| \bigg) \mathbb{I}_q^{\alpha} h(a)\\ & \quad + A_3(t) T\bigg(\|u(t)\|, \|u'(t)\|, \frac{\|u'(t)\|}{\Gamma_q(2 - \beta) } , \\ & \quad m \|u(t)\| , c_1 \| u(t)\| + c_2 \| u'(t)\| \bigg) \mathbb{I}_q^{\alpha+1} h(b) \\ & \leq T\big( \ell \|u(t)\|_*, \ell \|u(t)\|_*, \ell \|u(t)\|_*, \ell \|u(t)\|_*, \ell \|u(t)\|_* \big) \|\hat{h}\|_1 \\ & \quad \times \big[ A_0 + A_1(t) + A_2(t) + A_3(t) \big] \\ & \leq T( \ell r, \ell r,\ell r, \ell r, \ell r) \|\hat{h}\|_1 \big[ A_0 + A_1(t) + A_2 (t) + A_3(t) \big]\\ & \leq \ell r (\lambda + \varepsilon ) \|\hat{h}\|_1 \big[ A_0 + A_1(t) + A_2 (t) + A_3(t) \big]\\ & = \eta \bigg( \ell (\lambda + \varepsilon) \|\hat{h}\|_{1} \big[ A_0 + A_1(t) + A_2 (t) + A_3(t) \big]\bigg). \end{align*} |
Therefore,
\begin{align*} \|\Theta_u\| & \leq \eta \bigg( \ell (\lambda + \varepsilon) \|\hat{h}\|_{1} \big[ A_0 + A_1(t) + A_2 (t) + A_3(t) \big]\bigg)\leq \eta. \end{align*} |
Also,
\begin{align*} |\Theta'_{u}(t)| & \leq \bigg|- \mathbb{I}_q^{\alpha-1} w \bigg( t, u(t), u'(t), \mathbb{D}_q^{\beta} u(t), \int_0^t f(r) u(r) \, \mathrm{d}r, \varphi(u(t)) \bigg) \\ & \quad + \frac{b}{\mu(a, b)} \mathbb{I}_q^{\alpha-1} w \bigg( 1, u(1), u'(1), \mathbb{D}_q^{\beta} u(1), \int_0^1 f(r) u(r) \, \mathrm{d}r, \varphi(u(1)) \bigg) \\ & \quad + \frac{b}{\mu(a, b)} \mathbb{I}_q^{\alpha} w \bigg( a, u(a), u'(a), \mathbb{D}_q^{\beta} u(a), \int_0^a f(r) u(r) \, \mathrm{d}r, \varphi(u(a)) \bigg) \\ & \quad + \frac{1}{\mu(a, b)} \mathbb{I}_q^{\alpha+1} w \bigg( b, u(b), u'(b), \mathbb{D}_q^{\beta} u(b), \int_0^b f(r) u(r) \, \mathrm{d}r, \varphi(u(b)) \bigg)\bigg|\\ & \leq \mathbb{I}_q^{\alpha-1} \bigg|w \bigg( t, u(t), u'(t), \mathbb{D}_q^{\beta} u(t), \int_0^t f(r) u(r) \, \mathrm{d}r, \varphi(u(t)) \bigg)\bigg| \\ & \quad + \frac{b}{\mu(a, b)} \mathbb{I}_q^{\alpha-1} \bigg|w \bigg( 1, u(1), u'(1), \mathbb{D}_q^{\beta} u(1), \int_0^1 f(r) u(r) \, \mathrm{d}r, \varphi(u(1)) \bigg)\bigg| \\ & \quad + \frac{b}{\mu(a, b)} \mathbb{I}_q^{\alpha} \bigg|w \bigg( a, u(a), u'(a), \mathbb{D}_q^{\beta} u(a), \int_0^a f(r) u(r) \, \mathrm{d}r, \varphi(u(a)) \bigg)\bigg| \\ & \quad + \frac{1}{\mu(a, b)} \mathbb{I}_q^{\alpha+1} \bigg|w \bigg( b, u(b), u'(b), \mathbb{D}_q^{\beta} u(b), \int_0^b f(r) u(r) \, \mathrm{d}r, \varphi(u(b)) \bigg)\bigg|\\ & \leq \mathbb{I}_q^{\alpha-1} \bigg( h(t) T \bigg( u(t), u'(t), \mathbb{D}_q^{\beta} u(t), \int_0^t f(r) u(r) \, \mathrm{d}r, \varphi(u(t)) \bigg)\bigg) \\ & \quad + \frac{b}{\mu(a, b)} \mathbb{I}_q^{\alpha-1} \bigg( h(1) T \bigg( u(1), u'(1), \mathbb{D}_q^{\beta} u(1), \int_0^1 f(r) u(r) \, \mathrm{d}r, \varphi(u(1)) \bigg)\bigg) \\ & \quad + \frac{b}{\mu(a, b)} \mathbb{I}_q^{\alpha} \bigg( h(a) T \bigg( u(a), u'(a), \mathbb{D}_q^{\beta} u(a), \int_0^a f(r) u(r) \, \mathrm{d}r, \varphi(u(a)) \bigg)\bigg) \\ & \quad + \frac{1}{\mu(a, b)} \mathbb{I}_q^{\alpha+1} \bigg( h(b) T \bigg( u(b), u'(b), \mathbb{D}_q^{\beta} u(b), \int_0^b f(r) u(r) \, \mathrm{d}r, \varphi(u(b)) \bigg)\bigg)\\ & \leq \mathbb{I}_q^{\alpha-1} \bigg( h(t) T \bigg( u(t), u'(t), \mathbb{D}_q^{\beta} u(t), \int_0^t f(r) u(r) \, \mathrm{d}r, \varphi(u(t)) \bigg)\bigg) \\ & \quad + \frac{b}{\mu(a, b)} \mathbb{I}_q^{\alpha-1} \bigg( h(1) T \bigg( u(1), u'(1), \mathbb{D}_q^{\beta} u(1), \int_0^1 f(r) u(r) \, \mathrm{d}r, \varphi(u(1)) \bigg)\bigg) \\ & \quad + \frac{b}{\mu(a, b)} \mathbb{I}_q^{\alpha} \bigg( h(a) T \bigg( u(a), u'(a), \mathbb{D}_q^{\beta} u(a), \int_0^a f(r) u(r) \, \mathrm{d}r, \varphi(u(a)) \bigg)\bigg) \\ & \quad + \frac{1}{\mu(a, b)} \mathbb{I}_q^{\alpha+1} \bigg( h(b) T \bigg( u(b), u'(b), \mathbb{D}_q^{\beta} u(b), \int_0^b f(r) u(r) \, \mathrm{d}r, \varphi(u(b)) \bigg)\bigg)\\ & \leq \mathbb{I}_q^{\alpha-1} \bigg( h(t) T \bigg( \|u(t)\|, \|u'(t)\|, \frac{\|u'(t)\|}{\Gamma_q(2-\beta)} , \\ & \quad m \|u(t)\|, c_1 \| u(t)\| + c_2 \| u'(t)\| \bigg)\bigg) \\ & \quad + \frac{b}{\mu(a, b)} \mathbb{I}_q^{\alpha-1} \bigg( h(1) T \bigg( \|u(t)\|, \|u'(t)\|, \frac{ \|u'(t)\|}{\Gamma_q(2-\beta)} , \\ & \quad m \|u(t)\|, c_1 \| u(t)\| + c_2 \| u'(t)\| \bigg)\bigg) \\ & \quad + \frac{b}{\mu(a, b)} \mathbb{I}_q^{\alpha} \bigg( h(a) T \bigg( \|u(t)\|, \|u'(t)\|, \frac{\|u'(t)\|}{\Gamma_q(2-\beta)} , \\ & \quad m \|u(t)\|, c_1 \| u(t)\| + c_2 \| u'(t)\| \bigg)\bigg) \\ & \quad + \frac{1}{\mu(a, b)} \mathbb{I}_q^{\alpha+1} \bigg( h(b) T \bigg( \|u(t)\|, \|u'(t)\|, \frac{\|u'(t)\|}{\Gamma_q(2-\beta)} , \\ & \quad m \|u(t)\|, c_1 \| u(t)\| + c_2 \| u'(t)\| \bigg)\bigg)\\ & \leq T \bigg( \|u(t)\|, \|u'(t)\|, \frac{\|u'(t)\|}{\Gamma_q(2-\beta)} , m \|u(t)\|, c_1 \| u(t)\| + c_2 \| u'(t)\| \bigg) \mathbb{I}_q^{\alpha-1} ( h(t)) \\ & \quad + \frac{b}{\mu(a, b)} T \bigg( \|u(t)\|, \|u'(t)\|, \frac{\|u'(t)\|}{\Gamma_q(2-\beta)} , m \|u(t)\|, c_1 \| u(t)\| + c_2 \| u'(t)\| \bigg) \mathbb{I}_q^{\alpha-1} ( h(1) ) \\ & \quad + \frac{b}{\mu(a, b)} T \bigg( \|u(t)\|, \|u'(t)\|, \frac{\|u'(t)\|}{\Gamma_q(2-\beta)} , m \|u(t)\|, c_1 \| u(t)\| + c_2 \| u'(t)\| \bigg) \mathbb{I}_q^{\alpha} ( h(a) ) \\ & \quad + \frac{1}{\mu(a, b)} T \bigg( \|u(t)\|, \|u'(t)\|, \frac{\|u'(t)\|}{\Gamma_q(2-\beta)} , m \|u(t)\|, c_1 \| u(t)\| + c_2 \| u'(t)\| \bigg) \mathbb{I}_q^{\alpha+1} ( h(b) )\\ & \leq T(\ell \|u\|_{*}, \cdots, \ell \|u\|_{*}) \|\hat{h} \|_1 \\ & \quad \times \bigg[ \frac{1}{\Gamma_q(\alpha-1)} + \frac{b}{\mu(a, b) \Gamma_q(\alpha-1)} + \frac{b}{\mu(a, b)\Gamma_q(\alpha)} + \frac{1}{\mu(a, b)\Gamma_q(\alpha + 1)} \bigg]\\ & \leq T(\ell r, \cdots, \ell r) \|\hat{h}\|_1 \\ & \quad \times \bigg[\frac{1}{\Gamma_q(\alpha-1)} + \frac{b}{\mu(a, b) \Gamma_q(\alpha-1)} + \frac{b}{\mu(a, b)\Gamma_q(\alpha)} + \frac{1}{\mu(a, b)\Gamma_q(\alpha + 1)} \bigg]\\ & \leq (\ell r) (\lambda + \varepsilon_0) \|\hat{h}\|_1\\ & \quad \times \bigg[ \frac{1}{\Gamma_q(\alpha-1)} + \frac{b}{\mu(a, b) \Gamma_q(\alpha-1)} + \frac{b}{\mu(a, b)\Gamma_q(\alpha)} + \frac{1}{\mu(a, b)\Gamma_q(\alpha + 1)} \bigg]. \end{align*} |
Indeed,
\begin{align*} | \Theta'_{u}(t)| & \leq (\ell r) (\lambda + \varepsilon_0) \|\hat{h}\|_1 \\ & \quad \times \bigg[ \frac{1}{\Gamma_q(\alpha-1)} + \frac{b}{\mu(a, b) \Gamma_q(\alpha-1)} + \frac{b}{\mu(a, b)\Gamma_q(\alpha)} \\ & \quad + \frac{1}{\mu(a, b)\Gamma_q(\alpha + 1)} \bigg]\\ & \leq r. \end{align*} |
Hence, \|\Theta_u\|_{*} \leq \eta and so \Theta_u \in E . Using a similar proof, we can show that \Theta_v \in E . This implies \alpha(\Theta_u, \Theta_v) \geq 1 and so \Theta_u is \alpha -admissible. It is obvious that, E \neq \emptyset . Choose u_0 \in E . Hence, \Theta_{u_0} \in E , and so \alpha(u_0, \Theta_{u_0}) \geq 1 . Let u, v \in E . Then,
\xi \leq \|u\|_{*} + \| v\|_{*} \leq 2 \eta \leq \eta_1, |
where \xi = \|u-v\|_{*} . Also using (3.5), we have
\| \Theta_{u} - \Theta_{v} \|_{*} \leq M_{\alpha, a, b} \sum\limits_{i = 1}^{k_0} \|\hat{\mu}_i\|_1 M_i(\ell \xi, \dots, \ell \xi). |
Now, by using (3.8), we conclude that
\begin{align*} \| \Theta_{u} - \Theta_{v} \|_{*} & \leq M_{\alpha, a, b} \sum\limits_{i = 1}^{k_0} \|\hat{\mu}_i\|_1 (p_i + \varepsilon_1) (\ell \xi)^{\gamma_i}\\ & \leq M_{\alpha, a, b} \sum\limits_{i = 1}^{k_0} \|\hat{\mu}_i\|_1 (p_i + \varepsilon_1) \ell^{\gamma_i} \xi^{ \gamma_i} \\ & \leq M_{\alpha, a, b} \bigg[ \sum\limits_{i = 1}^{k_0} \| \hat{\mu}_i\|_1 (p_i + \varepsilon_1) \ell^{\gamma_i}\bigg] \xi^{\gamma}, \end{align*} |
where \gamma = \min \{\gamma_1, \dots, \gamma_{k_0} \} . We take:
\eta = M_{\alpha, a, b} \sum\limits_{i = 1}^{k_0} \|\hat{\mu}_i\|_1 p_i \ell^{ \gamma_i}. |
Note that, \eta \in [0, 1) . Define the map \mathtt{ψ} : [0, \infty) \to \mathbb{R}^{+} by
\mathtt{ψ}(t) = \begin{cases} \eta t^{\gamma} & t \in [0, 1),\\ \eta t & t \in [1, \infty). \end{cases} |
Then, \mathtt{ψ} is nondecreasing and
\sum\limits_{i = 1}^{\infty} \mathtt{ψ}^{i}(t) = \eta t^{\gamma}+ \eta^{2} t^{2 \gamma}+ \dots \leq \sum\limits_{i = 1}^{\infty} \eta^i t^{\gamma} = \frac{\tau}{ 1- \eta} t^{\gamma} < \infty, |
for 0\leq t < 1 . Also, we obtain
\sum\limits_{i = 1}^{\infty} \mathtt{ψ}^{i}(t) = \frac{\eta}{1- \eta} t < \infty, |
for t \in [1, \infty) . Thus, \sum_{i = 1}^{\infty} \mathtt{ψ}^{i}(t) is a convergent series for all t \geq 0 and so \mathtt{ψ} \in \Psi . Also, we have
\alpha ( u, v) \| \Theta_u - \Theta_v\|_{*} \leq \phi (\xi). |
If u \notin E or v \notin E , then the last inequality holds obviously. This shows that
\alpha( u, v) d( \Theta_u, \Theta_v) \leq \phi (d( u, v)), |
for all u, v \in \bar{\mathcal{B}} . Now, Lemma 2.6 implies that \Theta has a fixed point that is the solution for problem (1.1).
The following illustrative example is given to support the validity of our main results. A computational method is provided here to test the proposed problem (1.1). Linear motion is commonly basic among all other motions. From the 1st law of Newton's motion, objects that are not experiencing any net force will continue to move in a straight line with a constant velocity until they are subjected to a net force.
Example 4.1. We consider a constrained motion of a particle along a straight line restrained by two linear springs with equal spring constant (stiffness coefficient) under external force and fractional damping along the t -axis (Figure 1).
We consider the pointwise defined equation:
\begin{align} 100 \theta(t) {}^c \mathbb{D}_q^{2.5} u(t) & + p(t) u(t) = - p(t) \bigg( |u'(t)| + \bigg| \mathbb{D}_q^{\frac{1}{2}} u(t)\bigg| \\ & \quad + \bigg|\int_0^t \frac{u(r) }{ \sqrt{r} } \, \mathrm{d}r\bigg| + |\sin( u(t) ) |\bigg), \end{align} | (4.1) |
where
p(t) = \frac{1}{8} \left( 2-2 L - \eta^2 L - \eta^2 L \cos t \right), |
\eta is constant and L is the unstretched length of the spring. We change Eq (4.1) into a form of the problem (1.1) as follows:
\begin{align} \mathbb{D}_q^{\frac{5}{2} } u(t) & = \frac{1}{100\, \theta(t)} \bigg( |u(t)| + |u'(t)| + \bigg| \mathbb{D}_q^{\frac{1}{2}} u(t)\bigg| \\ & \quad + \bigg|\int_0^t \frac{u(r) }{ \sqrt{r} } \, \mathrm{d}r\bigg| + |\sin( u(t) ) | \bigg) \end{align} | (4.2) |
with boundary conditions:
\int_0^{\frac{1}{3}} u({r}) \, \mathrm{d}r = 0,\; \; \; \; u'(1) = u(\frac{1}{4}),\; \; \; \; u''(0) = 0. |
Also
\theta(t) = \begin{cases} 0 & t\in \bar{J} \cap \mathbb{Q},\\ 1-t & t\in \bar{J} \cap \mathbb{Q}^c. \end{cases} |
Take \alpha = \frac{5}{2}\geq 2 , \beta = \frac{1}{2}\in J , a = \frac{1}{4}\in J , b = \frac{1}{3} \in J , k_0 = 1 , \gamma_1 = 1 , \mu_1 (t) = h(t) = \frac{1}{\theta (t) } , c_1 = \frac{1}{3} , c_2 = \frac{2}{3} , f(\xi) = \frac{u(\xi)}{\sqrt{\xi} } , \varphi(x) = \sin(x) and
T ( u_1, \dots , u_5) = \Omega_1( u_1, \dots, u_5) = \frac{1}{ 500} \Big( | u_1| + \dots + |u_5| \Big). |
Then, we get:
|\varphi(u) - \varphi(v)| = | \sin(u) - \sin(v)| \leq |u- v| = c_1 |u - v| + c_2 |u' - v'|, |
|w( t, u_1 , \dots, u_5) - w(t, v_1, \dots, v_5)| \leq \mu_1(t) \Big[ | u_1 - v_1| + \dots + |u_5 - v_5|\Big], |
p_1 = \lim\limits_{\nu \to 0^{+}} \frac{ \Omega_1(\nu, \nu, \nu, \nu, \nu)}{\nu^{\gamma_1}} = \lim\limits_{\nu \to 0^{+}} \frac{5 |\nu|}{500 \nu} = 0.01, |
\mu_1, h \in L^1 , m = \|h\|_1 = 2 ,
\| \hat{h}\|_{\bar{J}} = \| \hat{\mu}_1\|_{ \bar{J}} = \int_0^1 \frac{1}{ \theta (s) }( 1 - s)^{\alpha -2} \, \mathrm{d}s = \int_0^1 \frac{( 1 -s)^{\frac{1}{2} } }{ 1-s} \, \mathrm{d}s = 2, |
|w(t, u_1, \dots, u_5)| \leq h(t) T(u_1, \dots, u_5), |
T, \Omega_1 are non-negative and non-decreasing with respect to u_1, \dots, u_5 ,
{\mu(a, b) } = b (1-a ) + \frac{b^{2}}{2} = \frac{11}{36}, |
\ell = \max \bigg\{ 1, \frac{1}{\Gamma_q(2- \beta)}, m, c_1 +c_2 \bigg\} = \max \bigg\{ 1, \frac{1}{\Gamma_q(\frac{3}{2})}, 2, 1 \bigg\} = 2, |
\begin{align*} M_{\alpha, a, b}& = \max \bigg\{ \frac{1}{\Gamma_q(\alpha)} + \frac{b (2-a) - \mu(a, b)}{\mu(a, b) \Gamma_q(\alpha - 1)} + \frac{\mu(a, b) + ab}{\mu(a, b) \Gamma_q(\alpha ) } \\ & \quad + \frac{ \mu(a, b) (1- a ) + 1 }{\mu(a, b) \Gamma_q(\alpha + 1 )}, \frac{1}{\Gamma_q(\alpha - 1)} +\frac{b} {\mu(a, b) \Gamma_q(\alpha - 1)} \\ & \quad + \frac{b}{\mu(a, b) \Gamma_q(\alpha)} + \frac{1}{\mu(a, b)\Gamma_q(\alpha + 1)} \bigg\} \\ & = \max \bigg\{ \frac{25}{11\Gamma_q( \frac{5}{2}) } + \frac{10}{11 \Gamma_q(\frac{3}{2}) } + \frac{177} {44\Gamma_q(\frac{7}{2})},\\ & \quad \frac{23}{11\Gamma_q (\frac{3}{2})} + \frac{12}{11 \Gamma_q( \frac{5}{2} )} + \frac{36}{11 \Gamma_q(\frac{7}{2} )} \bigg\}. \end{align*} |
We put:
\begin{equation} \begin{split} \Lambda_1 & = \frac{25}{11\Gamma_q( \frac{5}{2}) } + \frac{10}{11 \Gamma_q(\frac{3}{2}) } + \frac{177} {44\Gamma_q(\frac{7}{2} )},\\ \Lambda_2 & = \frac{23}{11\Gamma_q (\frac{3}{2})} + \frac{12}{11 \Gamma_q( \frac{5}{2} )} + \frac{36}{11 \Gamma_q(\frac{7}{2} )}. \end{split} \end{equation} | (4.3) |
Table 1 shows the values of \Lambda_1 and \Lambda_2 for q = \left\{\frac{1}{8}, \frac{1}{2}, \frac{4}{5}, \frac{8}{9} \right\} . We can see that
M_{\alpha, a, b} = 33.170478, 21.551855, 16.363257, 15.234356, |
q =\frac{1}{8} | q =\frac{1}{2} | q =\frac{4}{5} | q =\frac{8}{9} | |||||
n | \Lambda_1 | \Lambda_2 | \Lambda_1 | \Lambda_2 | \Lambda_1 | \Lambda_2 | \Lambda_1 | \Lambda_2 |
1 | 6.4269 | 33.0986 | 4.1726 | 17.6569 | 1.6844 | 4.9657 | 0.9465 | 2.2669 |
2 | 6.4386 | 33.1615 | 4.5536 | 19.5549 | 2.1098 | 6.6125 | 1.1971 | 3.0219 |
3 | 6.4401 | 33.1694 | 4.7492 | 20.5409 | 2.4808 | 8.1416 | 1.4377 | 3.8100 |
4 | 6.4403 | 33.1703 | 4.8483 | 21.0433 | 2.7983 | 9.5087 | 1.6670 | 4.6128 |
5 | 6.4403 | 33.1705 | 4.8982 | 21.2968 | 3.0660 | 10.6983 | 1.8838 | 5.4129 |
\vdots | \vdots | \vdots | \vdots | \vdots | \vdots | \vdots | \vdots | \vdots |
16 | 6.4403 | 33.1705 | 4.9482 | 21.5517 | 4.1529 | 15.8174 | 3.4095 | 11.8900 |
17 | 6.4403 | 33.1705 | 4.9482 | 21.5518 | 4.1750 | 15.9256 | 3.4840 | 12.2356 |
18 | 6.4403 | 33.1705 | 4.9483 | 21.5518 | 4.1928 | 16.0126 | 3.5509 | 12.5482 |
19 | 6.4403 | 33.1705 | 4.9483 | 21.5518 | 4.2070 | 16.0823 | 3.6110 | 12.8303 |
20 | 6.4403 | 33.1705 | 4.9483 | 21.5519 | 4.2184 | 16.1383 | 3.6649 | 13.0844 |
21 | 6.4403 | 33.1705 | 4.9483 | 21.5519 | 4.2275 | 16.1831 | 3.7132 | 13.3130 |
\vdots | \vdots | \vdots | \vdots | \vdots | \vdots | \vdots | \vdots | \vdots |
50 | 6.4403 | 33.1705 | 4.9483 | 21.5519 | 4.2640 | 16.3630 | 4.0987 | 15.1686 |
51 | 6.4403 | 33.1705 | 4.9483 | 21.5519 | 4.2640 | 16.3630 | 4.1002 | 15.1759 |
52 | 6.4403 | 33.1705 | 4.9483 | 21.5519 | 4.2640 | 16.3631 | 4.1015 | 15.1824 |
53 | 6.4403 | 33.1705 | 4.9483 | 21.5519 | 4.2640 | 16.3631 | 4.1027 | 15.1882 |
54 | 6.4403 | 33.1705 | 4.9483 | 21.5519 | 4.2641 | 16.3631 | 4.1037 | 15.1933 |
55 | 6.4403 | 33.1705 | 4.9483 | 21.5519 | 4.2641 | 16.3632 | 4.1047 | 15.1979 |
\vdots | \vdots | \vdots | \vdots | \vdots | \vdots | \vdots | \vdots | \vdots |
91 | 6.4403 | 33.1705 | 4.9483 | 21.5519 | 4.2641 | 16.3633 | 4.1120 | 15.2339 |
92 | 6.4403 | 33.1705 | 4.9483 | 21.5519 | 4.2641 | 16.3633 | 4.1121 | 15.2339 |
93 | 6.4403 | 33.1705 | 4.9483 | 21.5519 | 4.2641 | 16.3633 | 4.1121 | 15.2340 |
94 | 6.4403 | 33.1705 | 4.9483 | 21.5519 | 4.2641 | 16.3633 | 4.1121 | 15.2340 |
95 | 6.4403 | 33.1705 | 4.9483 | 21.5519 | 4.2641 | 16.3633 | 4.1121 | 15.2341 |
96 | 6.4403 | 33.1705 | 4.9483 | 21.5519 | 4.2641 | 16.3633 | 4.1121 | 15.2341 |
97 | 6.4403 | 33.1705 | 4.9483 | 21.5519 | 4.2641 | 16.3633 | 4.1121 | 15.2341 |
98 | 6.4403 | 33.1705 | 4.9483 | 21.5519 | 4.2641 | 16.3633 | 4.1121 | 15.2341 |
99 | 6.4403 | 33.1705 | 4.9483 | 21.5519 | 4.2641 | 16.3633 | 4.1121 | 15.2342 |
100 | 6.4403 | 33.1705 | 4.9483 | 21.5519 | 4.2641 | 16.3633 | 4.1121 | 15.2342 |
101 | 6.4403 | 33.1705 | 4.9483 | 21.5519 | 4.2641 | 16.3633 | 4.1121 | 15.2342 |
102 | 6.4403 | 33.1705 | 4.9483 | 21.5519 | 4.2641 | 16.3633 | 4.1121 | 15.2342 |
103 | 6.4403 | 33.1705 | 4.9483 | 21.5519 | 4.2641 | 16.3633 | 4.1121 | 15.2343 |
104 | 6.4403 | 33.1705 | 4.9483 | 21.5519 | 4.2641 | 16.3633 | 4.1121 | 15.2343 |
for q = \frac{1}{8} , \frac{1}{2} , \frac{4}{5} and \frac{8}{9} , respectively. Thus, by using the numerical results, we obtain:
\tau = \left( \ell \|\hat{h}\|_1 M_{\alpha, a, b} \right)^{-1} \geq \frac{1}{4 \times 33.1704} = 0.0075, |
whenever q = \frac{1}{8} ,
\tau = \left( \ell \|\hat{h}\|_1 M_{\alpha, a, b} \right)^{-1} \geq \frac{1}{4 \times 21.5518} = 0.0116, |
whenever q = \frac{1}{2} ,
\tau = \left( \ell \|\hat{h}\|_1 M_{\alpha, a, b} \right)^{-1} \geq \frac{1}{4 \times 16.3632} = 0.0153, |
whenever q = \frac{4}{5} and
\tau = \left( \ell \|\hat{h}\|_1 M_{\alpha, a, b} \right)^{-1} \geq \frac{1}{4 \times 15.2343} = 0.0164, |
whenever q = \frac{8}{9} . Also, we can check that
\lim\limits_{\nu \to 0^{+}} \frac{ T(\nu, \nu, \nu, \nu, \nu)}{\nu} = 0.01 \in [0, \tau), |
and for all q \in J
M_{\alpha, a, b} \sum\limits_{i = 1}^{k_0} \| \hat{\mu}_i\|_{ \bar{J}} p_i \ell^{\gamma_i} = M_{\alpha, a, b} \times 2 \times 0.01 \times 2^1 = 0.04 M_{\alpha, a, b} < 1. |
Table 2 shows numerical results for different values of q\in J . Figure 2 shows the curve of these results. Now, according to the obtained results, Theorem 3.3 implies that problem (4.2) has a solution.
q =\frac{1}{8} | q =\frac{1}{2} | q =\frac{4}{5} | q =\frac{8}{9} | |||||
n | M_{\alpha, a, b} | (*) | M_{\alpha, a, b} | (*) | M_{\alpha, a, b} | (*) | M_{\alpha, a, b} | (*) |
1 | 33.0986 | 1.3239 | 17.6569 | 0.7063 | 4.9657 | 0.1986 | 2.2669 | 0.0907 |
2 | 33.1615 | 1.3265 | 19.5549 | 0.7822 | 6.6125 | 0.2645 | 3.0219 | 0.1209 |
3 | 33.1694 | 1.3268 | 20.5409 | 0.8216 | 8.1416 | 0.3257 | 3.8100 | 0.1524 |
4 | 33.1703 | 1.3268 | 21.0433 | 0.8417 | 9.5087 | 0.3803 | 4.6128 | 0.1845 |
\vdots | \vdots | \vdots | \vdots | \vdots | \vdots | \vdots | \vdots | \vdots |
12 | 33.1705 | 1.3268 | 21.5499 | 0.8620 | 15.0506 | 0.6020 | 10.1272 | 0.4051 |
13 | 33.1705 | 1.3268 | 21.5509 | 0.8620 | 15.3077 | 0.6123 | 10.6296 | 0.4252 |
14 | 33.1705 | 1.3268 | 21.5514 | 0.8621 | 15.5153 | 0.6206 | 11.0894 | 0.4436 |
15 | 33.1705 | 1.3268 | 21.5516 | 0.8621 | 15.6827 | 0.6273 | 11.5088 | 0.4604 |
\vdots | \vdots | \vdots | \vdots | \vdots | \vdots | \vdots | \vdots | \vdots |
73 | 33.1705 | 1.3268 | 21.5519 | 0.8621 | 16.3633 | 0.6545 | 15.2300 | 0.6092 |
74 | 33.1705 | 1.3268 | 21.5519 | 0.8621 | 16.3633 | 0.6545 | 15.2305 | 0.6092 |
75 | 33.1705 | 1.3268 | 21.5519 | 0.8621 | 16.3633 | 0.6545 | 15.2309 | 0.6092 |
76 | 33.1705 | 1.3268 | 21.5519 | 0.8621 | 16.3633 | 0.6545 | 15.2313 | 0.6093 |
77 | 33.1705 | 1.3268 | 21.5519 | 0.8621 | 16.3633 | 0.6545 | 15.2316 | 0.6093 |
78 | 33.1705 | 1.3268 | 21.5519 | 0.8621 | 16.3633 | 0.6545 | 15.2319 | 0.6093 |
79 | 33.1705 | 1.3268 | 21.5519 | 0.8621 | 16.3633 | 0.6545 | 15.2322 | 0.6093 |
80 | 33.1705 | 1.3268 | 21.5519 | 0.8621 | 16.3633 | 0.6545 | 15.2325 | 0.6093 |
The multi-singular pointwise defined fractional q –integro-differential equation has been successfully investigated in this work. The investigation of this particular equation provides us with a powerful tool in modeling most scientific phenomena without the need to remove most parameters which have an essential role in the physical interpretation of the studied phenomena. Multi-singular pointwise defined fractional q –integro-differential equation (1.1) has been studied on a time scale under some boundary conditions. An application that describes the motion of a particle in the plane has been provided in this work to support our results' validity and applicability in the fields of physics and engineering.
The first author was supported by Bu-Ali Sina University.
The authors declare that they have no competing interests.
[1] |
M. Alomari, M. Darus, S. S. Dragomir, Ostrowski type inequalities for functions whose derivatives are s-convex in the second sense, Appl. Math. Lett., 23 (2010), 1071–1076. doi: 10.1016/j.aml.2010.04.038
![]() |
[2] |
M. A. Ali, H. Budak, Z. Zhang, H. Yildrim, Some new Simpson's type inequalities for co-ordinated convex functions in quantum calculus, Math. Meth. Appl. Sci., 44 (2021), 4515–4540. doi: 10.1002/mma.7048
![]() |
[3] |
M. A. Ali, H. Budak, M. Abbas, Y. M. Chu, Quantum Hermite–Hadamard-type inequalities for functions with convex absolute values of second q^{b}-derivatives, Adv. Differ. Equ., 2021 (2021), 7. doi: 10.1186/s13662-020-03163-1
![]() |
[4] |
M. A. Ali, M. Abbas, H. Budak, P. Agarwal, G. Murtaza, Y. M. Chu, New quantum boundaries for quantum Simpson's and quantum Newton's type inequalities for preinvex functions, Adv. Differ. Equ., 2021 (2021), 64. doi: 10.1186/s13662-021-03226-x
![]() |
[5] |
M. A. Ali, Y. M. Chu, H. Budak, A. Akkurt, H. Yildrim, Quantum variant of Montgomery identity and Ostrowski-type inequalities for the mappings of two variables, Adv. Differ. Equ., 2021 (2021), 25. doi: 10.1186/s13662-020-03195-7
![]() |
[6] | M. A. Ali, N. Alp, H. Budak, Y. M. Chu, Z. Zhang, On some new quantum midpoint type inequalities for twice quantum differentiable convex functions, Open Math., 2021, in press. |
[7] | M. A. Ali, H. Budak, A. Akkurt, Y. M. Chu, Quantum Ostrowski type inequalities for twice quantum differentiable functions in quantum calculus, Open Math., 2021, in press. |
[8] |
N. Alp, M. Z. Sarikaya, M. Kunt, İ. İşcan, q -Hermite Hadamard inequalities and quantum estimates for midpoint type inequalities via convex and quasi-convex functions, J. King Saud Univ. Sci., 30 (2018), 193–203. doi: 10.1016/j.jksus.2016.09.007
![]() |
[9] | N. Alp, M. Z. Sarikaya, Hermite Hadamard's type inequalities for co-ordinated convex functions on quantum integral, Appl. Math. E-Notes, 20 (2020), 341–356. |
[10] |
W. Al-Salam, Some fractional q -integrals and q -derivatives, Proc. Edinburgh Math. Soc., 15 (1966), 135–140. doi: 10.1017/S0013091500011469
![]() |
[11] |
B. Bayraktar, V. C. Kudaev, Some new integral inequalities for \left(s, m\right) -convex and \left(\alpha, m\right) -convex functions, Bull. Karaganda Univ. Math., 94 (2019), 15–25. doi: 10.31489/2019M2/15-25
![]() |
[12] |
S. Bermudo, P. Kórus, J. N. Valdés, On q -Hermite-Hadamard inequalities for general convex functions, Acta Math. Hung., 162 (2020), 364–374. doi: 10.1007/s10474-020-01025-6
![]() |
[13] |
H. Budak, Some trapezoid and midpoint type inequalities for newly defined quantum integrals, Proyecciones, 40 (2021), 199–215. doi: 10.22199/issn.0717-6279-2021-01-0013
![]() |
[14] |
H. Budak, M. A. Ali, M. Tarhanaci, Some new quantum Hermite-Hadamard-like inequalities for coordinated convex functions, J. Optim. Theory Appl., 186 (2020), 899–910. doi: 10.1007/s10957-020-01726-6
![]() |
[15] | H. Budak, S. Erden, M. A. Ali, Simpson and Newton type inequalities for convex functions via newly defined quantum integrals, Math. Meth. Appl. Sci., 44 (2020), 378–390. |
[16] | H. Budak, M. A. Ali, N. Alp, Y. M. Chu, Quantum Ostrowski type integral inequalities, J. Math. Inequal., 2021, in press. |
[17] |
S. I. Butt, S. Yousuf, A. O. Akdemir, M. A. Dokuyucu, New Hadamard-type integral inequalities via a general form of fractional integral operators, Chaos Solition Fract., 148 (2021), 111025. doi: 10.1016/j.chaos.2021.111025
![]() |
[18] |
S. I. Butt, A. O. Akdemir, N. Nadeem, N. Malaiki, İ. İşcan, T. Abdeljawad, \left(m, n\right) -Harmonically polynomial convex functions and some Hadamard type inequalities on the coordinates, AIMS Math., 6 (2021), 4677–4690. doi: 10.3934/math.2021275
![]() |
[19] |
M. Çakmak, Refinements of Bullen-type inequalities for s -convex functions via Riemann–Liouville fractional integrals involving Gauss hypergeometric function, J. Interdiscip. Math., 22 (2019), 975–989. doi: 10.1080/09720502.2019.1698803
![]() |
[20] | Y. M. Chu, S. Rashid, T. Abdeljawad, A. Khalid, H. Kalsoom, On new generalized unified bounds via generalized exponentially harmonically s-convex functions on fractal sets. Adv. Differ. Equ., 2021 (2021), 1–33. |
[21] |
Y. M. Chu, A. Rauf, S. Rashid, S. Batool, Y. S. Hamed, Quantum estimates in two variable forms for Simpson-type inequalities considering generalized \Psi-convex functions with applications, Open Phy., 19 (2021), 305–326. doi: 10.1515/phys-2021-0031
![]() |
[22] | S. S. Dragomir, S. Fitzpatrick, The Hadamard inequalities for s -convex functions in the second sense, Demonstr. Math., 32 (1999), 68–696. |
[23] | S. S. Dragomir, C. E. M. Pearce, Selected topics on Hermite-Hadamard inequalities and applications, RGMIA Monographs, Victoria University, 2000. |
[24] | T. S. Du, Y. J. Li, Z. Q. Yang, A generalization of Simpson's inequality via differentiable mapping using extended \left(s, m\right) -convex functions, Appl. Math. Comput., 293 (2017), 358–369. |
[25] | T. S. Du, Y. Luo, B. Yu, Certain quantum estimates on the parameterized integral inequalities and their applications, J. Math. Inequal., 15 (2021), 201–228. |
[26] | T. Ernst, The history of q-calculus and new method, Sweden: Department of Mathematics, Uppsala University, 2000. |
[27] | T. Ernst, A comprehensive treatment of q -calculus, Springer, Basel, 2012. |
[28] |
H. Hudzik, L. Maligranda, Some remarks on s-convex functions, Aequationes Math., 48 (1994), 100–111. doi: 10.1007/BF01837981
![]() |
[29] |
İ. İşcan, New refinements for integral and sum forms of Hölder inequality, J. Inequal. Appl., 2019 (2019), 1–11. doi: 10.1186/s13660-019-1955-4
![]() |
[30] | F. H. Jackson, On a q-definite integrals. Quarterly J. Pure Appl. Math., 41 (1910), 193–203. |
[31] |
S. Jhanthanam, T. Jessada, S. K. Ntouyas, K. Nonlaopon, On q-Hermite-Hadamard inequalities for differentiable convex functions, Mathematics, 7 (2019), 632. doi: 10.3390/math7070632
![]() |
[32] | V. Kac, P. Cheung, Quantum calculus, Springer, New York, 2002. |
[33] | M. Kadakal, İ. İşcan, H. Kadakal, K. Bekar, On improvements of some integral inequalities, Researchgate, Preprint. |
[34] |
M. A. Khan, Y. M. Chu, T. U. Khan, J. Khan, Some new inequalities of Hermite–Hadamard type for s-convex functions with applications, Open Math., 15 (2017), 1414–1430. doi: 10.1515/math-2017-0121
![]() |
[35] |
M. A. Khan, M. Noor, E. R. Nwaeze, Y. M. Chu, Quantum Hermite–Hadamard inequality by means of a Green function, Adv. Differ. Equ., 2020 (2020), 99. doi: 10.1186/s13662-020-02559-3
![]() |
[36] |
P. Kórus, An extension of the Hermite–Hadamard inequality for convex and s-convex functions, Aequat. Math., 93 (2019), 527–534. doi: 10.1007/s00010-019-00642-z
![]() |
[37] | M. A. Noor, K. I. Noor, M. U. Awan, Some quantum estimates for Hermite-Hadamard inequalities, Appl. Math. Comput., 251 (2015), 675–679. |
[38] | M. A. Noor, K. I. Noor, M. U. Awan, Some quantum integral inequalities via preinvex functions, Appl. Math. Comput., 269 (2015), 242–251. |
[39] |
E. R. Nwaeze, A. M. Tameru, New parameterized quantum integral inequalities via \eta -quasiconvexity, Adv. Differ. Equ., 2019 (2019), 425. doi: 10.1186/s13662-019-2358-z
![]() |
[40] |
M. E. Özdemir, S. I. Butt, B. Bayraktar, J. Nasir, Several integral inequalities for \left(\alpha, s, m\right) -convex functions, AIMS Math., 5 (2020), 3906–3921. doi: 10.3934/math.2020253
![]() |
[41] | J. E. Pečarić, F. Proschan, Y. L. Tong, Convex functions, partial orderings and statistical applications, Academic Press, Boston, 1992. |
[42] |
S. Rashid, A. Khalid, O. Bazighifan, G. I. Oros, New modifications of integral inequalities via P-convexity pertaining to fractional calculus and their applications, Mathematics, 9 (2021), 1753. doi: 10.3390/math9151753
![]() |
[43] | S. Rashid, S. Parveen, H. Ahmad, Y. M. Chu, New quantum integral inequalities for some new classes of generalized \psi-convex functions and their scope in physical systems, Open Phy., 19 (2021), 35–50. |
[44] |
S. Rashid, Z. Hammouch, R. Ashraf, D. Baleanu, K. S. Nasir, New quantum estimates in the setting of fractional calculus theory, Adv. Differ. Equ., 2020 (2020), 1–17. doi: 10.1186/s13662-019-2438-0
![]() |
[45] | S. Rashid, S. I. Butt, S. Kanwal, H. Ahmed, M. K. Wang, Quantum integral inequalities with respect to Raina's function via coordinated generalized -convex functions with applications, J. Funct. Spaces, 2021 (2021). |
[46] |
J. Tariboon, S. K. Ntouyas, Quantum calculus on finite intervals and applications to impulsive difference equations, Adv. Differ. Equ., 2013 (2013), 282. doi: 10.1186/1687-1847-2013-282
![]() |
[47] |
M. Vivas-Cortez, M. A. Ali, A. Kashuri, I. B. Sial, Z. Zhang, Some new Newton's type integral inequalities for co-ordinated convex functions in quantum calculus, Symmetry, 12 (2020), 1476. doi: 10.3390/sym12091476
![]() |
[48] |
S. Zhao, S. I. Butt, W. Nazir, J. Nasir, M. Umar, Y. Liu, Some Hermite-Jensen-Mercer type inequalities for k-Caputo-fractional derivatives and related results, Adv. Differ. Equ., 2020 (2020), 1–17. doi: 10.1186/s13662-019-2438-0
![]() |
[49] | J. Zhao, S. I. Butt, J. Nasir, Z. Wang, I. Tilli, Hermite-Jensen-Mercer type inequalities for Caputo fractional derivatives, J. Funct. Spaces, 2020 (2020), 7061549. |
1. | Baojian Hong, Jinghan Wang, Exact Solutions for the Generalized Atangana-Baleanu-Riemann Fractional (3 + 1)-Dimensional Kadomtsev–Petviashvili Equation, 2022, 15, 2073-8994, 3, 10.3390/sym15010003 | |
2. | Xiao-Guang Yue, Mohammad Esmael Samei, Azam Fathipour, Mohammed K. A. Kaabar, Artion Kashuri, Using Krasnoselskii's theorem to investigate the Cauchy and neutral fractionalq-integro-differential equationvianumerical technique, 2022, 11, 2192-8029, 186, 10.1515/nleng-2022-0023 | |
3. | Baojian Hong, Assorted exact explicit solutions for the generalized Atangana’s fractional BBM–Burgers equation with the dissipative term, 2022, 10, 2296-424X, 10.3389/fphy.2022.1071200 | |
4. | Dipankar Kumar, Ahmet Yildirim, Mohammed K. A. Kaabar, Hadi Rezazadeh, Mohammad Esmael Samei, Exploration of some novel solutions to a coupled Schrödinger–KdV equations in the interactions of capillary-gravity waves, 2022, 2008-1359, 10.1007/s40096-022-00501-0 | |
5. | Xiao-Guang Yue, Zeying Zhang, Arzu Akbulut, Mohammed K.A. Kaabar, Melike Kaplan, A new computational approach to the fractional-order Liouville equation arising from mechanics of water waves and meteorological forecasts, 2022, 24680133, 10.1016/j.joes.2022.04.001 | |
6. | Mahammad Khuddush, K. Rajendra Prasad, Existence, uniqueness and stability analysis of a tempered fractional order thermistor boundary value problems, 2023, 31, 0971-3611, 85, 10.1007/s41478-022-00438-6 | |
7. | Jufang Wang, Si Wang, Changlong Yu, Unique iterative solution for high-order nonlinear fractional q-difference equation based on \psi -(h,r)-concave operators, 2023, 2023, 1687-2770, 10.1186/s13661-023-01718-1 | |
8. | Baojian Hong, Jiaxin Zhou, Xingchen Zhu, Yiting Wang, Yusuf Gurefe, Some Novel Optical Solutions for the Generalized M -Fractional Coupled NLS System, 2023, 2023, 2314-8888, 1, 10.1155/2023/8283092 | |
9. | Khalid K. Ali, K. R. Raslan, Amira Abd-Elall Ibrahim, Mohamed S. Mohamed, On study the fractional Caputo-Fabrizio integro differential equation including the fractional q-integral of the Riemann-Liouville type, 2023, 8, 2473-6988, 18206, 10.3934/math.2023925 | |
10. | Jufang Wang, Jinye Zhang, Changlong Yu, Hyers–Ulam stability and existence of solutions for high-order fractional q-difference equations on infinite intervals, 2023, 69, 1598-5865, 4665, 10.1007/s12190-023-01947-8 | |
11. | Khansa Hina Khalid, Akbar Zada, Ioan-Lucian Popa, Mohammad Esmael Samei, Existence and stability of a q-Caputo fractional jerk differential equation having anti-periodic boundary conditions, 2024, 2024, 1687-2770, 10.1186/s13661-024-01834-6 | |
12. | Baojian Hong, Jinghan Wang, Chen Li, Analytical solutions to a class of fractional coupled nonlinear Schrödinger equations via Laplace-HPM technique, 2023, 8, 2473-6988, 15670, 10.3934/math.2023800 | |
13. | Manisha Krishna Naik, Chandrali Baishya, Mohammed K.A. Kaabar, Exploring the relationship dynamics between farmers and mediators through the lens of the Caputo fractional derivatives, 2023, 12, 26667207, 100286, 10.1016/j.rico.2023.100286 |
q =\frac{1}{8} | q =\frac{1}{2} | q =\frac{4}{5} | q =\frac{8}{9} | |||||
n | \Lambda_1 | \Lambda_2 | \Lambda_1 | \Lambda_2 | \Lambda_1 | \Lambda_2 | \Lambda_1 | \Lambda_2 |
1 | 6.4269 | 33.0986 | 4.1726 | 17.6569 | 1.6844 | 4.9657 | 0.9465 | 2.2669 |
2 | 6.4386 | 33.1615 | 4.5536 | 19.5549 | 2.1098 | 6.6125 | 1.1971 | 3.0219 |
3 | 6.4401 | 33.1694 | 4.7492 | 20.5409 | 2.4808 | 8.1416 | 1.4377 | 3.8100 |
4 | 6.4403 | 33.1703 | 4.8483 | 21.0433 | 2.7983 | 9.5087 | 1.6670 | 4.6128 |
5 | 6.4403 | 33.1705 | 4.8982 | 21.2968 | 3.0660 | 10.6983 | 1.8838 | 5.4129 |
\vdots | \vdots | \vdots | \vdots | \vdots | \vdots | \vdots | \vdots | \vdots |
16 | 6.4403 | 33.1705 | 4.9482 | 21.5517 | 4.1529 | 15.8174 | 3.4095 | 11.8900 |
17 | 6.4403 | 33.1705 | 4.9482 | 21.5518 | 4.1750 | 15.9256 | 3.4840 | 12.2356 |
18 | 6.4403 | 33.1705 | 4.9483 | 21.5518 | 4.1928 | 16.0126 | 3.5509 | 12.5482 |
19 | 6.4403 | 33.1705 | 4.9483 | 21.5518 | 4.2070 | 16.0823 | 3.6110 | 12.8303 |
20 | 6.4403 | 33.1705 | 4.9483 | 21.5519 | 4.2184 | 16.1383 | 3.6649 | 13.0844 |
21 | 6.4403 | 33.1705 | 4.9483 | 21.5519 | 4.2275 | 16.1831 | 3.7132 | 13.3130 |
\vdots | \vdots | \vdots | \vdots | \vdots | \vdots | \vdots | \vdots | \vdots |
50 | 6.4403 | 33.1705 | 4.9483 | 21.5519 | 4.2640 | 16.3630 | 4.0987 | 15.1686 |
51 | 6.4403 | 33.1705 | 4.9483 | 21.5519 | 4.2640 | 16.3630 | 4.1002 | 15.1759 |
52 | 6.4403 | 33.1705 | 4.9483 | 21.5519 | 4.2640 | 16.3631 | 4.1015 | 15.1824 |
53 | 6.4403 | 33.1705 | 4.9483 | 21.5519 | 4.2640 | 16.3631 | 4.1027 | 15.1882 |
54 | 6.4403 | 33.1705 | 4.9483 | 21.5519 | 4.2641 | 16.3631 | 4.1037 | 15.1933 |
55 | 6.4403 | 33.1705 | 4.9483 | 21.5519 | 4.2641 | 16.3632 | 4.1047 | 15.1979 |
\vdots | \vdots | \vdots | \vdots | \vdots | \vdots | \vdots | \vdots | \vdots |
91 | 6.4403 | 33.1705 | 4.9483 | 21.5519 | 4.2641 | 16.3633 | 4.1120 | 15.2339 |
92 | 6.4403 | 33.1705 | 4.9483 | 21.5519 | 4.2641 | 16.3633 | 4.1121 | 15.2339 |
93 | 6.4403 | 33.1705 | 4.9483 | 21.5519 | 4.2641 | 16.3633 | 4.1121 | 15.2340 |
94 | 6.4403 | 33.1705 | 4.9483 | 21.5519 | 4.2641 | 16.3633 | 4.1121 | 15.2340 |
95 | 6.4403 | 33.1705 | 4.9483 | 21.5519 | 4.2641 | 16.3633 | 4.1121 | 15.2341 |
96 | 6.4403 | 33.1705 | 4.9483 | 21.5519 | 4.2641 | 16.3633 | 4.1121 | 15.2341 |
97 | 6.4403 | 33.1705 | 4.9483 | 21.5519 | 4.2641 | 16.3633 | 4.1121 | 15.2341 |
98 | 6.4403 | 33.1705 | 4.9483 | 21.5519 | 4.2641 | 16.3633 | 4.1121 | 15.2341 |
99 | 6.4403 | 33.1705 | 4.9483 | 21.5519 | 4.2641 | 16.3633 | 4.1121 | 15.2342 |
100 | 6.4403 | 33.1705 | 4.9483 | 21.5519 | 4.2641 | 16.3633 | 4.1121 | 15.2342 |
101 | 6.4403 | 33.1705 | 4.9483 | 21.5519 | 4.2641 | 16.3633 | 4.1121 | 15.2342 |
102 | 6.4403 | 33.1705 | 4.9483 | 21.5519 | 4.2641 | 16.3633 | 4.1121 | 15.2342 |
103 | 6.4403 | 33.1705 | 4.9483 | 21.5519 | 4.2641 | 16.3633 | 4.1121 | 15.2343 |
104 | 6.4403 | 33.1705 | 4.9483 | 21.5519 | 4.2641 | 16.3633 | 4.1121 | 15.2343 |
q =\frac{1}{8} | q =\frac{1}{2} | q =\frac{4}{5} | q =\frac{8}{9} | |||||
n | M_{\alpha, a, b} | (*) | M_{\alpha, a, b} | (*) | M_{\alpha, a, b} | (*) | M_{\alpha, a, b} | (*) |
1 | 33.0986 | 1.3239 | 17.6569 | 0.7063 | 4.9657 | 0.1986 | 2.2669 | 0.0907 |
2 | 33.1615 | 1.3265 | 19.5549 | 0.7822 | 6.6125 | 0.2645 | 3.0219 | 0.1209 |
3 | 33.1694 | 1.3268 | 20.5409 | 0.8216 | 8.1416 | 0.3257 | 3.8100 | 0.1524 |
4 | 33.1703 | 1.3268 | 21.0433 | 0.8417 | 9.5087 | 0.3803 | 4.6128 | 0.1845 |
\vdots | \vdots | \vdots | \vdots | \vdots | \vdots | \vdots | \vdots | \vdots |
12 | 33.1705 | 1.3268 | 21.5499 | 0.8620 | 15.0506 | 0.6020 | 10.1272 | 0.4051 |
13 | 33.1705 | 1.3268 | 21.5509 | 0.8620 | 15.3077 | 0.6123 | 10.6296 | 0.4252 |
14 | 33.1705 | 1.3268 | 21.5514 | 0.8621 | 15.5153 | 0.6206 | 11.0894 | 0.4436 |
15 | 33.1705 | 1.3268 | 21.5516 | 0.8621 | 15.6827 | 0.6273 | 11.5088 | 0.4604 |
\vdots | \vdots | \vdots | \vdots | \vdots | \vdots | \vdots | \vdots | \vdots |
73 | 33.1705 | 1.3268 | 21.5519 | 0.8621 | 16.3633 | 0.6545 | 15.2300 | 0.6092 |
74 | 33.1705 | 1.3268 | 21.5519 | 0.8621 | 16.3633 | 0.6545 | 15.2305 | 0.6092 |
75 | 33.1705 | 1.3268 | 21.5519 | 0.8621 | 16.3633 | 0.6545 | 15.2309 | 0.6092 |
76 | 33.1705 | 1.3268 | 21.5519 | 0.8621 | 16.3633 | 0.6545 | 15.2313 | 0.6093 |
77 | 33.1705 | 1.3268 | 21.5519 | 0.8621 | 16.3633 | 0.6545 | 15.2316 | 0.6093 |
78 | 33.1705 | 1.3268 | 21.5519 | 0.8621 | 16.3633 | 0.6545 | 15.2319 | 0.6093 |
79 | 33.1705 | 1.3268 | 21.5519 | 0.8621 | 16.3633 | 0.6545 | 15.2322 | 0.6093 |
80 | 33.1705 | 1.3268 | 21.5519 | 0.8621 | 16.3633 | 0.6545 | 15.2325 | 0.6093 |
q =\frac{1}{8} | q =\frac{1}{2} | q =\frac{4}{5} | q =\frac{8}{9} | |||||
n | \Lambda_1 | \Lambda_2 | \Lambda_1 | \Lambda_2 | \Lambda_1 | \Lambda_2 | \Lambda_1 | \Lambda_2 |
1 | 6.4269 | 33.0986 | 4.1726 | 17.6569 | 1.6844 | 4.9657 | 0.9465 | 2.2669 |
2 | 6.4386 | 33.1615 | 4.5536 | 19.5549 | 2.1098 | 6.6125 | 1.1971 | 3.0219 |
3 | 6.4401 | 33.1694 | 4.7492 | 20.5409 | 2.4808 | 8.1416 | 1.4377 | 3.8100 |
4 | 6.4403 | 33.1703 | 4.8483 | 21.0433 | 2.7983 | 9.5087 | 1.6670 | 4.6128 |
5 | 6.4403 | 33.1705 | 4.8982 | 21.2968 | 3.0660 | 10.6983 | 1.8838 | 5.4129 |
\vdots | \vdots | \vdots | \vdots | \vdots | \vdots | \vdots | \vdots | \vdots |
16 | 6.4403 | 33.1705 | 4.9482 | 21.5517 | 4.1529 | 15.8174 | 3.4095 | 11.8900 |
17 | 6.4403 | 33.1705 | 4.9482 | 21.5518 | 4.1750 | 15.9256 | 3.4840 | 12.2356 |
18 | 6.4403 | 33.1705 | 4.9483 | 21.5518 | 4.1928 | 16.0126 | 3.5509 | 12.5482 |
19 | 6.4403 | 33.1705 | 4.9483 | 21.5518 | 4.2070 | 16.0823 | 3.6110 | 12.8303 |
20 | 6.4403 | 33.1705 | 4.9483 | 21.5519 | 4.2184 | 16.1383 | 3.6649 | 13.0844 |
21 | 6.4403 | 33.1705 | 4.9483 | 21.5519 | 4.2275 | 16.1831 | 3.7132 | 13.3130 |
\vdots | \vdots | \vdots | \vdots | \vdots | \vdots | \vdots | \vdots | \vdots |
50 | 6.4403 | 33.1705 | 4.9483 | 21.5519 | 4.2640 | 16.3630 | 4.0987 | 15.1686 |
51 | 6.4403 | 33.1705 | 4.9483 | 21.5519 | 4.2640 | 16.3630 | 4.1002 | 15.1759 |
52 | 6.4403 | 33.1705 | 4.9483 | 21.5519 | 4.2640 | 16.3631 | 4.1015 | 15.1824 |
53 | 6.4403 | 33.1705 | 4.9483 | 21.5519 | 4.2640 | 16.3631 | 4.1027 | 15.1882 |
54 | 6.4403 | 33.1705 | 4.9483 | 21.5519 | 4.2641 | 16.3631 | 4.1037 | 15.1933 |
55 | 6.4403 | 33.1705 | 4.9483 | 21.5519 | 4.2641 | 16.3632 | 4.1047 | 15.1979 |
\vdots | \vdots | \vdots | \vdots | \vdots | \vdots | \vdots | \vdots | \vdots |
91 | 6.4403 | 33.1705 | 4.9483 | 21.5519 | 4.2641 | 16.3633 | 4.1120 | 15.2339 |
92 | 6.4403 | 33.1705 | 4.9483 | 21.5519 | 4.2641 | 16.3633 | 4.1121 | 15.2339 |
93 | 6.4403 | 33.1705 | 4.9483 | 21.5519 | 4.2641 | 16.3633 | 4.1121 | 15.2340 |
94 | 6.4403 | 33.1705 | 4.9483 | 21.5519 | 4.2641 | 16.3633 | 4.1121 | 15.2340 |
95 | 6.4403 | 33.1705 | 4.9483 | 21.5519 | 4.2641 | 16.3633 | 4.1121 | 15.2341 |
96 | 6.4403 | 33.1705 | 4.9483 | 21.5519 | 4.2641 | 16.3633 | 4.1121 | 15.2341 |
97 | 6.4403 | 33.1705 | 4.9483 | 21.5519 | 4.2641 | 16.3633 | 4.1121 | 15.2341 |
98 | 6.4403 | 33.1705 | 4.9483 | 21.5519 | 4.2641 | 16.3633 | 4.1121 | 15.2341 |
99 | 6.4403 | 33.1705 | 4.9483 | 21.5519 | 4.2641 | 16.3633 | 4.1121 | 15.2342 |
100 | 6.4403 | 33.1705 | 4.9483 | 21.5519 | 4.2641 | 16.3633 | 4.1121 | 15.2342 |
101 | 6.4403 | 33.1705 | 4.9483 | 21.5519 | 4.2641 | 16.3633 | 4.1121 | 15.2342 |
102 | 6.4403 | 33.1705 | 4.9483 | 21.5519 | 4.2641 | 16.3633 | 4.1121 | 15.2342 |
103 | 6.4403 | 33.1705 | 4.9483 | 21.5519 | 4.2641 | 16.3633 | 4.1121 | 15.2343 |
104 | 6.4403 | 33.1705 | 4.9483 | 21.5519 | 4.2641 | 16.3633 | 4.1121 | 15.2343 |
q =\frac{1}{8} | q =\frac{1}{2} | q =\frac{4}{5} | q =\frac{8}{9} | |||||
n | M_{\alpha, a, b} | (*) | M_{\alpha, a, b} | (*) | M_{\alpha, a, b} | (*) | M_{\alpha, a, b} | (*) |
1 | 33.0986 | 1.3239 | 17.6569 | 0.7063 | 4.9657 | 0.1986 | 2.2669 | 0.0907 |
2 | 33.1615 | 1.3265 | 19.5549 | 0.7822 | 6.6125 | 0.2645 | 3.0219 | 0.1209 |
3 | 33.1694 | 1.3268 | 20.5409 | 0.8216 | 8.1416 | 0.3257 | 3.8100 | 0.1524 |
4 | 33.1703 | 1.3268 | 21.0433 | 0.8417 | 9.5087 | 0.3803 | 4.6128 | 0.1845 |
\vdots | \vdots | \vdots | \vdots | \vdots | \vdots | \vdots | \vdots | \vdots |
12 | 33.1705 | 1.3268 | 21.5499 | 0.8620 | 15.0506 | 0.6020 | 10.1272 | 0.4051 |
13 | 33.1705 | 1.3268 | 21.5509 | 0.8620 | 15.3077 | 0.6123 | 10.6296 | 0.4252 |
14 | 33.1705 | 1.3268 | 21.5514 | 0.8621 | 15.5153 | 0.6206 | 11.0894 | 0.4436 |
15 | 33.1705 | 1.3268 | 21.5516 | 0.8621 | 15.6827 | 0.6273 | 11.5088 | 0.4604 |
\vdots | \vdots | \vdots | \vdots | \vdots | \vdots | \vdots | \vdots | \vdots |
73 | 33.1705 | 1.3268 | 21.5519 | 0.8621 | 16.3633 | 0.6545 | 15.2300 | 0.6092 |
74 | 33.1705 | 1.3268 | 21.5519 | 0.8621 | 16.3633 | 0.6545 | 15.2305 | 0.6092 |
75 | 33.1705 | 1.3268 | 21.5519 | 0.8621 | 16.3633 | 0.6545 | 15.2309 | 0.6092 |
76 | 33.1705 | 1.3268 | 21.5519 | 0.8621 | 16.3633 | 0.6545 | 15.2313 | 0.6093 |
77 | 33.1705 | 1.3268 | 21.5519 | 0.8621 | 16.3633 | 0.6545 | 15.2316 | 0.6093 |
78 | 33.1705 | 1.3268 | 21.5519 | 0.8621 | 16.3633 | 0.6545 | 15.2319 | 0.6093 |
79 | 33.1705 | 1.3268 | 21.5519 | 0.8621 | 16.3633 | 0.6545 | 15.2322 | 0.6093 |
80 | 33.1705 | 1.3268 | 21.5519 | 0.8621 | 16.3633 | 0.6545 | 15.2325 | 0.6093 |