Citation: Humaira Kalsoom, Muhammad Idrees, Artion Kashuri, Muhammad Uzair Awan, Yu-Ming Chu. Some New (p1p2,q1q2)-Estimates of Ostrowski-type integral inequalities via n-polynomials s-type convexity[J]. AIMS Mathematics, 2020, 5(6): 7122-7144. doi: 10.3934/math.2020456
[1] | Kirti Kaushik, Anoop Kumar, Aziz Khan, Thabet Abdeljawad . Existence of solutions by fixed point theorem of general delay fractional differential equation with p-Laplacian operator. AIMS Mathematics, 2023, 8(5): 10160-10176. doi: 10.3934/math.2023514 |
[2] | Hasanen A. Hammad, Hassen Aydi, Hüseyin Işık, Manuel De la Sen . Existence and stability results for a coupled system of impulsive fractional differential equations with Hadamard fractional derivatives. AIMS Mathematics, 2023, 8(3): 6913-6941. doi: 10.3934/math.2023350 |
[3] | Tamer Nabil . Ulam stabilities of nonlinear coupled system of fractional differential equations including generalized Caputo fractional derivative. AIMS Mathematics, 2021, 6(5): 5088-5105. doi: 10.3934/math.2021301 |
[4] | Subramanian Muthaiah, Dumitru Baleanu, Nandha Gopal Thangaraj . Existence and Hyers-Ulam type stability results for nonlinear coupled system of Caputo-Hadamard type fractional differential equations. AIMS Mathematics, 2021, 6(1): 168-194. doi: 10.3934/math.2021012 |
[5] | Yunzhe Zhang, Youhui Su, Yongzhen Yun . Existence and stability of solutions for Hadamard type fractional differential systems with p-Laplacian operators on benzoic acid graphs. AIMS Mathematics, 2025, 10(4): 7767-7794. doi: 10.3934/math.2025356 |
[6] | Ugyen Samdrup Tshering, Ekkarath Thailert, Sotiris K. Ntouyas . Existence and stability results for a coupled system of Hilfer-Hadamard sequential fractional differential equations with multi-point fractional integral boundary conditions. AIMS Mathematics, 2024, 9(9): 25849-25878. doi: 10.3934/math.20241263 |
[7] | Saleh S. Redhwan, Maoan Han, Mohammed A. Almalahi, Maryam Ahmed Alyami, Mona Alsulami, Najla Alghamdi . Piecewise implicit coupled system under ABC fractional differential equations with variable order. AIMS Mathematics, 2024, 9(6): 15303-15324. doi: 10.3934/math.2024743 |
[8] | Md. Asaduzzaman, Md. Zulfikar Ali . Existence of positive solution to the boundary value problems for coupled system of nonlinear fractional differential equations. AIMS Mathematics, 2019, 4(3): 880-895. doi: 10.3934/math.2019.3.880 |
[9] | Saeed M. Ali, Mohammed S. Abdo, Bhausaheb Sontakke, Kamal Shah, Thabet Abdeljawad . New results on a coupled system for second-order pantograph equations with ABC fractional derivatives. AIMS Mathematics, 2022, 7(10): 19520-19538. doi: 10.3934/math.20221071 |
[10] | H. H. G. Hashem, Hessah O. Alrashidi . Qualitative analysis of nonlinear implicit neutral differential equation of fractional order. AIMS Mathematics, 2021, 6(4): 3703-3719. doi: 10.3934/math.2021220 |
Derivatives of integer orders are the particular form of fractional order derivatives. When the notation dndtn was presented by Leibniz at the end of 17th century for nth order derivative, L'Hospital asked from him can we take n=12? Leibniz replied "this is an apparent Paradox, from which one day useful consequences will be drawn", and this was the origin of fractional derivatives Riemann-Liouville derivative was originated after the great contributions of mathematicians Fourier and Laplace, and due to this notion of fractional derivative the fractional calculus was developed. After that, researchers showed interest in fractional calculus [4,5,6,7,8,9,13,17,18,19,20,28]. Fractional derivatives are universal operators, which cover different physical phenomena and areas of mathematical modeling such as: control theory [26], dynamical process [24], electro-chemistry [16], image and signal processing [22], mathematical biology [21], etc.
The existence of solutions is the basic subject for the investigation of the fractional differential equations. Numerous mathematicians worked on the existence of solutions for different Boundary Value Problems, Using different fixed point theorems (see [23,29,32]). In [2] Ahmad et al. studied the existence of coupled fractional differential equations involving a p-Laplacian operator by applying fixed point theorems. In [11,12], the authors got theoretical results related to fractional differential equations with p-Laplacian operator (p-LO).
It can be easily observed that obtaining the exact solution of non linear models is a tough and challenging task, to overcome the difficulty, a lot of approximation methods were established. Hyers-Ulam Stability (HUS) can predict the gap between exactness and approximations of the solutions. This notion was initiated (in 1940) by Ulam [25] and further extended by Hyers to abstract spaces, after one year. Recent results shows that different models with different boundary conditions are investigated for HUS [3,15,30,31].
Mohammed et al. [14], explored the existence and uniqueness of solution of a model which involves the Caputo-Katugampola fractional derivative:
{cDβ(ϕp[cDα,ρ1ϖ(ϱ)])=A(ϕp[cDα,ρ1ϖ(ϱ)])+f(ϱ,ϖ(ϱ),cDα,ρ1ϖ(ϱ))=0, ϱ∈[ϱ0,T],ϖ(ϱ0)+B1ϖ(T)=C1∫Tϱ0g1(s,ϖ(s),cDγ,ρ1ϖ(s))ds,ϖ′(ϱ0)+B2ϖ′(T)=C2∫Tϱ0g1(s,ϖ(s),cDγ,ρ1ϖ(s))ds,ϕp(cDα,ρ1ϖ(ϱ0))=ϖ0, (ϕp(cDα,ρ1ϖ(ϱ0)))′=ϖ1, |
where cDβ is a Caputo fractional derivative of order β∈(1,2), cDγ,ρ1, γ∈(0,1) and cDα,ρ, α∈(1,2), ρ>0 are Caputo-Katugampola fractional derivative, ϕp, p>1 is a p-LO.
Hira et al. [27], investigated the existence, uniqueness and HU stability of solutions to nonlinear coupled FDEs:
{cDβ10+(Lp(cDα10+ϖ(ϱ)))=A1(ϱ)ϖ(ϱ)+Φ(ϱ,ϖ(ϱ),cDβ10+(Lp(cDα10+ω(ϱ)))),cDβ20+(Lp(cDα20+y(ϱ)))=A2(ϱ)ω(ϱ)+Ψ(ϱ,cDβ20(Lp(cDα20+ϖ(ϱ))),ω(ϱ)), ϱ∈T,cDα10+ϖ(0))=ϖ(0)=ϖ″(0)=0,ϖ′(T)=C1∫T0g1(s,ϖ(s),cDβ10+(Lp(cDα10+ω(s)))),cDα20+ω(0))=ω(0)=ω″(0)=0,ω′(T)=C2∫T0g2(s,cDβ10+(Lp(cDα10+ϖ(s))),ω(s)), | (1.1) |
where 2<αi≤3, 0<β1≤1, ηi, γi>0, ψi∈L[0,T], and cDαi0+ and cDβi0+ are the Caputo derivatives of order αi and βi, i=1,2, respectively. Lp(s)=|s|p−2s is a p-LO, where 1p+1q=1, and Lq denotes inverse of p-Laplacian. Ai:T→R are closed bounded linear operators for any ρ∈T=[0,T], and Φ, Ψ, gk:T×R×R→R, (k=1,2) are continuous functions i=1,2. Ck∈Rn×n, (k=1,2).
In [12], Lu et al. investigated the nonlinear fractional BVP with p-Laplacian operator
{DB0+[ϑpDZ0+X(α)]=ϝ(α,X(α)),0<α<1,X(0)=X′(0)=X′(1)=0,DZ0+X(0)=DZ0+X(1))=0, |
where Z∈(2,3], and B∈(1,2]. DZ, DB represents the standard Riemann-Liouville fractional derivatives.
In [2], Ahmad et al. investigated the system:
{cDZ1[ϑpDBX(α)]+K1(α)ϝ1(α,X(α),cDZ2[ϑp(DBY(α)])=0,α∈]0,1[,cDZ2[ϑpDBY(α)]+K2(α)ϝ2(α,cDZ1[ϑpDBX(α)],Y(α))=0,α∈]0,1[,([ϑpDBX(α)])i=([ϑp(DBY(α)])i=0,i=¯0,m−1,Ik−BX(0)=Ik−BY(0)=0,k=¯2,m,Dδ(X(1))=Dδ(Y(1))=0, |
where cDZ and DB respectively denotes the Caputo and Riemann-Liouville FD of order Z and B, m−1<Z1,Z2,B≤m, m∈{4,5,…}, and 1<δ≤2, K1(⋅), K2(⋅) are linear and bounded operators on R.
Zhang et al. [33], studied the existence of
{cDBϑp(cDZX(α))+ϝ(α,cDBX(α))=0,α∈(0,1),(ϑp(cDZX(0)))i=ϑp(cDZX(1))=0,i=1,2,…,m−1=:¯1,m−1,X(0)+X′(0)=∫10S1(ϖ)X(ϖ)dϖ+a,X(1)+X′(1)=∫10S2(ϖ)X(ϖ)dϖ+b,Xj(0)=0,j=¯2,n−1, |
where Z and B are the orders of Caputo fractional derivatives cDZ and cDB respectively.
Following [33], in this article, we present existence and stability analysis of the model of the form
{cDB1ϑp(cDZ1X(α))−ϝ1(α,cDγ1X(α),cDγ2Y(α))=0,α∈(0,1),cDB2ϑp(cDZ2)Y(α)−ϝ2(α,cDγ1X(α),cDγ2Y(α))=0,α∈(0,1),(ϑp(cDZ1X(0)))i=ϑp(cDZ1X(1))=0,i=¯1,m−1,(ϑp(cDZ2Y(0)))i=ϑp(cDZ2Y(1))=0,i=¯1,m−1,X(0)+X′(0)=∫10S1(ϖ)X(ϖ)dϖ+∫10H1(ϖ)dϖ,X(1)+X′(1)=∫10S2(ϖ)X(ϖ)dϖ+∫10H2(ϖ)dϖ,Y(0)+Y′(0)=∫10S3(ϖ)Y(ϖ)dϖ+∫10H3(ϖ)dϖ,Y(1)+Y′(1)=∫10S4(ϖ)Y(ϖ)dϖ+∫10H4(ϖ)dϖ,Xj(0)=0,Yj(0)=0,j=¯2,n−1, | (1.2) |
where 1<m−1<B1;B2<m; 1<n−1<Z1;Z2<n; Z1−B1;Z2−B2>1, Z1;Z2;B1, and B2 be the orders of Caputo fractional derivatives cDZ1, cDZ2, cDB1 and cDB2 respectively, and 0<γ1,γ2≤1. The p-Laplacian operator is represented by ϑp and is defined as ϑp(ϖ)=|ϖ|p−2ϖ,p>1,ϑ−1p=ϑq,1p+1q = 1. S1,S2,S3,S4∈C([0,1],R+), ϝ1, and ϝ2 are appropriate functions. H1,H2,H3,H4∈C([0,1],R+) are perturbation functions.
(C1) 0<∫10H1(ϖ)dϖ<∫10H2(ϖ)dϖ<2∫10H1(ϖ)dϖ<+∞, 0≤S1(α)≤S2(α)≤2S1(α), 0≤∫10S1(ϖ)dϖ, ∫10S2(ϖ)dϖ<1, 0≤S3(α)≤S4(α)≤2S3(α), 0≤∫10S3(ϖ)dϖ, ∫10S4(ϖ)dϖ<1.
The remaining manuscript is as follows: Section 2 contains basic definitions, auxiliary lemmas and related theorems. In Section 3, we present the existence theory for the problem (1.2) and gives some related properties of Green function. In Section 4, we obtain at least three positive solutions of coupled system (1.2) by using the Avery-Peterson fixed point theorem. Section 5 contains HU type stability results, and Section 6 provide an example to authenticate the theoretical result.
Here, we are presenting an important literature concerning the Caputo fractional derivatives and integral, which gives us help throughout this article, for the details, reader should study [1,10].
Definition 2.1. Let X∈L1([0,T],R+) be a function. Then the Z order fractional integral is defined by
IZX(ϖ)=1Γ(Z)∫α0(α−ϖ)Z−1X(ϖ)dϖ α>0, Z>0, |
on the condition that the integral on right side exists, where Γ is the Euler Gamma function, defined as
Γ(Z)=∫∞0αZ−1e−αdα. |
Definition 2.2. Let X:[0,T]→R be a function. Then the Z> order fractional derivative is defined as
cDZX(α)=1Γ(n−Z)∫α0(α−ϖ)n−Z−1Xn(ϖ)dϖ, |
on the condition that the integral on the right side exists, and [Z] denote the integer part of a real number Z, where n=1+[Z].
Definition 2.3. Let X:[0,T]→R be a function. Then the Z order sequential fractional derivative is defined as:
DZX(α)=DZ1DZ2DZ3…DZmX(α), |
where Z=(Z1,Z2,Z3,…,Zm) is any multi-index, and the operator DZ can either be Riemann-Liouville or Caputo or any other kind of integro-differential operator.
Lemma 2.1. For any Z>0, the Caputo FDE cDZX(α)=0 has a solution of the form
X(α)=e0+e1α+e2α2+⋯+en−1αn−1, |
where ei∈R,i=¯0,n−1, and n=1+[Z].
Lemma 2.2. For any Z>0, we have
IZ(cDZX(α))=X(α)+e0+e1α+e2α2+⋯+en−1αn−1, |
where ei∈R,i=¯0,n−1, and n=1+[Z].
Lemma 2.3. [33] Let ϝ1∈C([0,1],R), and 1<m−1<B1<m. Then
{DB1ω(α)=−ϝ1(α),0<α<1,ω(1)=ωi(0)=0,i=¯1,m−1, | (2.1) |
has a solution (unique)
ω(α)=∫10KB1(α,ϖ)ϝ1(ϖ)dϖ, |
where
KB1(α,ϖ)=1Γ(B1){(1−ϖ)B1−1+(α−ϖ)B1−1,0≤ϖ≤α≤1,(1−ϖ)B1−1,0≤α≤ϖ≤1. | (2.2) |
Let
MS1=∫10S1(ϖ)dϖ,M′S1=∫10ϖS1(ϖ)dϖ,MS2=∫10S2(ϖ)dϖ,M′S2=∫10ϖS2(ϖ)dϖ,MS3=∫10S3(ϖ)dϖ,M′S3=∫10ϖS3(ϖ)dϖ,MS4=∫10S4(ϖ)dϖ,M′S4=∫10ϖS4(ϖ)dϖ,η1(α)=(2−α)δS1+(α−1)δS1δS2(2MS2−M′S2)1−δS1δS2(2MS2−M′S2)(M′S1−MS1), | (2.3) |
η2(α)=(2−α)δS1δS2(M′S1−MS1)+(α−1)δS21−δS1δS2(2MS2−M′S2)(M′S1−MS1), | (2.4) |
ψ1(α)=(2−α)∫10H1(ϖ)dϖ+(α−1)∫10H2(ϖ)dϖ+∫10[η1(α)S1(ϖ)+η2(α)S2(ϖ)]×[(2−ϖ)∫10H1(θ)dθ+(ϖ−1)∫10H2(θ)dθ]dϖ, | (2.5) |
ψ2(α)=(2−α)∫10H3(ϖ)dϖ+(α−1)∫10H4(ϖ)dϖ+∫10[η3(α)S3(ϖ)+η4(α)S4(ϖ)]×[(2−ϖ)∫10H3(θ)dθ+(ϖ−1)∫10H4(θ)dθ]dϖ. | (2.6) |
From (C1), we know for α∈(0,1),
2S1(α)>S2(α)>αS2(α)>αS1(α),2S3(α)>S4(α)>αS4(α)>αS3(α), |
and
1>∫10S2(ϖ)dϖ>∫10ϖS2(ϖ)dϖ>∫10ϖS1(ϖ)dϖ>0,1>∫10S2(ϖ)dϖ>∫10S1(ϖ)dϖ>∫10ϖS1(ϖ)dϖ>0,1>∫10S4(ϖ)dϖ>∫10ϖS4(ϖ)dϖ>∫10ϖS3(ϖ)dϖ>0,1>∫10S4(ϖ)dϖ>∫10S3(ϖ)dϖ>∫10ϖS3(ϖ)dϖ>0,∫102S1(ϖ)dϖ>∫10S2(ϖ)dϖ,∫102ϖS1(ϖ)dϖ>∫10ϖS2(ϖ)dϖ,∫10S3(ϖ)dϖ>∫10S4(ϖ)dϖ,∫102ϖS3(ϖ)dϖ>∫10ϖS4(ϖ)dϖ. |
Implies
1>MS2>M′S2>M′S1>0,1>MS2>MS1>M′S1>0,2MS1>MS2,2M′S1>M′S2, | (2.7) |
1>MS4>M′S4>M′S3>0,1>MS4>MS3>M′S3>0,2MS3>MS4,2M′S3>M′S4. | (2.8) |
For our results we need an assumption and the lemma.
(C2) δ−1S1=1−2MS1+M′S1≠0, δ−1S2=1+MS2−M′S2≠0 and δS1δS2(2MS2−M′S2)(M′S1−MS1)≠1.
Lemma 3.1. Let (C2) hold, n−1<Z1≤n and h1:J→R are is an appropriate function. The BVP:
{cDZ1X(α)−h1(α)=0,α∈(0,1),X(0)+X′(0)=∫10S1(ϖ)X(ϖ)dϖ+∫10H1(ϖ)dϖ,X(1)+X′(1)=∫10S2(ϖ)X(ϖ)dϖ+∫10H2(ϖ)dϖ,Xj(0)=0,j=¯2,n−1, | (3.1) |
has solution(unique) of the form
X(α)=∫10GZ1(α,ϖ)h1(ϖ)dϖ+ψ1(α), | (3.2) |
where
GZ1(α,ϖ)=G1(α,ϖ)+G2(α,ϖ), | (3.3) |
G1(α,ϖ)=1Γ(Z1){(Z1−ϖ)(1−α)(1−ϖ)Z1−2+(α−ϖ)Z1−1,0≤ϖ≤α≤1,(Z1−ϖ)(1−α)(1−ϖ)Z1−2,0≤α≤ϖ≤1, | (3.4) |
and
G2(α,ϖ)=η1(α)(∫10S1(θ)G1(ϖ,θ)dθ)+η2(α)(∫10S2(θ)G1(ϖ,θ)dθ). | (3.5) |
Proof. Consider
cDZ1X(α)=h1(α). | (3.6) |
Using Lemma 2.2, we get
X(α)=1Γ(Z1)∫α0(α−ϖ)Z1−1h1(ϖ)dϖ+e0+e1α+⋯+en−1αn−1. | (3.7) |
Using boundary conditions of (3.1), we get
e0=2∫10H1(ϖ)dϖ−∫10H2(ϖ)dϖ+2∫10S1(ϖ)X(ϖ)dϖ−∫10S2(ϖ)X(ϖ)dϖ+1Γ(Z1)∫10(1−ϖ)Z1−1h1(ϖ)dϖ+1Γ(Z1−1)∫10(1−ϖ)Z1−2h1(ϖ)dϖ,e1=−∫10H1(ϖ)dϖ+∫10H2(ϖ)dϖ−∫10S1(ϖ)X(ϖ)dϖ+∫10S2(ϖ)X(ϖ)dϖ−1Γ(Z1)∫10(1−ϖ)Z1−1h1(ϖ)dϖ−1Γ(Z1−1)∫10(1−ϖ)Z1−2h1(ϖ)dϖ, |
and e2=e3=⋯=en−1=0. Putting e's in (3.7) and
X(α)=(2−α)∫10S1(ϖ)X(ϖ)dϖ+(α−1)∫10S2(ϖ)X(ϖ)dϖ+(2−α)∫10H1(ϖ)dϖ+(α−1)∫10H2(ϖ)dϖ+1−αΓ(Z1)∫10(1−ϖ)Z1−1h1(ϖ)dϖ+1−αΓ(Z1−1)∫10(1−ϖ)Z1−2h1(ϖ)dϖ+1Γ(Z1)∫t0(α−ϖ)Z1−1h1(ϖ)dϖ=∫10G1(α,ϖ)h1(ϖ)dϖ+(2−α)∫10S1(ϖ)X(ϖ)dϖ+(α−1)∫10S2(ϖ)X(ϖ)dϖ+(2−α)∫10H1(ϖ)dϖ+(α−1)∫10H2(ϖ)dϖ=∫10G1(α,ϖ)h1(ϖ)dϖ+(2−α)AS1+(α−1)AS2+(2−α)∫10H1(ϖ)dϖ+(α−1)∫10H2(ϖ)dϖ, | (3.8) |
where G1(α,ϖ) is given in (3.4), AS1=∫10S1(ϖ)X(ϖ)dϖ and AS2=∫10S2(ϖ)X(ϖ)dϖ.
In view of (3.8), we get
S1(α)X(α)=S1(α)∫10G1(α,ϖ)h1(ϖ)dϖ+(2−α)AS1S1(α)+(α−1)AS2S1(α)+(2−α)S1(α)∫10H1(ϖ)dϖ+(α−1)S1(α)∫10H2(ϖ)dϖ. | (3.9) |
Integrating (3.9) from 0 to 1, we obtain
AS1=∫10S1(ϖ)X(ϖ)dϖ=∫10S1(ϖ)(∫10G1(ϖ,θ)h(θ)dθ)dϖ+(2AS1−AS2)∫10S1(ϖ)dϖ+(AS2−AS1)∫10ϖS1(ϖ)dϖ+2∫10S1(ϖ)∫10H1(θ)dθdϖ−∫10ϖS1(ϖ)∫10H1(θ)dθdϖ+∫10ϖS1(ϖ)∫10H2(θ)dθdϖ−∫10S1(ϖ)∫10H2(θ)dθdϖ=∫10S1(ϖ)(∫10G1(ϖ,θ)h1(θ)dθ)dϖ+(2AS1−AS2)MS1+(AS2−AS1)M′S1+2∫10S1(ϖ)∫10H1(θ)dθdϖ−∫10ϖS1(ϖ)∫10H1(θ)dθdϖ+∫10ϖS1(ϖ)∫10H2(θ)dθdϖ−∫10S1(ϖ)∫10H2(θ)dθdϖ. |
Implies that
AS1=δS1∫10S1(ϖ)(∫10G1(ϖ,θ)h1(θ)dθ)dϖ+δS1AS2(M′S1−MS1)+2δS1∫10S1(ϖ)∫10H1(θ)dθdϖ−δS1∫10ϖS1(ϖ)∫10H1(θ)dθdϖ+δS1∫10ϖS1(ϖ)∫10H2(θ)dθdϖ−δS1∫10S1(ϖ)∫10H2(θ)dθdϖ. | (3.10) |
Similarly, we obtain
AS2=∫10S2(ϖ)X(ϖ)dϖ=∫10S2(ϖ)(∫10G1(ϖ,θ)h1(θ)dθ)dϖ+(2AS1−AS2)∫10S2(ϖ)dϖ+(AS2−AS1)∫10ϖS2(ϖ)dϖ+2∫10S2(ϖ)∫10H1(θ)dθdϖ−∫10ϖS2(ϖ)∫10H1(θ)dθdϖ+∫10ϖS2(ϖ)∫10H2(θ)dθdϖ−∫10S2(ϖ)∫10H2(θ)dθdϖ=∫10S2(ϖ)(∫10G1(ϖ,θ)h1(θ)dθ)dϖ+(2AS1−AS2)MS2+(AS2−AS1)M′S2+2∫10S2(ϖ)∫10H1(θ)dθdϖ−∫10ϖS2(ϖ)∫10H1(θ)dθdϖ+∫10ϖS2(ϖ)∫10H2(θ)dθdϖ−∫10S2(ϖ)∫10H2(θ)dθdϖ. |
Implies that
AS2=δS2∫10S2(ϖ)(∫10G1(ϖ,θ)h1(θ)dθ)dϖ+δS2AS1(2MS2−M′S2)+2δS2∫10S2(ϖ)∫10H1(θ)dθdϖ−δS2∫10ϖS2(ϖ)∫10H1(θ)dθdϖ+δS2∫10ϖS2(ϖ)∫10H2(θ)dθdϖ−δS2∫10S2(ϖ)∫10H2(θ)dθdϖ. | (3.11) |
From (3.10) and (3.12), we get
AS1=δS11−δS1δS2(2MS2−M′S2)(M′S1−MS1)∫10S1(ϖ)(∫10G1(ϖ,θ)h1(θ)dθ)dϖ+δS1δS2(M′S1−MS1)1−δS1δS2(2MS2−M′S2)(M′S1−MS1)∫10S2(ϖ)(∫10G1(ϖ,θ)h1(θ)dθ)dϖ+δS11−δS1δS2(2MS2−M′S2)(M′S1−MS1)∫10[(2−ϖ)∫10H1(θ)dθ+(ϖ−1)∫10H2(θ)dθ]S1(ϖ)dϖ+δS1δS2(M′S1−MS1)1−δS1δS2(2MS2−M′S2)(M′S1−MS1)∫10[(2−ϖ)∫10H1(θ)dθ+(ϖ−1)∫10H2(θ)dθ]S2(ϖ)dϖ | (3.12) |
and
AS2=δS1δS2(2MS2−M′S2)1−δS1δS2(2MS2−M′S2)(M′S1−MS1)∫10S1(ϖ)(∫10G1(ϖ,θ)h1(θ)dθ)dϖ+δS21−δS1δS2(2MS2−M′S2)(M′S1−MS1)∫10S2(ϖ)(∫10G1(ϖ,θ)h1(θ)dθ)dϖ+δS1δS2(2MS2−M′S2)1−δS1δS2(2MS2−M′S2)(M′S1−MS1)∫10[(2−ϖ)∫10H1(θ)dθ+(ϖ−1)∫10H2(θ)dθ]S1(ϖ)dϖ+δS21−δS1δS2(2MS2−M′S2)(M′S1−MS1)∫10[(2−ϖ)∫10H1(θ)dθ+(ϖ−1)∫10H2(θ)dθ]S2(ϖ)dϖ. | (3.13) |
Putting (3.12) and (3.13) in (3.8), we get
X(α)=∫10G1(α,ϖ)h1(ϖ)dϖ+(2−α)∫10H1(ϖ)dϖ+(α−1)∫10H2(ϖ)dϖ+(2−α)δS1+(α−1)δS1δS2(2MS2−M′S2)1−δS1δS2(2MS2−M′S2)(M′S1−MS1)∫10S1(ϖ)(∫10G1(ϖ,θ)h1(θ)dθ)dϖ+(2−α)δS1δS2(M′S1−MS1)+(α−1)δS21−δS1δS2(2MS2−M′S2)(M′S1−MS1)∫10S2(ϖ)(∫10G1(ϖ,θ)h1(θ)dθ)dϖ+(2−α)δS1+(α−1)δS1δS2(2MS2−M′S2)1−δS1δS2(2MS2−M′S2)(M′S1−MS1)∫10[(2−ϖ)∫10H1(θ)dθ+(ϖ−1)∫10H2(θ)dθ]S1(ϖ)dϖ+(2−α)δS1δS2(M′S1−MS1)+(α−1)δS21−δS1δS2(2MS2−M′S2)(M′S1−MS1)∫10[(2−ϖ)∫10H1(θ)dθ+(ϖ−1)∫10H2(θ)dθ]S2(ϖ)dϖ. | (3.14) |
From (2.3) and (2.4), we can write (3.14) as
X(α)=∫10G1(α,ϖ)h1(ϖ)dϖ+(2−α)∫10H1(ϖ)dϖ+(α−1)∫10H2(ϖ)dϖ+∫10η1(α)(∫10S1(θ)G1(θ,ϖ)dθ)h1(ϖ)dϖ+∫10η2(α)(∫10S2(θ)G1(θ,ϖ)dθ)h1(ϖ)dϖ+∫10η1(α)[(2−ϖ)∫10H1(θ)dθ+(ϖ−1)∫10H2(θ)dθ]S1(ϖ)dϖ+∫10η2(α)[(2−ϖ)∫10H1(θ)dθ+(ϖ−1)∫10H2(θ)dθ]S2(ϖ)dϖ=∫10G1(α,ϖ)h(ϖ)dϖ+(2−α)∫10H1(ϖ)dϖ+(α−1)∫10H2(ϖ)dϖ+∫10[η1(α)(∫10S1(θ)G1(θ,ϖ)dθ)h1(ϖ)+η2(α)(∫10S2(θ)G1(θ,ϖ)dθ)h1(ϖ)+(η1(α)S1(ϖ)+η2(α)S2(ϖ))((2−ϖ)∫10H1(θ)dθ+(ϖ−1)∫10H2(θ)dθ)]dϖ=∫10G1(α,ϖ)h1(ϖ)dϖ+∫10G2(α,ϖ)h1(ϖ)dϖ+ψ1(α)=∫10GZ1(α,ϖ)h1(ϖ)dϖ+ψ1(α). |
Lemma 3.2. The coupled BVP (1.2) is equivalent to the following system of integral equations
{X(α)=∫10GZ1(α,ϖ)ϑq(∫10KB1(ϖ,θ)ϝ1(θ,Dγ1X(θ),Dγ2Y(θ))dθ)dϖ+ψ1(α),Y(α)=∫10GZ2(α,ϖ)ϑq(∫10KB2(ϖ,θ)ϝ2(θ,Dγ1X(θ),Dγ2Y(θ))dθ)dϖ+ψ2(α), | (3.15) |
where G⋅(α,ϖ) and K⋅(α,ϖ) are given by (3.3) and (2.2).
Proof. Using Lemmas 2.3 and 3.1, set ω(α)=ϑp(DZ1X(α)) and h1(α)=ϝ1(α,Dγ1X(α),Dγ2Y(α)), and we have
X(α)=∫10GZ1(α,ϖ)ϑq(∫10KB1(ϖ,θ)ϝ1(θ,Dγ1X(θ),Dγ2Y(θ))dθ)dϖ+ψ1(α). |
Similarly, we can set ω(α)=ϑp(DZ2Y(α)) and h2(α)=ϝ2(α,Dγ1X(α),Dγ2Y(α)), we obtain
Y(α)=∫10GZ2(α,ϖ)ϑq(∫10KB2(ϖ,θ)ϝ2(θ,Dγ1X(θ),Dγ2Y(θ))dθ)dϖ+ψ2(α). |
On the other hand, if (X,Y) satisfy (3.15), we can easily prove that (X,Y) satisfy the pair of boundary value problem (1.2). Hence, the proof is completed.
Lemma 3.3. We use GZ(α,ϖ)=(GZ1(α,ϖ),GZ2(α,ϖ)) and KB(α,ϖ)=(KB1(α,ϖ),KB2(α,ϖ)) as the Green's functions of the proposed system (1.2) having the following properties:
(I) KB(α,ϖ)≥0 is continuous for all α,ϖ∈[0,1];
(II) KB(α,ϖ)≤KB(s,ϖ) for all α,ϖ∈[0,1];
(III) ∫10KB1(α,ϖ)dϖ=1−αB1Γ(B1+1)≤1Γ(B1+1) for all α,ϖ∈[0,1];
∫10KB2(α,ϖ)dϖ=1−αB2Γ(B2+1)≤1Γ(B2+1) for all α,ϖ∈[0,1];
(IV) GZ(α,ϖ)≥0 is continuous for all α,ϖ∈[0,1];
(V) ψ(α)=(ψ1(α),ψ2(α))≥0 for all α∈[0,1];
Proof. The proofs of (I) and (II) can be seen in [33].
(III) For α∈[0,1], we have
∫10KB1(α,ϖ)dϖ=∫y0((1−ϖ)B1−1+(α−ϖ)B1−1)dϖ+∫1y(1−ϖ)B1−1dϖ=1−αB1Γ(B1+1)≤1Γ(B1+1). |
Also,
∫10KB2(α,ϖ)dϖ=∫y0((1−ϖ)B2−1+(α−ϖ)B2−1)dϖ+∫1y(1−ϖ)B2−1dϖ=1−αB2Γ(B2+1)≤1Γ(B2+1). |
(IV) Firstly, from (3.4), one get G1(α,ϖ)≥0, α,ϖ∈[0,1], and from (C1), δ>0 and G1(α,ϖ)≥0, we have
∂G2(α,ϖ)∂t=−δS1+δS1δS2(2MS2−M′S2)1−δS1δS2(2MS2−M′S2)(M′S1−MS1)∫10S1(θ)G1(θ,ϖ)dθ+−δS1δS2(M′S1−MS1)+δS21−δS1δS2(2MS2−M′S2)(M′S1−MS1)∫10S2(θ)G1(θ,ϖ)dθ=δ∫10δS1δS2[(2MS2−M′S2−δ−1S2)S1(θ)−(M′S1−MS1+δ−1S1)S2(θ)]G1(θ,ϖ)dθ>0. |
Thus G2(α,ϖ) is a increasing on α∈[0,1].
Utilizing (3.5), we get
G2(α,ϖ)≥G2(0,ϖ)=η1(0)(∫10S1(θ)G1(θ,ϖ)dθ)+η2(0)(∫10S2(θ)G1(θ,ϖ)dθ)≥∫10(η1(0)S1(θ)+η2(0)12S1(θ))G1(θ,ϖ)dθ=∫10(η1(0)+η2(0)2)S1(θ)G1(θ,ϖ)dθ≥0. |
So that GZ1(α,ϖ)≥0. Similarly GZ2(α,ϖ)≥0. Hence, GZ(α,ϖ)≥0.
(V) From (C1) and (2.5), we know
ψ′1(α)=−∫10H1(ϖ)dϖ+∫10H2(ϖ)dϖ+η′1(α)∫10S1(ϖ)((2−ϖ)∫10H1(θ)dθ+(ϖ−1)∫10H2(θ)dθ)dϖ+η′2(α)∫10S2(ϖ)((2−ϖ)∫10H1(θ)dθ+(ϖ−1)∫10H2(θ)dθ)dϖ>0,α∈[0,1]. |
Thus ψ1(α), is increasing on α∈[0,1].
From (2.5), we have
ψ1(α)≥ψ1(0)=2∫10H1(ϖ)dϖ−∫10H2(ϖ)dϖ+∫10(η1(0)S1(ϖ)+η2(0)S2(ϖ))((2−ϖ)∫10H1(θ)dθ+(ϖ−1)∫10H2(θ)dθ)dϖ>0,α∈[0,1]. |
Similarly ψ1(α)≥0, and hence ψ(α)≥0.
Lemma 3.4. For κ∈(0,12), let
maxα∈[0,1]GZ1(α,ϖ)≤G1(0,ϖ)+G2(1,ϖ),maxα∈[0,1]GZ2(α,ϖ)≤G3(0,ϖ)+G4(1,ϖ),minα∈[0,κ]GZ1(α,ϖ)≥ρZ1(G1(0,ϖ)+G2(1,ϖ)),minα∈[0,κ]GZ2(α,ϖ)≥ρZ2(G3(0,ϖ)+G4(1,ϖ)), |
where ρZ1=2M′S1−M′S21+MS2+M′S1−MS1 and ρZ2=2M′S3−M′S41+MS4+M′S3−MS3.
Proof. First Step. We need to get
minα∈[0,κ]G1(α,ϖ)≥(1−κ)G1(0,ϖ)>12maxα∈[0,1]G1(α,ϖ). | (3.16) |
For ϖ<α, where ϖ∈[0,1) and α∈[0,κ], we have
Γ(Z1)∂G1(α,ϖ)∂α=−(Z1−ϖ)(1−ϖ)Z1−2+(Z1−1)(α−ϖ)Z1−2<0, |
which implies that G1(α,ϖ) is decreasing function monotonically with respect to α∈[ϖ,κ], so that
G1(α,ϖ)≤G1(s,ϖ)=(Z1−ϖ)(1−ϖ)Z1−1<(Z1−ϖ)(1−ϖ)Z1−2=G1(0,ϖ) |
and
G1(α,ϖ)G1(0,ϖ)=(Z1−ϖ)(1−α)(1−ϖ)Z1−2+(α−ϖ)Z1−1(Z1−ϖ)(1−ϖ)Z1−2=1−α+(α−ϖ)Z1−1(Z1−ϖ)(1−ϖ)Z1−2≥1−α≥1−κ>12. |
Now if ϖ≥α and α∈[0,κ],
Γ(Z1)∂G1(α,ϖ)∂α=−(Z1−ϖ)(1−ϖ)Z1−2<0, |
which implies that G1(α,ϖ) is a monotone decreasing function with respect to α∈[0,ϖ] and α∈[0,κ], so that
G1(α,ϖ)≤G1(0,ϖ)=(Z1−ϖ)(1−ϖ)Z1−2 |
and
G1(α,ϖ)G1(0,ϖ)=(Z1−ϖ)(1−α)(1−ϖ)Z1−2(Z1−ϖ)(1−ϖ)Z1−2=1−α≥1−κ>12. |
Thus, (3.16) is satisfied.
Similarly, we get
minα∈[0,κ]G3(α,ϖ)≥(1−κ)G3(0,ϖ)>12maxα∈[0,1]G3(α,ϖ). | (3.17) |
Step 2. We prove
minα∈[0,κ]G2(α,ϖ)≥ρZ1G2(1,ϖ)=ρZ1maxα∈[0,1]G2(α,ϖ). | (3.18) |
From Lemma 3.3, we know that G2(α,ϖ) is increasing for α∈[0,1], in such a way that
minα∈[0,κ]G2(α,ϖ)=G2(0,ϖ),maxα∈[0,1]G2(α,ϖ)=G2(1,ϖ). |
By (C1) and (2.7), we have
G2(0,ϖ)G2(0,ϖ)=∫10(η1(0)S1(θ)+η2(0)S2(θ))G1(θ,ϖ)dθ∫10(η1(1)S1(θ)+η2(1)S2(θ))G1(θ,ϖ)dθ≥∫10(12η1(0)S2(θ)+η2(0)S2(θ))G1(θ,ϖ)dθ∫10(12η1(1)S2(θ)+η2(1)S2(θ))G1(θ,ϖ)dθ=(12η1(0)+η2(0))∫10S2(θ)G1(θ,ϖ)dθ(12η1(1)+η2(1))∫10S2(θ)G1(θ,ϖ)dθ=2M′S1−M′S21+MS2+M′S1−MS1=ρZ1. |
Obviously, ρZ1>0, and
ρZ1−12=2M′S1−M′S21+MS2+M′S1−MS1−12=MS1+3M′S1−MS2−2M′S2−12(1+MS2+M′S1−MS1)<0. |
Thus 0<ρZ1<12 and (3.18) is satisfied.
By the same procedure,
minα∈[0,κ]G4(α,ϖ)≥ρZ2G4(1,ϖ)=ρZ2maxα∈[0,1]G4(α,ϖ). | (3.19) |
Finally, from (3.16) and (3.18), we can easily show that the following results hold:
maxα∈[0,1]GZ1(α,ϖ)≤maxα∈[0,1]G1(α,ϖ)+maxα∈[0,1]G2(α,ϖ)=G1(0,ϖ)+G2(1,ϖ), |
and
minα∈[0,κ]GZ1(α,ϖ)≥minα∈[0,κ]G1(α,ϖ)+minα∈[0,κ]G2(α,ϖ)≥12G1(0,ϖ)+ρZ1G2(1,ϖ)>ρZ1(G1(0,ϖ)+G2(1,ϖ))≥ρZ1maxα∈[0,1]GZ1(α,ϖ). |
Similarly, from (3.17) and (3.19), we can also easily show that
maxα∈[0,1]GZ2(α,ϖ)≤G3(0,ϖ)+G4(1,ϖ), |
and
minα∈[0,κ]GZ2(α,ϖ)>ρZ2maxα∈[0,1]GZ2(α,ϖ). |
Lemma 3.5. If (C1) is satisfied, then ψ(α) holds the following properties:
(I) ψ1(α)≤ψ1(1)=maxα∈[0,1]ψ1(α) and ψ2(α)≤ψ2(1)=maxα∈[0,1]ψ2(α);
(II) minα∈[0,κ]ψ1(α)≥ρZ1maxα∈[0,1]ψ1(α) and minα∈[0,κ]ψ2(α)≥ρZ2maxα∈[0,1]ψ2(α).
Proof. Using Lemma 3.3 and (2.5), implies ψ1(α) is increasing on α∈[0,1], and thus
minα∈[0,κ]ψ1(α)=ψ1(0)=2∫10H1(ϖ)dϖ−∫10H2(ϖ)dϖ+∫10(η1(0)S1(ϖ)+η2(0)S2(ϖ))((2−ϖ)∫10H1(θ)dθ+(ϖ−1)∫10H2(θ)dθ)dϖ, |
maxα∈[0,1]ψ1(α)=ψ1(1)=∫10H1(ϖ)dϖ+∫10(η1(1)S1(ϖ)+η2(1)S2(ϖ))((2−ϖ)∫10H1(θ)dθ+(ϖ−1)∫10H2(θ)dθ)dϖ |
and
ψ1(0)ψ1(1)=2∫10H1(ϖ)dϖ−∫10H2(ϖ)dϖ+∫10(η1(0)S1(ϖ)+η2(0)S2(ϖ))((2−ϖ)∫10H1(θ)dθ+(ϖ−1)∫10H2(θ)dθ)dϖ∫10H1(ϖ)dϖ+∫10(η1(1)S1(ϖ)+η2(1)S2(ϖ))((2−ϖ)∫10H1(θ)dθ+(ϖ−1)∫10H2(θ)dθ)dϖ | (3.20) |
≥2∫10H1(ϖ)dϖ−∫10H2(ϖ)dϖ+∫10(12η1(0)S2(ϖ)+η2(0)S2(ϖ))((2−ϖ)∫10H1(θ)dθ+(ϖ−1)∫10H2(θ)dθ)dϖ∫10H1(ϖ)dϖ+∫10(12η1(1)S2(ϖ)+η2(1)S2(ϖ))((2−ϖ)∫10H1(θ)dθ+(ϖ−1)∫10H2(θ)dθ)dϖ=2∫10H1(ϖ)dϖ−∫10H2(ϖ)dϖ+(12η1(0)+η2(0))∫10S2(ϖ)((2−ϖ)∫10H1(θ)dθ+(ϖ−1)∫10H2(θ)dθ)dϖ∫10H1(ϖ)dϖ+(12η1(1)+η2(1))∫10S2(ϖ)((2−ϖ)∫10H1(θ)dθ+(ϖ−1)∫10H2(θ)dθ)dϖ. | (3.21) |
Setting H2(0)=2H1(0) and H1(1)=0, then (3.20) implies
ψ1(0)ψ1(1)≥2M′S1−M′S21+MS2+M′S1−MS1=ρZ1. |
Also,
ψ2(0)ψ2(1)≥ρZ2. |
Thus,
ψ1(α)≤ψ1(1)=maxα∈[0,1]ψ1(α),minα∈[0,κ]ψ1(α)≥ρZ1maxα∈[0,1]ψ1(α),ψ2(α)≤ψ2(1)=maxα∈[0,1]ψ2(α),minα∈[0,κ]ψ2(α)≥ρZ2maxα∈[0,1]ψ2(α). |
Suppose that μ1 and μ2 be nonnegative convex and continuous functionals on Θ, μ3 be nonnegative concave and continuous functional on Θ and μ4 be a nonnegative continuous functional on Θ. For M1,M2,M3,M4>0, let us introduce the convex sets:
Θ(μ1,M1)={(X,Y)∈Θ:μ1(X,Y)<M1},Θ(μ1,μ3;M3,M1)={(X,Y)∈Θ:M3≤μ3(X,Y),μ1(X,Y)≤M1},Θ(μ1,μ2,μ3;M3,M2,M1)={(X,Y)∈Θ:M3≤μ3(X,Y),μ2(X,Y)≤M2,μ1(X,Y)≤M1}, |
and a closed set
Θ(μ1,μ4;M4,M1)={(X,Y)∈Θ:M4≤μ4(X,Y),μ1(X,Y)≤M1}. |
Lemma 4.1. Let Θ be a cone in a real Banach space χ. Let μ1 and μ2 be nonnegative continuous convex functionals on Θ, μ3 be nonnegative continuous concave functional on Θ and μ4 be a nonnegative continuous functionals on Θ satisfying μ4(λ(X,Y))≤λμ4(X,Y) for 0≤λ≤1, such that for some positive numbers N and M1,
μ3(X,Y)≤μ4(X,Y),‖(X,Y)‖≤Nμ1(X,Y), | (4.1) |
for all (X,Y)∈¯Θ(μ1,M1). Suppose
T:¯Θ(μ1,M1)→¯Θ(μ1,M1) |
is completely continuous and there exist positive numbers M2, M3 and M4 with M4<M3 such that
(C3): {(X,Y)∈Θ(μ1,μ2,μ3; M3,M2,M1):μ3(X,Y)>M3}≠∅ and μ3(X,Y)>M3 for (X,Y)∈Θ(μ1,μ2,μ3; M3,M2,M1);
(C4): μ3(T(X,Y))>M3 for (X,Y)∈Θ(μ1,μ3;M3,M1) with μ2(T(X,Y))>M4;
(C5): (0,0)∉Θ(μ1,μ4;M4,M1) and μ4(T(X,Y))<M4 for (X,Y)∈Θ(μ1,μ4;M4,M1) with μ4(X,Y)=M4.
Then, T has at least three fixed points (X1,Y1),(X2,Y2),(X3,Y3)∈¯Θ(μ1,M1) such that
μ1(Xj,Yj)≤M1,j=1,2,3;μ3(X1,Y1)>M3,M4<μ3(X2,Y2),μ4(X2,Y2)<M3,μ3(X2,Y2)<M4. |
Let χ={(X,Y)∈C([0,1],R)×C([0,1],R)} be endowed with the norm ‖(X,Y)‖=maxα∈[0,1]|(X,Y)|, then χ is a Banach space.
We define a set Θ⊂χ by
Θ={(X,Y)∈χ:(X(α),Y(α))≥0,minα∈[0,1](X,Y)(α)≥ρmaxα∈[0,1](X,Y)(α)}. |
For (X,Y),(˜X,˜Y)∈Θ and ν1,ν2≥0, it is easy to obtain that ν1(X,Y)(α)+ν2(˜X,˜Y)(α)≥0, and
minα∈[0,κ]{ν1(X,Y)(α)+ν2(˜X,˜Y)(α)}≥minα∈[0,κ]{ν1(X,Y)(α)}+minα∈[0,κ]{ν2(˜X,˜Y)(α)}≥ρmaxα∈[0,1]{ν1(X,Y)(α)}+ρmaxα∈[0,1]{ν2(˜X,˜Y)(α)}=ρ(maxα∈[0,1]{ν1(X,Y)(α)}+maxα∈[0,1]{ν2(˜X,˜Y)(α)})≥ρmaxα∈[0,1]{ν1(X,Y)(α)+ν2(˜X,˜Y)(α)}. |
Thus, for (X,Y),(˜X,˜Y)∈Θ and ν1,ν2≥0, ν1(X,Y)(α)+ν2(˜X,˜Y)(α)∈Θ. And if (X,Y)∈Θ, (X,Y)≠0, it can be seen that −(X,Y)∉Θ. Thus, Θ is a cone in χ.
Let T:Θ→χ be an operator, i.e., T=(T1,T2), defined by
T1(X,Y)(α)=∫10GZ1(α,ϖ)ϑq(∫10KB1(ϖ,θ)ϝ1(θ,Dγ1X(θ),Dγ2Y(θ))dθ)dϖ+ψ1(α),T2(X,Y)(α)=∫10GZ2(α,ϖ)ϑq(∫10KB2(ϖ,θ)ϝ2(θ,Dγ1X(θ),Dγ2Y(θ))dθ)dϖ+ψ2(α). |
Lemma 4.2. If (C1) is true, then T:Θ→Θ is a completely continuous operator.
Proof. For (X,Y)∈Θ, it is easy to know that T is a continuous operator, and T(X,Y)(α)≥0. By (3.15), we have
minα∈[0,κ]T1(X,Y)(α)=minα∈[0,κ]∫10GZ1(α,ϖ)ϑq(∫10KB1(ϖ,θ)ϝ1(θ,Dγ1X(θ),Dγ2Y(θ))dθ)dϖ+minα∈[0,κ]ψ1(α)=∫10minα∈[0,κ]GZ1(α,ϖ)ϑq(∫10KB1(ϖ,θ)ϝ1(θ,Dγ1X(θ),Dγ2Y(θ))dθ)dϖ+minα∈[0,κ]ψ1(α)≥∫10ρZ1minα∈[0,κ]GZ1(α,ϖ)ϑq(∫10KB1(ϖ,θ)ϝ1(θ,Dγ1X(θ),Dγ2Y(θ))dθ)dϖ+ρZ1minα∈[0,κ]ψ1(α)≥ρZ1maxα∈[0,1]T1(X,Y)(α). |
Similarly, for minα∈[0,κ]T2(X,Y)(α)≥ρZ2maxα∈[0,1]T2(X,Y)(α). So, T(Θ)⊆Θ.
Set Θτ⊂Θ be bounded, i.e., ∃ a constant τ>0 in such a way that ‖(X,Y)‖≤τ, for every (X,Y)∈Θτ. Let M0=maxα∈[0,1],(X,Y)|ϝ1(α,Dγ1X(α),Dγ2Y(α))|>0 and N0=maxα∈[0,1],(X,Y)|ϝ2(α,Dγ1X(α),Dγ2Y(α))|>0. For (X,Y)∈Θτ, from Lemmas 3.3 and 3.4, we have
ϑq(∫10KB1(ϖ,θ)ϝ1(θ,Dγ1X(θ),Dγ2Y(θ))dθ)≤ϑq(M0∫10KB1(ϖ,θ)dθ)≤ϑq(M0Γ(B1+1)) |
and
|T1(X,Y)(α)|=|∫10GZ1(α,ϖ)ϑq(∫10KB1(ϖ,θ)ϝ1(θ,Dγ1X(θ),Dγ2Y(θ))dθ)dϖ+ψ1(α)|≤∫10|GZ1(α,ϖ)|ϑq(M0Γ(B1+1))dϖ+|ψ1(α)|≤ϑq(M0Γ(B1+1))∫10GZ1(α,ϖ)dϖ+ψ1(1)≤ϑq(M0Γ(B1+1))∫10(G1(α,ϖ)+G2(α,ϖ))dϖ+ψ1(1):=M01. | (4.2) |
Similarly,
ϑq(∫10KB2(ϖ,θ)ϝ2(θ,Dγ1X(θ),Dγ2Y(θ))dθ)≤ϑq(N0∫10KB2(ϖ,θ)dθ)≤ϑq(N0Γ(B2+1)) |
and
|T2(X,Y)(α)|=|∫10GZ2(α,ϖ)ϑq(∫10KB2(ϖ,θ)ϝ2(θ,Dγ1X(θ),Dγ2Y(θ))dθ)dϖ+ψ2(α)|≤∫10|GZ2(α,ϖ)|ϑq(N0Γ(B2+1))dϖ+|ψ2(α)|≤ϑq(N0Γ(B2+1))∫10GZ2(α,ϖ)dϖ+ψ2(1)≤ϑq(N0Γ(B2+1))∫10(G3(α,ϖ)+G4(α,ϖ))dϖ+ψ2(1):=N01. | (4.3) |
So that T(X,Y)≤max{M01,N01}, which implies T(Θτ) is uniformly bounded. Next, we will show that T(Θτ) is equicontinuous. Since GZ(α,ϖ), ψ(α) are continuous on [0,1]×[0,1], it is uniformly continuous on [0,1]×[0,1]. Thus, for any ϵ>0, there exists a constant ς1>0, such that
|GZ1(α1,ϖ)−GZ1(α2,ϖ)|<ϵ4ϑq(M0Γ(B1+1)),|ψ1(α1)−ψ1(α2)|<ϵ4, |
for α1,α2∈[0,1] with |α1−α2|<ς1. Therefore,
|T1(X,Y)(α1)−T1(X,Y)(α2)|=|∫10GZ1(α1,ϖ)ϑq(∫10KB1(ϖ,θ)ϝ1(θ,Dγ1X(θ),Dγ2Y(θ))dθ)dϖ+ψ1(α1) | (4.4) |
−∫10GZ1(α2,ϖ)ϑq(∫10KB1(ϖ,θ)ϝ1(θ,Dγ1X(θ),Dγ2Y(θ))dθ)dϖ+ψ1(α2)|≤∫10|GZ1(α1,ϖ)−GZ1(α2,ϖ)|ϑq(∫10KB1(ϖ,θ)ϝ1(θ,Dγ1X(θ),Dγ2Y(θ))dθ)dϖ+|ψ1(α1)−ψ1(α2)|≤ϵ4ϑq(M0Γ(B1+1))ϑq(M0Γ(B1+1))+ϵ4=ϵ2. | (4.5) |
Similarly
|T2(X,Y)(α1)−T2(X,Y)(α2)|≤ϵ2. | (4.6) |
Combining (4.4) and (4.6), we obtain
|T(X,Y)(α1)−T(X,Y)(α2)|≤ϵ. |
Implies, T(Θτ) is equicontinuous.
Thus Arzelˊa-Ascoli Theorem implies that T is a completely continuous operator.
Define the functionals
μ1(X,Y)=‖(X,Y)‖,μ2(X,Y)=μ4(X,Y)=maxα∈[0,1]|(X,Y)(α)|,μ3(X,Y)=minα∈[0,κ]|(X,Y)(α)|, |
then μ1 and μ2 are continuous nonnegative convex functionals, μ3 is a continuous nonnegative concave functional, μ4 is a continuous nonnegative functional, and
ρμ2(X,Y)≤μ3(X,Y)≤μ2(X,Y)=μ4(X,Y),‖(X,Y)‖≤Nμ1(X,Y). |
Thus, (4.1) in Lemma 4.1 is fulfilled.
Let
l1=∫10GZ1(0,ϖ)−GZ1(1,ϖ)ϑq(∫10KB1(ϖ,θ)dθ)dϖ,l2=∫10GZ2(0,ϖ)−GZ2(1,ϖ)ϑq(∫κ0KB2(ϖ,θ)dθ)dϖ,l3=∫10GZ1(0,ϖ)−GZ1(1,ϖ)ϑq(∫10KB1(ϖ,θ)dθ)dϖ,l4=∫10GZ2(0,ϖ)−GZ2(1,ϖ)ϑq(∫κ0KB2(ϖ,θ)dθ)dϖ. |
Theorem 4.1. Let (C1) is true, and ∃ constants M1,M3,M4≥ψ(1) with M4<M3<ρM1minl2l4l1l3 and M2=M3ρ, in such a way that
(C6) ϝ1(α,X,Y)≤ϑp(M1−ψ1(1)l1) and ϝ2(α,X,Y)≤ϑp(M1−ψ2(1)l2), (α,X,Y)∈[0,1]×[0,M1]×[0,M1];
(C7) ϝ1(α,X,Y)>ϑp(M3−ρZ1ψ1(1)ρZ1l3) and ϝ2(α,X,Y)>ϑp(M3−ρZ2ψ2(1)ρZ2l4), (α,X,Y)∈[0,κ]×[M3,M3ρZ1]×[0,M1];
(C8) ϝ1(α,X,Y)<ϑp(M4−ψ1(1)l1) and ϝ2(α,X,Y)<ϑp(M4−ψ2(1)l2), (α,X,Y)∈[0,1]×[0,M4]×[0,M1].
Then, (1.2) has at least three positive solutions (X1,Y1), (X2,Y2), (X3,Y3) satisfying
‖(Xi,Yi)‖≤M1(i=1,2,3), | (4.7) |
minα∈[0,κ]‖(X1,Y1)(α)‖≤M3,M4<minα∈[0,κ]‖(X2,Y2)(α)‖,maxα∈[0,1]‖(X2,Y2)(α)‖<M3,maxα∈[0,1]‖(X3,Y3)(α)‖<M4. | (4.8) |
Proof. Obviously, the fixed points of T are equivalent to the solutions of (1.2). For (X,Y)∈¯Θ(μ1,M1), we get
μ1(X,Y)=‖(X,Y)‖≤M1, |
thus
maxα∈[0,1]|(X,Y)|≤M1, |
and then
0≤(X,Y)≤M1. |
By (C6), we have
maxα∈[0,1]|T1(X,Y)(α)|≤maxα∈[0,1]∫10GZ1(α,ϖ)ϑq(∫10KB1(ϖ,θ)ϝ1(θ,Dγ1X(θ),Dγ2Y(θ))dθ)dϖ+maxα∈[0,1]ψ1(α)≤∫10(G1(0,ϖ)−G2(1,ϖ))ϑq(∫10KB1(ϖ,θ)ϝ1(θ,Dγ1X(θ),Dγ2Y(θ))dθ)dϖ+ψ1(1)≤∫10(G1(0,ϖ)−G2(1,ϖ))ϑq(ϑp(M1l1)∫10KB1(ϖ,θ)dθ)dϖ+ψ1(1)=M1−ψ1(1)l1∫10(G1(0,ϖ)−G2(1,ϖ))ϑq(∫10KB1(ϖ,θ)dθ)dϖ+ψ1(1)=M1. |
Similarly,
maxα∈[0,1]|T2(X,Y)(α)|≤M1. |
So,
μ1(T(X,Y))=‖T(X,Y)‖=maxα∈[0,1]|T(X,Y)(α)|≤M1. |
Thus, T:¯Θ(μ1,M1)→¯Θ(μ1,M1).
For (X,Y)=M3ρ, (X,Y)(α)∈Θ(μ1,μ2,μ3;M3,M2,M1), μ3(M3ρ)>M3, we get
{(X,Y)∈Θ(μ1,μ2,μ3;M3,M2,M1):μ3(X,Y)>M3}≠∅. |
For (X,Y)(α)∈Θ(μ1,μ2,μ3;M3,M2,M1), we know that M3≤(X,Y)(α)≤M2=M3ρ for α∈[0,κ].
In view of (C7),
μ3(T1(X,Y))=minα∈[0,κ]|T1(X,Y)(α)|≥minα∈[0,κ]∫10GZ1(α,ϖ)ϑq(∫10KB1(ϖ,θ)ϝ1(θ,Dγ1X(θ),Dγ2Y(θ))dθ)dϖ+minα∈[0,κ]ψ1(α)≥∫10ρZ1(G1(0,ϖ)−G2(1,ϖ))ϑq(∫κ0KB1(ϖ,θ)ϑp(M3−ρZ1ψ1(1)ρZ1l3)dθ)dϖ+ρZ1ψ1(1)=ρZ1ϑp(M3−ρZ1ψ1(1)ρZ1l3)∫κ0(G1(0,ϖ)−G2(1,ϖ))ϑq(∫10KB1(ϖ,θ)dθ)dϖ+ρZ1ψ1(1)=M3. |
Similarly,
μ3(T2(X,Y))≥M3. |
So, μ3(T(X,Y))>M3 for all (X,Y)(α)∈Θ(μ1,μ2,μ3;M3,M2,M1). Hence, (C3) of Lemma 4.1 is fulfilled.
By (4.7), for all (X,Y)∈Θ(μ1,μ3;M3,M1) with μ2(T(X,Y))>M2=M3ρ, one get
μ2(T(X,Y))>ρM2=ρM3ρ=M3. |
Implies (C4) of Lemma 4.1 is true.
As μ4(0,0)=0<M4, thus 0∉Θ(μ1,μ4;M4,M1). If (X,Y)∈Θ(μ1,μ4;M4,M1) with μ4(X,Y)=M4, we deduced μ1(X,Y)≤M1. Thus, maxα∈[0,1](X,Y)(α)=M4 and 0≤(X,Y)(α)≤M1.
Using (C8), we get
μ4(T1(X,Y))=maxα∈[0,1]|T1(X,Y)(α)|≤minα∈[0,1]∫10GZ1(α,ϖ)ϑq(∫10KB1(ϖ,θ)ϝ1(θ,Dγ1X(θ),Dγ2Y(θ))dθ)dϖ+maxα∈[0,1]ψ1(α)<∫10ρZ1(G1(0,ϖ)−G2(1,ϖ))ϑq(∫κ0KB1(ϖ,θ)ϑp(M4−ψ1(1)l1)dθ)dϖ+ψ1(1)=M4−ψ1(1)l1∫κ0(G1(0,ϖ)−G2(1,ϖ))ϑq(∫10KB1(ϖ,θ)dθ)dϖ+ψ1(1)=M4. |
Similarly,
μ4(T2(X,Y))≤M4. |
So, μ3(T(X,Y))<M3 for all (X,Y)(α)∈Θ(μ1,μ4;M4,M1). Therefore, the condition (C4) of Lemma 4.1 hold.
To sum up, all the conditions of Lemma 4.1 are verified, and it was noticed that (Xi,Yi)(α)≥ψ(0)>0. Hence, the coupled system (1.2) has at least three positive solutions (X1,Y1), (X2,Y2), (X3,Y3) satisfying (4.7) and (4.8).
Definition 5.1. The system (1.2) is HU stable if there exist πZ1,Z2=max{πZ1,πZ2}>0 in such a way that, for ε=max{εZ1,εZ2}>0 and for any (X,Y)∈χ satisfying
{|DB1ϑp(DZ1X(α))+ϝ1(α,Dγ1X(α),Dγ2Y(α))|≤εZ1, α∈[0,1],|DB2ϑp(DZ2)Y(α)+ϝ2(α,Dγ1X(α),Dγ2Y(α))|≤εZ2, α∈[0,1], | (5.1) |
∃ (ˆX,ˆY)∈χ satisfying (1.2) such that
‖(X,Y)−(ˆX,ˆY)‖≤πZ1,Z2ε, α∈[0,1]. |
Definition 5.2. The coupled implicit FDEs (1.2) is GHU stable if there exist Φ∈C(R+,R+) with Φ(0)=0 such that, for any solution (X,Y)∈χ of inequality (5.1), there exists a solution (ˆX,ˆY)∈χ of (1.2) fulfilling
‖(X,Y)−(ˆX,ˆY)‖≤Φ(ε), α∈[0,1]. |
Let ΨZ1,Z2=max{ΨZ1,ΨZ2}∈C([0,1],R), and πΨZ1,ΨZ2=max{πΨZ1,πΨZ2}>0.
Definition 5.3. The coupled system of implicit FDEs (1.2) is said to be HUR stable with respect to ΨZ1,Z2 if there exists constants πΨZ1,ΨZ2 such that, for some ε>0 and for any solution (X,Y)∈χ of the inequality
{|DB1ϑp(DZ1X(α))+ϝ1(α,Dγ1X(α),Dγ2Y(α))|≤ΨZ1(α)εZ1, α∈[0,1],|DB2ϑp(DZ2)Y(α)+ϝ2(α,Dγ1X(α),Dγ2Y(α))|≤ΨZ2(α)εZ2, α∈[0,1], | (5.2) |
there exists (ˆX,ˆY)∈χ satisfying (1.2) in such a way that
‖(X,Y)−(ˆX,ˆY)‖≤πΨZ1,ΨZ2ΨZ1,Z2ε, α∈[0,1]. | (5.3) |
Definition 5.4. The system (1.2) is said to be HUR stable with respect to ΨZ1,Z2 if there exists constants πΨZ1,ΨZ2 such that, for any approximate solution (X,Y)∈χ of inequality (5.2), there exists a solution (ˆX,ˆY)∈χ of (1.2) fulfilling
‖(X,Y)−(ˆX,ˆY)‖≤πΨZ1,ΨZ2ΨZ1,Z2(α), α∈[0,1]. | (5.4) |
Remark 5.1. We say that (X,Y)∈χ is a solution of the system of inequalities (5.1) if there exist functions Λf, Λg∈C([0,1],R) depending upon X,Y, respectively, such that
(I)
|Λf(α)|≤εZ1,|Λg(α)|≤εZ2,α∈[0,1]; |
(II)
{DB1ϑp(DZ1X(α))+ϝ1(α,Dγ1X(α),Dγ2Y(α))=Λf(α),DB2ϑp(DZ2)Y(α)+ϝ2(α,Dγ1X(α),Dγ2Y(α))=Λg(α). |
Lemma 5.1. Under the assumptions given in Remark 5.1, the solution (X,Y)∈χ of coupled system
{DB1ϑp(DZ1X(α))+ϝ1(α,Dγ1X(α),Dγ2Y(α))=Λf(α),α∈[0,1],DB2ϑp(DZ2)Y(α)+ϝ2(α,Dγ1X(α),Dγ2Y(α))=Λg(α),α∈(0,1),(ϑp(DZ1X(0)))i=ϑp(DZ1X(1))=0,i=¯1,m−1,(ϑp(DZ2Y(0)))i=ϑp(DZ2Y(1))=0,i=¯1,m−1,X(0)+X′(0)=∫10S1(ϖ)X(ϖ)dϖ+∫10H1(ϖ)dϖ,X(1)+X′(1)=∫10S2(ϖ)X(ϖ)dϖ+∫10H2(ϖ)dϖ,Y(0)+Y′(0)=∫10S3(ϖ)Y(ϖ)dϖ+∫10H3(ϖ)dϖ,Y(1)+Y′(1)=∫10S4(ϖ)Y(ϖ)dϖ+∫10H4(ϖ)dϖ,Xj(0)=0,Yj(0)=0,j=¯2,n−1, | (5.5) |
satisfies the system of inequalities
|X(α)−∫10GZ1(α,ϖ)ϑq(∫10KB1(ϖ,θ)ϝ1(θ,Dγ1X(θ),Dγ2Y(θ))dθ)dϖ−ψ1(α)|≤ϑq(εZ1)M01−ψ1(1)ϑq(M0),|Y(α)−∫10GZ2(α,ϖ)ϑq(∫10KB2(ϖ,θ)ϝ2(θ,Dγ1X(θ),Dγ2Y(θ))dθ)dϖ−ψ2(α)|≤ϑq(εZ2)N01−ψ2(1)ϑq(N0). |
Proof. In light of Lemma 3.2, a solution of the coupled system (5.1) is
{X(α)=∫10GZ1(α,ϖ)ϑq(∫10KB1(ϖ,θ)ϝ1(θ,Dγ1X(θ),Dγ2Y(θ))dθ)dϖ−∫10GZ1(α,ϖ)ϑq(∫10KB1(ϖ,θ)Λf(θ)dθ)dϖ+ψ1(α),Y(α)=∫10GZ2(α,ϖ)ϑq(∫10KB2(ϖ,θ)ϝ2(θ,Dγ1X(θ),Dγ2Y(θ))dθ)dϖ−∫10GZ2(α,ϖ)ϑq(∫10KB2(ϖ,θ)Λg(θ)dθ)dϖ+ψ2(α), | (5.6) |
Using (4.2) in (5.6), we have
|X(α)−∫10GZ1(α,ϖ)ϑq(∫10KB1(ϖ,θ)ϝ1(θ,Dγ1X(θ),Dγ2Y(θ))dθ)dϖ−ψ1(α)|≤∫10|GZ1(α,ϖ)|ϑq(εZ1∫10|KB1(ϖ,θ)|dθ)dϖ≤ϑq(εZ1)M01−ψ1(1)ϑq(M0). |
Similarly, using (4.3) in (5.6), we get
|Y(α)−∫10GZ2(α,ϖ)ϑq(∫10KB2(ϖ,θ)ϝ2(θ,Dγ1X(θ),Dγ2Y(θ))dθ)dϖ−ψ2(α)|≤ϑq(εZ2)N01−ψ2(1)ϑq(N0). |
For the next result, we suppose the following condition.
(C9) Let N1,N2,S1,S2∈C([0,1],R), and there exists L1,L2,L3,L4>0 such that
|ϝ1(α,N1,S1)−ϝ1(α,N2,S2)|≤L1|N1−N2|+L2|S1−S2|,|ϝ2(α,N1,S1)−ϝ2(α,N2,S2)|≤L3|N1−N2|+L4|S1−S2|. |
Theorem 5.1. Suppose the condition (C9) and Lemma 5.1 satisfies, then (1.2) is {HU} stable, if \upsilon_{1}\upsilon_{4}-\upsilon_{2}\upsilon_{3} = \upsilon_{4}-\upsilon_{2} > 0 , where
\begin{align*} \upsilon_{1}& = 1-(M_{01}-\psi_{1}(1))\frac{\vartheta_{q}(\frac{L_{1}}{\Gamma(\mathcal{B}_{1}-\gamma_{1})\Gamma(1-\gamma_{1})})}{\vartheta_{q}(\frac{M_{0}}{\Gamma(\mathcal{B}_{1}+1)})}, \\ \upsilon_{2}& = (M_{01}-\psi_{1}(1))\frac{\vartheta_{q}(\frac{L_{2}}{\Gamma(\mathcal{B}_{1}-\gamma_{2})\Gamma(1-\gamma_{2})})}{\vartheta_{q}(\frac{M_{0}}{\Gamma(\mathcal{B}_{1}+1)})}, \\ \upsilon_{3}& = 1-(N_{01}-\psi_{2}(1))\frac{\vartheta_{q}(\frac{L_{3}}{\Gamma(\mathcal{B}_{2}-\gamma_{1})\Gamma(1-\gamma_{1})})}{\vartheta_{q}(\frac{N_{0}}{\Gamma(\mathcal{B}_{2}+1)})}, \\ \upsilon_{4}& = (N_{01}-\psi_{2}(1))\frac{\vartheta_{q}(\frac{L_{4}}{\Gamma(\mathcal{B}_{2}-\gamma_{2})\Gamma(1-\gamma_{2})})}{\vartheta_{q}(\frac{N_{0}}{\Gamma(\mathcal{B}_{2}+1)})}. \end{align*} |
Proof. Consider ({X}, {Y})\in\chi to be any solution of (5.5), and (\widehat{{X}}, \widehat{{Y}})\in\chi is a solution of the coupled system (1.2), then we take
\begin{align*} &|({X}(\alpha)-\widehat{{X}}(\alpha))|\\ \leq&|{X}(\alpha)-\int_{0}^{1}{G}_{\mathcal{Z}_{1}}(\alpha, \varpi)\vartheta_{q}\big(\int_{0}^{1}{K}_{\mathcal{B}_{1}}(\varpi, \theta)\digamma_{1}(\theta, {D}^{\gamma_{1}}{X}(\theta), {D}^{\gamma_{2}}{Y}(\theta)){d}\theta\big){d\varpi}-\psi_{1}(\alpha)\\ &+\int_{0}^{1}{G}_{\mathcal{Z}_{1}}(\alpha, \varpi)\vartheta_{q}\big(\int_{0}^{1}{K}_{\mathcal{B}_{1}}(\varpi, \theta)\digamma_{1}(\theta, {D}^{\gamma_{1}}{X}(\theta), {D}^{\gamma_{2}}{Y}(\theta)){d}\theta\big){d\varpi}\\ &-\int_{0}^{1}{G}_{\mathcal{Z}_{1}}(\alpha, \varpi)\vartheta_{q}\big(\int_{0}^{1}{K}_{\mathcal{B}_{1}}(\varpi, \theta)\digamma_{1}(\theta, {D}^{\gamma_{1}}\widehat{{X}}(\theta), {D}^{\gamma_{2}}\widehat{{Y}}(\theta)){d}\theta\big){d\varpi}|\\ \leq&\vartheta_{q}(\varepsilon_{\mathcal{Z}_{1}})\frac{M_{01}-\psi_{1}(1)}{\vartheta_{q}(M_{0})}+\int_{0}^{1}{G}_{\mathcal{Z}_{1}}(\alpha, \varpi)\vartheta_{q}\big(\int_{0}^{1}{K}_{\mathcal{B}_{1}}(\varpi, \theta)|\digamma_{1}(\theta, {D}^{\gamma_{1}}{X}(\theta), {D}^{\gamma_{2}}{Y}(\theta))\\ &-\digamma_{1}(\theta, {D}^{\gamma_{1}}\widehat{{X}}(\theta), {D}^{\gamma_{2}}\widehat{{Y}}(\theta))|{d}\theta\big){d\varpi}\\ \leq&\vartheta_{q}(\varepsilon_{\mathcal{Z}_{1}})\frac{M_{01}-\psi_{1}(1)}{\vartheta_{q}(M_{0})}+\int_{0}^{1}{G}_{\mathcal{Z}_{1}}(\alpha, \varpi)\vartheta_{q}\big(\int_{0}^{1}{K}_{\mathcal{B}_{1}}(\varpi, \theta)(L_{1}{D}^{\gamma_{1}}|{X}(\theta)-\widehat{{X}}(\theta)|+L_{2}{D}^{\gamma_{2}}|{Y}(\theta)-\widehat{{Y}}(\theta)|){d}\theta\big){d\varpi}\\ \leq&(M_{01}-\psi_{1}(1))\bigg(\frac{\vartheta_{q}(\varepsilon_{\mathcal{Z}_{1}})}{\vartheta_{q}(M_{0})}+\frac{\vartheta_{q}(\frac{L_{1}}{\Gamma(\mathcal{B}_{1}-\gamma_{1})\Gamma(1-\gamma_{1})})}{\vartheta_{q}(\frac{M_{0}}{\Gamma(\mathcal{B}_{1}+1)})}|{X}(\alpha)-\widehat{{X}}(\alpha)|+\frac{\vartheta_{q}(\frac{L_{2}}{\Gamma(\mathcal{B}_{1}-\gamma_{2})\Gamma(1-\gamma_{2})})}{\vartheta_{q}(\frac{M_{0}}{\Gamma(\mathcal{B}_{1}+1)})}|{Y}(\alpha)-\widehat{{Y}}(\alpha)|\bigg) \end{align*} |
implies that
\begin{align} \upsilon_{1}\|u-\widehat{{X}}\|-\upsilon_{2}\|v-\widehat{{Y}}\|\leq(M_{01}-\psi_{1}(1))\frac{\vartheta_{q}(\varepsilon_{\mathcal{Z}_{1}})}{\vartheta_{q}(M_{0})}. \end{align} | (5.7) |
Similarly, we have
\begin{align} \upsilon_{4}\|v-\widehat{{Y}}\|-\upsilon_{3}\|u-\widehat{{X}}\|\leq(N_{01}-\psi_{2}(1))\frac{\vartheta_{q}(\varepsilon_{\mathcal{Z}_{2}})}{\vartheta_{q}(N_{0})}. \end{align} | (5.8) |
From (5.7) and (5.8), we get
\begin{eqnarray*} \left[ \begin{array}{cc} \upsilon_{1} & -\upsilon_{2} \\\\ -\upsilon_{3} & \upsilon_{4} \\ \end{array} \right]\left[ \begin{array}{c} \|{X}-\widehat{{X}}\| \\\\ \|{Y}-\widehat{{Y}}\|\\ \end{array} \right]\leq\left[ \begin{array}{c} (M_{01}-\psi_{1}(1))\frac{\vartheta_{q}(\varepsilon_{\mathcal{Z}_{1}})}{\vartheta_{q}(M_{0})} \\\\ (N_{01}-\psi_{2}(1))\frac{\vartheta_{q}(\varepsilon_{\mathcal{Z}_{2}})}{\vartheta_{q}(N_{0})} \\ \end{array} \right] \end{eqnarray*} |
implies
\begin{eqnarray} \left[ \begin{array}{c} \|{X}-\widehat{{X}}\| \\\\ \|{Y}-\widehat{{Y}}\|\\ \end{array} \right]\leq\left[ \begin{array}{cc} \frac{\upsilon_{4}}{\upsilon_{4}-\upsilon_{2}} & \frac{\upsilon_{2}}{\upsilon_{4}-\upsilon_{2}} \\\\ \frac{\upsilon_{3}}{\upsilon_{4}-\upsilon_{2}} & \frac{\upsilon_{1}}{\upsilon_{4}-\upsilon_{2}} \\ \end{array} \right]\left[ \begin{array}{c} (M_{01}-\psi_{1}(1))\frac{\vartheta_{q}(\varepsilon_{\mathcal{Z}_{1}})}{\vartheta_{q}(M_{0})} \\\\ (N_{01}-\psi_{2}(1))\frac{\vartheta_{q}(\varepsilon_{\mathcal{Z}_{2}})}{\vartheta_{q}(N_{0})} \\ \end{array} \right]. \end{eqnarray} | (5.9) |
From system (5.9), we have
\begin{align*} &\|{X}-\widehat{{X}}\|\leq\frac{\upsilon_{4}}{\upsilon_{4}-\upsilon_{2}}(M_{01}-\psi_{1}(1))\frac{\vartheta_{q}(\varepsilon_{\mathcal{Z}_{1}})}{\vartheta_{q}(M_{0})}+\frac{\upsilon_{2}}{\upsilon_{4}-\upsilon_{2}}(N_{01}-\psi_{2}(1))\frac{\vartheta_{q}(\varepsilon_{\mathcal{Z}_{2}})}{\vartheta_{q}(N_{0})}, \\ &\|{Y}-\widehat{{Y}}\|\leq\frac{\upsilon_{3}}{\upsilon_{4}-\upsilon_{2}}(M_{01}-\psi_{1}(1))\frac{\vartheta_{q}(\varepsilon_{\mathcal{Z}_{1}})}{\vartheta_{q}(M_{0})}+\frac{\upsilon_{1}}{\upsilon_{4}-\upsilon_{2}}(N_{01}-\psi_{2}(1))\frac{\vartheta_{q}(\varepsilon_{\mathcal{Z}_{2}})}{\vartheta_{q}(N_{0})}, \end{align*} |
which implies that
\begin{align*} \|{X}-\widehat{{X}}\|+\|{Y}-\widehat{{Y}}\|\leq&\frac{\upsilon_{1}}{\upsilon_{4}-\upsilon_{2}}(N_{01}-\psi_{2}(1))\frac{\vartheta_{q}(\varepsilon_{\mathcal{Z}_{2}})}{\vartheta_{q}(N_{0})}+\frac{\upsilon_{2}}{\upsilon_{4}-\upsilon_{2}}(N_{01}-\psi_{2}(1))\frac{\vartheta_{q}(\varepsilon_{\mathcal{Z}_{2}})}{\vartheta_{q}(N_{0})}\\ &+\frac{\upsilon_{3}}{\upsilon_{4}-\upsilon_{2}}(M_{01}-\psi_{1}(1))\frac{\vartheta_{q}(\varepsilon_{\mathcal{Z}_{1}})}{\vartheta_{q}(M_{0})}+\frac{\upsilon_{4}}{\upsilon_{4}-\upsilon_{2}}(M_{01}-\psi_{1}(1))\frac{\vartheta_{q}(\varepsilon_{\mathcal{Z}_{1}})}{\vartheta_{q}(M_{0})}. \end{align*} |
If \max\{\vartheta_{q}(\varepsilon_{\mathcal{Z}_{1}}), \vartheta_{q}(\varepsilon_{\mathcal{Z}_{2}})\} = \vartheta_{q}(\varepsilon_{\mathcal{Z}}) and \frac{\upsilon_{1}}{\upsilon_{4}-\upsilon_{2}}\frac{N_{01}-\psi_{2}(1)}{\vartheta_{q}(N_{0})}+\frac{\upsilon_{2}}{\upsilon_{4}-\upsilon_{2}}\frac{N_{01}-\psi_{2}(1)}{\vartheta_{q}(N_{0})} +\frac{\upsilon_{3}}{\upsilon_{4}-\upsilon_{2}}\frac{M_{01}-\psi_{1}(1)}{\vartheta_{q}(M_{0})}+\frac{\upsilon_{4}}{\upsilon_{4}-\upsilon_{2}}\frac{M_{01}-\psi_{1}(1)}{\vartheta_{q}(M_{0})} = \upsilon_{\mathcal{Z}_{1}, \mathcal{Z}_{2}} , then
\begin{eqnarray*} \|({X}, {Y})-(\widehat{{X}}, \widehat{{Y}})\|\leq\upsilon_{\mathcal{Z}_{1}, \mathcal{Z}_{2}}\vartheta_{q}(\varepsilon_{\mathcal{Z}}). \end{eqnarray*} |
Hence, system (1.2) is {HU} stable. Also, if
\begin{eqnarray*} \|({X}, {Y})-(\widehat{{X}}, \widehat{{Y}})\|\leq\upsilon_{\mathcal{Z}_{1}, \mathcal{Z}_{2}}\Phi(\vartheta_{q}(\varepsilon_{\mathcal{Z}})), \end{eqnarray*} |
with \Phi(0) = 0 , then the solution of system (1.2) is {GHU} stable.
Theorem 5.2. Suppose the conditions (\mathfrak{C}_{9}) and Lemma 5.1 holds, then (1.2) is {GHU} stable, if \upsilon_{1}\upsilon_{4}-\upsilon_{2}\upsilon_{3} = \upsilon_{4}-\upsilon_{2} > 0 , where \upsilon_{1} , \upsilon_{2} , \upsilon_{3} and \upsilon_{4} is defined in Theorem 5.1.
Proof. By applying steps of Theorem 5.1, we can easily show that system (1.2) is {GHU} stable, by using Definition 5.4.
For the next theorem, we assume that
(\mathfrak{C}_{10}) \exists non-decreasing functions \bar{w}_{\mathcal{Z}}, \bar{w}_{\mathcal{B}}\in\mathcal{C}([0, 1], {R}^{+}) in such a way that
\begin{align*} \mathfrak{I}^{\mathcal{Z}}\bar{w}_{\mathcal{Z}}(\alpha)\leq\mathcal{L}_{\mathcal{Z}}\bar{w}_{\mathcal{Z}}(\alpha) \end{align*} |
and
\begin{align*} \mathfrak{I}^{\mathcal{B}}\bar{w}_{\mathcal{B}}(\alpha)\leq\mathcal{L}_{\mathcal{B}}\bar{w}_{\mathcal{B}}(\alpha), \end{align*} |
where \mathcal{L}_{\mathcal{Z}}, \mathcal{L}_{\mathcal{B}} > 0 .
Theorem 5.3. Suppose the conditions (\mathfrak{C}_{9}) , (\mathfrak{C}_{10}) and Lemma 5.1 satisfies, then system (1.2) is {HUR} stable if \upsilon_{1}\upsilon_{4}-\upsilon_{2}\upsilon_{3} = \upsilon_{4}-\upsilon_{2} > 0 .
Proof. By applying steps of Theorem 5.1, we can easily show that system (1.2) is {HUR} stable, by using Definition 5.3.
Theorem 5.4. Suppose the conditions (\mathfrak{C}_{9}) , (\mathfrak{C}_{10}) and Lemma 5.1 holds, then system (1.2) is {GHUR} stable if \upsilon_{1}\upsilon_{4}-\upsilon_{2}\upsilon_{3} = \upsilon_{4}-\upsilon_{2} > 0 .
Proof. By applying steps of Theorem 5.1, we can easily show that system (1.2) is {GHUR} stable, by using Definition 5.4.
In this section, we demonstrate an example to illustrate the main results.
Example 6.1. Consider the following system of implicit {FDE}s :
\begin{equation} \left\{\begin{split} & {D}^{\frac{9}{4}} \vartheta_{\frac{3}{2}}\big({D}^{\frac{7}{2}}{X}(\alpha)\big)+\digamma_{1}(\alpha, {D}^{\frac{1}{2}}{X}(\alpha), {D}^{\frac{1}{3}}{Y}(\alpha)) = 0, \; \; \alpha\in(0, 1), \\& {D}^{\frac{11}{5}} \vartheta_{\frac{3}{2}}\big({D}^{\frac{10}{3}}\big){Y}(\alpha)+\digamma_{2}(\alpha, {D}^{\frac{1}{2}}{X}(\alpha), {D}^{\frac{1}{3}}{Y}(\alpha)) = 0, \; \; \alpha\in(0, 1), \\& \bigg(\vartheta_{\frac{3}{2}}\big({D}^{\frac{7}{2}}{X}(0)\big)\bigg)' = \vartheta_{\frac{3}{2}}\big({D}^{\frac{7}{2}}{X}(1)\big) = 0, \; \; \bigg(\vartheta_{\frac{3}{2}}\big({D}^{\frac{10}{3}}{Y}(0)\big)\bigg)' = \vartheta_{\frac{3}{2}}\big({D}^{\frac{10}{3}}{Y}(1)\big) = 0, \\& {X}(0)+{X}'(0) = \int_{0}^{1}(\varpi+1){X}(\varpi){d\varpi}+\int_{0}^{1}\frac{\varpi{d\varpi}}{4}, \\& {X}(1)+{X}'(1) = \int_{0}^{1}(3\varpi^{2}+\varpi){X}(\varpi){d\varpi}+\int_{0}^{1}\frac{\varpi{d\varpi}}{3}, \\& {Y}(0)+{Y}'(0) = \int_{0}^{1}(2\varpi+1){Y}(\varpi){d\varpi}+\int_{0}^{1}\frac{\varpi{d\varpi}}{2}, \\& {Y}(1)+{Y}'(1) = \int_{0}^{1}(5\varpi^{2}+2\varpi){Y}(\varpi){d\varpi}+\int_{0}^{1}\varpi{d\varpi}, \\& {X}^{j} = {Y}^{j}, \; \; where\; \; j = 2, 3. \end{split}\right. \end{equation} | (6.1) |
Choosing {M}_{1} = 25000 , {M}_{3} = 65 , {M}_{4} = 3 and \kappa = \frac{1}{3} . Reminding \psi_{1} , \psi_{2} from (2.5), (2.6) and \rho_{\mathcal{Z}_{1}} and \rho_{\mathcal{Z}_{2}} from Lemma 3.4, we get
\begin{align*} \psi_{1}(1) = 1.87144, \; \; \psi_{2}(1) = 2.32681, \; \; \rho_{\mathcal{Z}_{1}} = 0.046572\; \; < italic > and < /italic > \; \; \rho_{\mathcal{Z}_{2}} = 0.0097325. \end{align*} |
In (6.1), we see that
\begin{align*} \digamma_{1}(\alpha, {D}^{\frac{1}{2}}{X}(\alpha), {D}^{\frac{1}{3}}{Y}(\alpha))& = \tan(\frac{\alpha}{150})+{D}^{\frac{1}{2}}{X}(\alpha)+\cos({D}^{\frac{1}{3}}{Y}(\alpha)), \\ \digamma_{2}(\alpha, {D}^{\frac{1}{2}}{X}(\alpha), {D}^{\frac{1}{3}}{Y}(\alpha))& = \frac{\sin({D}^{\frac{1}{2}}{X}(\alpha))-{D}^{\frac{1}{3}}{Y}(\alpha)}{160}, \end{align*} |
which satisfies the following conditions:
(\mathfrak{C}_{6}) \sup \digamma_{1}(\alpha, {X}, {Y})\approx246.534\leq\min\vartheta_{p}(\frac{{M}_{1}-\psi_{1}(1)}{l_{1}})\approx291.732 ,
\sup \digamma_{2}(\alpha, {X}, {Y})\approx241.492\leq\min\vartheta_{p}(\frac{{M}_{1}-\psi_{2}(1)}{l_{2}})\approx284.618 , (\alpha, {X}, {Y})\in[0, 1]\times[0, 25000]\times[0, 25000];
(\mathfrak{C}_{7}) \inf \digamma_{1}(\alpha, {X}, {Y})\approx240.631 > \vartheta_{p}(\frac{{M}_{3}-\rho_{\mathcal{Z}_{1}}\psi_{1}(1)}{\rho_{\mathcal{Z}_{1}}l_{3}})\approx201.981 (\alpha, {X}, {Y})\in[0, \frac{1}{3}]\times[65, \frac{{M}_{3}}{\rho_{\mathcal{Z}_{1}}}]\times[0, 25000];
\inf \digamma_{2}(\alpha, {X}, {Y})\approx271 > \vartheta_{p}(\frac{{M}_{3}-\rho_{\mathcal{Z}_{2}}\psi_{2}(1)}{\rho_{\mathcal{Z}_{2}}l_{4}})\approx201.843 , (\alpha, {X}, {Y})\in[0, \frac{1}{3}]\times[65, \frac{{M}_{3}}{\rho_{\mathcal{Z}_{2}}}]\times[0, 25000];
(\mathfrak{C}_{8}) \sup \digamma_{2}(\alpha, {X}, {Y})\approx198.938 < \vartheta_{p}(\frac{{M}_{4}-\psi_{1}(1)}{l_{1}})\approx243.861 ,
\sup \digamma_{2}(\alpha, {X}, {Y})\approx183.861 < \vartheta_{p}(\frac{{M}_{4}-\psi_{2}(1)}{l_{2}})\approx202.991 , (\alpha, {X}, {Y})\in[0, 1]\times[0, 3]\times[0, 25000].
Then, all assumptions of Theorem 4.1 are satisfied. Thus, {BVP} (6.1) has at least three positive solutions ({X}_{1}, {Y}_{1}) , ({X}_{2}, {Y}_{2}) , ({X}_{3}, {Y}_{3}) satisfying
\begin{align*} &\|({X}_{i}, {Y}_{i})\|\leq25000\; (i = 1, 2, 3), \\ \min\limits_{\alpha\in[0, \kappa]}&|({X}_{1}, {Y}_{1})| > 65, \; 3 < \min\limits_{\alpha\in[0, \kappa]}|({X}_{2}, {Y}_{2})|, \\\max\limits_{\alpha\in[0, 1]}&|({X}_{2}, {Y}_{2})| < 65, \max\limits_{\alpha\in[0, 1]}|({X}_{3}, {Y}_{3})| < 3. \end{align*} |
For {HUS} , we found L_{1} = L_{2} = \frac{1}{150} , L_{3} = L_{4} = \frac{1}{160} , \upsilon_{1}\approx0.02961 , \upsilon_{2}\approx0.9721 , \upsilon_{3}\approx0.03291 and \upsilon_{4}\approx0.9948 . Hence, by Theorem 5.1, we have \upsilon_{4}-\upsilon_{2}\approx0.9948-0.0227 > 0 .
In this paper, we considered an implicit coupled {BVP} of p -Laplacian {FDE}s (1.2), which involved disturbing functions. The relating fractional order derivative is taken in Caputo sense. By using the Avery-Peterson fixed point theorem for the proposed problem, we found at least three solutions, under sufficient conditions. In addition, we presented four types of Ulam's stability, i.e., Hyers-Ulam stability, generalized Hyers-Ulam stability, Hyers-Ulam-Rassias stability and generalized Hyers-Ulam-Rassias stability, for the coupled implicit fractional p -Laplacian system, and an example is provided to authenticate the theoretical results.
This research is supported by the scientific research project of Anhui Provincial Department of Education (KJ2021A1155; KJ2020A0780).
The authors declare no conflict of interest.
[1] | F. H. Jackson, On a q-definite integrals, Q. J. Pure Appl. Math., 41 (1910), 193-203. |
[2] |
M. Adil Khan, N. Mohammad, E. R. Nwaeze, et al. Quantum Hermite-Hadamard inequality by means of a Green function, Adv. Differ. Equ., 2020 (2020), 1-20. doi: 10.1186/s13662-019-2438-0
![]() |
[3] | L. Xu, Y. M. Chu, S. Rashid, et al. On new unified bounds for a family of functions with fractional q-calculus theory, J. Funct. Space., 2020 (2020), 1-9. |
[4] | S. Rashid, A. Khalid, G. Rahman, et al. On new modifications governed by quantum Hahn's integral operator pertaining to fractional calculus, J. Funct. Space., 2020 (2020), 1-12. |
[5] |
J. M. Shen, S. Rashid, M. A. Noor, et al. Certain novel estimates within fractional calculus theory on time scales, AIMS Math., 5 (2020), 6073-6086. doi: 10.3934/math.2020390
![]() |
[6] | H. Kalsoom, M. Idrees, D. Baleanu, et al. New estimates of q1q2-Ostrowski-type inequalities within a class of n-polynomial prevexity of function, J. Funct. Space., 2020 (2020), 1-13. |
[7] |
M. U. Awan, S. Talib, A. Kashuri, et al. Estimates of quantum bounds pertaining to new q-integral identity with applications, Adv. Differ. Equ., 2020 (2020), 1-15. doi: 10.1186/s13662-019-2438-0
![]() |
[8] |
J. Tariboon, S. K. Ntouyas, Quantum integral inequalities on finite intervals, J. Inequal. Appl., 2014 (2014), 1-13. doi: 10.1186/1029-242X-2014-1
![]() |
[9] |
J. Tariboon, S. K. Ntouyas, Quantum calculus on finite intervals and applications to impulsive difference equations, Adv. Differ. Equ., 2013 (2013), 1-19. doi: 10.1186/1687-1847-2013-1
![]() |
[10] | M. A. Noor, M. U. Awan, K. I. Noor, Quantum Ostrowski inequalities for q-differentiable convex functions, J. Math. Inequal., 10 (2016), 1013-1018. |
[11] | H. Kalsoom, J. D. Wu, S. Hussain, et al. Simpson's type inequalities for co-ordinated convex functions on quantum calculus, Symmetry, 11 (2019), 1-16. |
[12] | Y. P. Deng, M. U. Awan, S. H. Wu, et al. Quantum integral inequalities of Simpson-type for Strongly preinvex functions, Mathematics, 7 (2019), 1-14. |
[13] | Y. P. Deng, H. Kalsoom, S. H. Wu, Some new quantum Hermite-Hadamard-type estimates within a class of generalized (s, m)-preinvex functions, Symmetry, 11 (2019), 1-15. |
[14] | M. Tunç, E. Göv, (p, q)-Integral inequalities, RGMIA Res. Rep. Coll., 19 (2016), 1-13. |
[15] |
S. Rashid, İ. İşcan, D. Baleanu, et al. Generation of new fractional inequalities via n polynomials s-type convexixity with applications, Adv. Differ. Equ., 2020 (2020), 1-20. doi: 10.1186/s13662-019-2438-0
![]() |
[16] |
Y. Khurshid, M. A. Khan, Y. M. Chu, Conformable fractional integral inequalities for GG- and GA-convex function, AIMS Math., 5 (2020), 5012-5030. doi: 10.3934/math.2020322
![]() |
[17] |
T. Abdeljawad, S. Rashid, H. Khan, et al. On new fractional integral inequalities for p-convexity within interval-valued functions, Adv. Differ. Equ., 2020 (2020), 1-17. doi: 10.1186/s13662-019-2438-0
![]() |
[18] |
M. B. Sun, Y. M. Chu, Inequalities for the generalized weighted mean values of g-convex functions with applications, RACSAM, 114 (2020), 1-12. doi: 10.1007/s13398-019-00732-2
![]() |
[19] | S. Y. Guo, Y. M. Chu, G. Farid, et al. Fractional Hadamard and Fejér-Hadamard inequaities associated with exponentially (s, m)-convex functions, J. Funct. Space., 2020 (2020), 1-10. |
[20] | M. U. Awan, S. Talib, M. A. Noor, et al. Some trapezium-like inequalities involving functions having strongly n-polynomial preinvexity property of higher order, J. Funct. Space., 2020 (2020), 1-9. |
[21] | T. Abdeljawad, S. Rashid, Z. Hammouch, et al. Some new local fractional inequalities associated with generalized (s, m)-convex functions and applications, Adv. Differ. Equ., 2020 (2020), 1-27. |
[22] |
Y. Khurshid, M. Adil Khan, Y. M. Chu, Conformable integral version of Hermite-Hadamard-Fejér inequalities via η-convex functions, AIMS Math., 5 (2020), 5106-5120. doi: 10.3934/math.2020328
![]() |
[23] |
M. U. Awan, N. Akhtar, A. Kashuri, et al. 2D approximately reciprocal ρ-convex functions and associated integral inequalities, AIMS Math., 5 (2020), 4662-4680. doi: 10.3934/math.2020299
![]() |
[24] | Y. M. Chu, M. U. Awan, M. Z. Javad, et al. Bounds for the remainder in Simpson's inequality via n-polynomial convex functions of higher order using Katugampola fractional integrals, J. Math., 2020 (2020), 1-10. |
[25] |
P. Y. Yan, Q. Li, Y. M. Chu, et al. On some fractional integral inequalities for generalized strongly modified h-convex function, AIMS Math., 5 (2020), 6620-6638. doi: 10.3934/math.2020426
![]() |
[26] |
S. S. Zhou, S. Rashid, F. Jarad, et al. New estimates considering the generalized proportional Hadamard fractional integral operators, Adv. Differ. Equ., 2020 (2020), 1-15. doi: 10.1186/s13662-019-2438-0
![]() |
[27] |
S. Hussain, J. Khalid, Y. M. Chu, Some generalized fractional integral Simpson's type inequalities with applications, AIMS Math., 5 (2020), 5859-5883. doi: 10.3934/math.2020375
![]() |
[28] |
G. J. Hai, T. H. Zhao, Monotonicity properties and bounds involving the two-parameter generalized Grötzsch ring function, J. Inequal. Appl., 2020 (2020), 1-17. doi: 10.1186/s13660-019-2265-6
![]() |
[29] | J. M. Shen, Z. H. Yang, W. M. Qian, et al. Sharp rational bounds for the gamma function, Math. Inequal. Appl., 23 (2020), 843-853. |
[30] | M. K. Wang, H. H. Chu, Y. M. Li, et al. Answers to three conjectures on convexity of three functions involving complete elliptic integrals of the first kind, Appl. Anal. Discrete Math., 14 (2020), 255- 271. |
[31] | M. K. Wang, Y. M. Chu, Y. M. Li, et al. Asymptotic expansion and bounds for complete elliptic integrals, Math. Inequal. Appl., 23 (2020), 821-841. |
[32] |
T. H. Zhao, M. K. Wang, Y. M. Chu, A sharp double inequality involving generalized complete elliptic integral of the first kind, AIMS Math., 5 (2020), 4512-4528. doi: 10.3934/math.2020290
![]() |
[33] |
M. Adil Khan, J. Pečarić, Y. M. Chu, Refinements of Jensen's and McShane's inequalities with applications, AIMS Math., 5 (2020), 4931-4945. doi: 10.3934/math.2020315
![]() |
[34] |
S. Rashid, R. Ashraf, M. A. Noor, et al. New weighted generalizations for differentiable exponentially convex mapping with application, AIMS Math., 5 (2020), 3525-3546. doi: 10.3934/math.2020229
![]() |
[35] |
M. A. Khan, M. Hanif, Z. A. Khan, et al. Association of Jensen's inequality for s-convex function with Csiszár divergence, J. Inequal. Appl., 2019 (2019), 1-14. doi: 10.1186/s13660-019-1955-4
![]() |
[36] |
H. Ge-JiLe, S. Rashid, M. A. Noor, et al. Some unified bounds for exponentially tgs-convex functions governed by conformable fractional operators, AIMS Math., 5 (2020), 6108-6123. doi: 10.3934/math.2020392
![]() |
[37] |
I. Abbas Baloch, A. A. Mughal, Y. M. Chu, et al. A variant of Jensen-type inequality and related results for harmonic convex functions, AIMS Math., 5 (2020), 6404-6418. doi: 10.3934/math.2020412
![]() |
[38] | Z. H. Yang, W. M. Qian, W. Zhang, et al. Notes on the complete elliptic integral of the first kind, Math. Inequal. Appl., 23 (2020), 77-93. |
[39] |
A. Iqbal, M. A. Khan, N. Mohammad, et al. Revisiting the Hermite-Hadamard integral inequality via a Green function, AIMS Math., 5 (2020), 6087-6107. doi: 10.3934/math.2020391
![]() |
[40] |
M. U. Awan, N. Akhtar, S. Iftikhar, et al. New Hermite-Hadamard type inequalities for npolynomial harmonically convex functions, J. Inequal. Appl., 2020 (2020), 1-12. doi: 10.1186/s13660-019-2265-6
![]() |
[41] |
M. A. Latif, S. Rashid, S. S. Dragomir, et al. Hermite-Hadamard type inequalities for co-ordinated convex and qausi-convex functions and their applications, J. Inequal. Appl., 2019 (2019), 1-33. doi: 10.1186/s13660-019-1955-4
![]() |
[42] |
H. X. Qi, M. Yussouf, S. Mehmood, et al. Fractional integral versions of Hermite-Hadamard type inequality for generalized exponentially convexity, AIMS Math., 5 (2020), 6030-6042. doi: 10.3934/math.2020386
![]() |
[43] |
X. Z. Yang, G. Farid, W. Nazeer, et al. Fractional generalized Hadamard and Fejér-Hadamard inequalities for m-convex function, AIMS Math., 5 (2020), 6325-6340. doi: 10.3934/math.2020407
![]() |
[44] | S. Rashid, M. A. Noor, K. I. Noor, et al. Ostrowski type inequalities in the sense of generalized \mathcal{K}-fractional integral operator for exponentially convex functions, AIMS Math., 5 (2020), 2629- 2645. |
[45] | S. S. Dragomir, J. Pečarić, L. E. Persson, Some inequalities of Hadamard type, Soochow J. Math., 21 (1995), 335-341. |
[46] |
T. Toplu, M. Kadakal, İ. İşcan, On n-polynomial convexity and some related inequalities, AIMS Math., 5 (2020), 1304-1318. doi: 10.3934/math.2020089
![]() |
[47] | M. A. Latif, S. Hussain, S. S. Dragomir, New Ostrowski type inequalities for co-ordinated convex functions, Transylv. J. Math. Mech., 4 (2012), 125-136. |
1. | Luchao Zhang, Xiping Liu, Mei Jia, Zhensheng Yu, Piecewise conformable fractional impulsive differential system with delay: existence, uniqueness and Ulam stability, 2024, 70, 1598-5865, 1543, 10.1007/s12190-024-02017-3 | |
2. | Yahia Awad, Yusuf Pandir, On the Existence and Stability of Positive Solutions of Eigenvalue Problems for a Class of P-Laplacian ψ -Caputo Fractional Integro-Differential Equations, 2023, 2023, 2314-4785, 1, 10.1155/2023/3458858 | |
3. | Yahia Awad, Yousuf Alkhezi, Solutions of Second-Order Nonlinear Implicit ψ-Conformable Fractional Integro-Differential Equations with Nonlocal Fractional Integral Boundary Conditions in Banach Algebra, 2024, 16, 2073-8994, 1097, 10.3390/sym16091097 | |
4. | Hasanen A. Hammad, Hassen Aydi, Mohra Zayed, On the qualitative evaluation of the variable-order coupled boundary value problems with a fractional delay, 2023, 2023, 1029-242X, 10.1186/s13660-023-03018-9 |