Processing math: 100%
Research article

Efficient computations for weighted generalized proportional fractional operators with respect to a monotone function

  • Received: 23 January 2021 Accepted: 12 May 2021 Published: 21 May 2021
  • MSC : 26A33, 26A51, 26D07, 26D10, 26D15

  • In this paper, we propose a new framework of weighted generalized proportional fractional integral operator with respect to a monotone function Ψ, we develop novel modifications of the aforesaid operator. Moreover, contemplating the so-called operator, we determine several notable weighted Chebyshev and Grüss type inequalities with respect to increasing, positive and monotone functions Ψ by employing traditional and forthright inequalities. Furthermore, we demonstrate the applications of the new operator with numerous integral inequalities by inducing assumptions on ω and Ψ verified the superiority of the suggested scheme in terms of efficiency. Additionally, our consequences have a potential association with the previous results. The computations of the proposed scheme show that the approach is straightforward to apply and computationally very user-friendly and accurate.

    Citation: Shuang-Shuang Zhou, Saima Rashid, Asia Rauf, Fahd Jarad, Y. S. Hamed, Khadijah M. Abualnaja. Efficient computations for weighted generalized proportional fractional operators with respect to a monotone function[J]. AIMS Mathematics, 2021, 6(8): 8001-8029. doi: 10.3934/math.2021465

    Related Papers:

    [1] Shuang-Shuang Zhou, Saima Rashid, Erhan Set, Abdulaziz Garba Ahmad, Y. S. Hamed . On more general inequalities for weighted generalized proportional Hadamard fractional integral operator with applications. AIMS Mathematics, 2021, 6(9): 9154-9176. doi: 10.3934/math.2021532
    [2] Muhammad Amer Latif, Humaira Kalsoom, Zareen A. Khan . Hermite-Hadamard-Fejér type fractional inequalities relating to a convex harmonic function and a positive symmetric increasing function. AIMS Mathematics, 2022, 7(3): 4176-4198. doi: 10.3934/math.2022232
    [3] Muhammad Tariq, Sotiris K. Ntouyas, Hijaz Ahmad, Asif Ali Shaikh, Bandar Almohsen, Evren Hincal . A comprehensive review of Grüss-type fractional integral inequality. AIMS Mathematics, 2024, 9(1): 2244-2281. doi: 10.3934/math.2024112
    [4] Shuang-Shuang Zhou, Saima Rashid, Saima Parveen, Ahmet Ocak Akdemir, Zakia Hammouch . New computations for extended weighted functionals within the Hilfer generalized proportional fractional integral operators. AIMS Mathematics, 2021, 6(5): 4507-4525. doi: 10.3934/math.2021267
    [5] Tariq A. Aljaaidi, Deepak B. Pachpatte . Some Grüss-type inequalities using generalized Katugampola fractional integral. AIMS Mathematics, 2020, 5(2): 1011-1024. doi: 10.3934/math.2020070
    [6] Hari M. Srivastava, Artion Kashuri, Pshtiwan Othman Mohammed, Abdullah M. Alsharif, Juan L. G. Guirao . New Chebyshev type inequalities via a general family of fractional integral operators with a modified Mittag-Leffler kernel. AIMS Mathematics, 2021, 6(10): 11167-11186. doi: 10.3934/math.2021648
    [7] Miguel Vivas-Cortez, Pshtiwan O. Mohammed, Y. S. Hamed, Artion Kashuri, Jorge E. Hernández, Jorge E. Macías-Díaz . On some generalized Raina-type fractional-order integral operators and related Chebyshev inequalities. AIMS Mathematics, 2022, 7(6): 10256-10275. doi: 10.3934/math.2022571
    [8] Iman Ben Othmane, Lamine Nisse, Thabet Abdeljawad . On Cauchy-type problems with weighted R-L fractional derivatives of a function with respect to another function and comparison theorems. AIMS Mathematics, 2024, 9(6): 14106-14129. doi: 10.3934/math.2024686
    [9] Fuat Usta, Hüseyin Budak, Mehmet Zeki Sarıkaya . Some new Chebyshev type inequalities utilizing generalized fractional integral operators. AIMS Mathematics, 2020, 5(2): 1147-1161. doi: 10.3934/math.2020079
    [10] Shahid Mubeen, Rana Safdar Ali, Iqra Nayab, Gauhar Rahman, Kottakkaran Sooppy Nisar, Dumitru Baleanu . Some generalized fractional integral inequalities with nonsingular function as a kernel. AIMS Mathematics, 2021, 6(4): 3352-3377. doi: 10.3934/math.2021201
  • In this paper, we propose a new framework of weighted generalized proportional fractional integral operator with respect to a monotone function Ψ, we develop novel modifications of the aforesaid operator. Moreover, contemplating the so-called operator, we determine several notable weighted Chebyshev and Grüss type inequalities with respect to increasing, positive and monotone functions Ψ by employing traditional and forthright inequalities. Furthermore, we demonstrate the applications of the new operator with numerous integral inequalities by inducing assumptions on ω and Ψ verified the superiority of the suggested scheme in terms of efficiency. Additionally, our consequences have a potential association with the previous results. The computations of the proposed scheme show that the approach is straightforward to apply and computationally very user-friendly and accurate.



    In recent years, a useful extension has been proposed from the classical calculus by permitting derivatives and integrals of arbitrary orders is known as fractional calculus. It emerged from a celebrated logical conversation between Leibniz and L'Hopital in 1695 and was enhanced by different scientists like Laplace, Abel, Euler, Riemann, and Liouville [1]. Fractional calculus has gained popularity on the account of diverse applications in various areas of science and technology [2,3,4]. The concept of this new calculus was applied in several distinguished areas previously with excellent developments in the frame of novel approaches and posted scholarly papers, see [5,6,7,8,9,10,11,12,13,14,15,16,17,18]. Various notable generalized fractional integral operators such as the Riemann-Liouville, Hadamard, Caputo, Marichev-Saigo-Maeda, Riez, the Gaussian hypergeometric operators and so on, their attempts helpful for researchers to recognize the real world phenomena. Therefore, the Caputo and Riemann-Liouville was the most used fractional operators having singular kernels. It is remarkable that all the above mentioned operators are the particular cases of the operators investigated by Jarad et al. [19]. The utilities to weighted generalized fractional operators are undertaking now.

    Adopting the excellency of the above work, we introduce a new weighted framework of generalized proportional fractional integral operator with respect to monotone function Ψ. Also, some new characteristics of the aforesaid operator are apprehended to explore new ideas to amplify the fractional operators and acquire fractional integral inequalities via generalized fractional operators (see Remark 2 and 3 below).

    Recently, by employing the fractional integral operators, several researchers have established a bulk of fractional integral inequalities and their variant forms with fertile applications. These sorts of speculations have noteworthy applications in fractional differential/difference equations and fractional Schrödinger equations [20,21]. By the use of Riemann-Liouville fractional integral operator, Belarbi and Dahmani [22] contemplated the subsequent integral inequalities as follows:

    If f1 and g1 are two synchronous functions on [0,), then

    Ωα(f1g1)(ϰ)Γ(α+1)ϰαΩα(f1)(ϰ)Ωα(g1)(ϰ) (1.1)

    and

    ϰαΓ(α+1)Ωβ(f1g1)(ϰ)+ϰβΓ(β+1)Ωα(f1g1)(ϰ)Ωα(f1)(ϰ)Ωβ(g1)(ϰ)+Ωβ(f1)(ϰ)Ωα(g1)(ϰ), (1.2)

    for all ϰ>0,α,β>0. Butt et al. [23], Rashid et al. [24] and Set et al. [25] established the fractional integral inequalities via generalized fractional integral operator having Raina's function, generalized K-fractional integral and Katugampola fractional integral inequalities similar to the variants (1.1) and (1.2), respectively. Here we should emphasize that, inequalities (1.1) and (1.2) are a remarkable instrument for reconnoitering plentiful scientific regions of investigation encompassing probability theory, statistical analysis, physics, meteorology, chaos and henceforth.

    More general version of inequalities (1.1) and (1.2) proposed by Dahmani [26] by employing Riemann-Liouville fractional integral operator.

    Let f1 and g1 be two synchronous functions on [0,) and let r,s:[0,)[0,). Then

    ΩαP(ϰ)Ωα(Qf1g1)(ϰ)+ΩαQ(ϰ)Ωα(Pf1g1)(ϰ)Ωα(Qf1)(ϰ)Ωα(Pg1)(ϰ)+Ωα(Pf1)(ϰ)Ωα(Qg1)(ϰ) (1.3)

    and

    ΩαP(ϰ)Ωβ(Qf1g1)(ϰ)+ΩβQ(ϰ)Ωα(Pf1g1)(ϰ)Ωα(Qf1)(ϰ)Ωβ(Pg1)(ϰ)+Ωβ(Pf1)(ϰ)Ωα(Qg1)(ϰ) (1.4)

    for all ϰ>0,α,β>0. Chinchane and Pachpatte [27], Brahim and Taf [28] and Shen et al. [29] explored the Hadamard fractional integral inequalities, the fractional version of integral inequalities in two variable quantum deformation and the Riemann-Liouville fractional integral operator on time scale analysis coincide to variants (1.3) and (1.4), respectively.

    Let us define the most distinguished Chebyshev functional [30]:

    T(f1,g1)=1b1a1b1a1f1(ϰ)g1(ϰ)dϰ1b1a1b1a1f1(ϰ)dϰ1b1a1b1a1g1(ϰ)dϰ, (1.5)

    where f1 and g1 are two integrable functions on [a1,b1]. In [31], Grüss proposed the well-known generalization:

    |T(f1,g1)|14(Φϕ)(Υγ), (1.6)

    where f1 and g1 are two integrable functions on [a1,b1] satisfying the assumptions

    ϕf1(ϰ)Φ,γg1(ϰ)Υ,ϕ,Φ,γ,ΥR,ϰ[a1,b1]. (1.7)

    The inequality (1.6) is known to be Grüss inequality. In recent years, the Grüss type integral inequality has been the subject of very active research. Mathematicians and scientists can see them in research papers, monographs, and textbooks devoted to the theory of inequalities [32,33,34,35] such as, Dragomir [36] demonstrated certain variants with the supposition of vectors and continuous mappings of selfadjoint operators in Hilbert space similar to (1.6). In this context, f1 and g1 are holding the assumptions (1.7), Dragomir [37] derived several functionals in two and three variable sense as follows:

    |S(f1,g1,P)|14(Φϕ)(Υγ)(b1a1P1(ϰ)dϰ)2, (1.8)

    where

    S(f1,g1,P)=12T(f1,g1,P)=b1a1P(ϰ)dϰb1a1P(ϰ)f1(ϰ)g1(ϰ)dϰb1a1P(ϰ)f1(ϰ)dϰb1a1P(ϰ)g1(ϰ)dϰ (1.9)

    and

    T(f1,g1,P,Q)=b1a1Q(ϰ)dϰb1a1P(ϰ)f1(ϰ)g1(ϰ)dϰ+b1a1P(ϰ)dϰb1a1Q(ϰ)f1(ϰ)g1(ϰ)dϰb1a1Q(ϰ)f1(ϰ)dϰb1a1P(ϰ)g1(ϰ)dϰb1a1P(ϰ)f1(ϰ)dϰb1a1Q(ϰ)g1(ϰ)dϰ. (1.10)

    In [37], Dragomir established the inequality:

    If f1,g1L(a1,b1), then

    |S(f1,g1,P)|f1g1(b1a1P(ϰ)dϰb1a1ϰ2P(ϰ)dϰ(b1a1ϰP(ϰ)dϰ)2). (1.11)

    Moreover, author [37] proved numerous variants for Lipschitzian functions as follows:

    If f1 is L-g1-Lipschitzian on [a1,b1], that is

    |f1(μ)fν|L|g1(μ)g1(ν)|,L>0,μ,ν[a1,b1]. (1.12)

    and

    |S(f1,g1,P)|L(b1a1P(ϰ)dϰb1a1g21(ϰ)P(ϰ)dϰ(b1a1g1(ϰ)P(ϰ)dϰ)2). (1.13)

    Furthermore, if f1 and g1 are L1 and L2-Lipschitzian functions on [a1,b1], then

    |S(f1,g1,P)|L1L2(b1a1P(ϰ)dϰb1a1ϰ2P(ϰ)dϰ(b1a1ϰP(ϰ)dϰ)2). (1.14)

    Owing to the above tendency, Dhamani et al. [38] proposed the fractional integral inequalities in the Riemann-Liouville parallel to variant (1.6) with the suppositions (1.7). Additionally, Dahamani and Benzidane [39] introduced weighted Grüss type inequality via (α,β)-fractional q-integral inequality resemble to (1.8) under the hypothesis of (1.5). Author [40,41] derived the extended functional of (1.10) by employing Riemann-Liouville integral corresponds to variants (1.11), (1.13) and (1.14), respectively. In this flow, Set et al. [42] contemplated the Grüss type inequalities considering the generalized K-fractional integral. Chen et al. [43] obtained the novel refinements of Hermite-Hadamard type inequalities for n-polynomial p-convex functions within the generalized fractional integral operators. Abdeljawad et al. [44] derived the Simpson's type inequalities for generalized p-convex functions involving fractal set. Jarad et al. [45] investigated the properties of the more general form of generalized proportional fractional operators in Laplace transforms.

    The motivation of this paper is twofold. First, we propose a novel framework named weighted generalized proportional fractional integral operator based on characteristics, as well as considering the boundedness and semi-group property and able to be widely applied to many scientific results. Second, the current operator employed to the extended weighted Chebyshev and Grüss type inequalities for exploring the analogous versions of (1.5) and (1.6). Some special cases are pictured with new fractional operators which are not computed yet. Interestingly, particular cases are designed for Riemann-Liouville fractional integral, generalized Riemann-Liouville fractional integral and generalized proportional fractional integral inequalities. It is worth mentioning that these operators have the ability to recapture several generalizations in the literature by considering suitable assumptions of Ψ,ω and ρ.

    In this section, we demonstrate the space where the weighted fractional integrals are bounded and also, provide certain specific features of these operators.

    Definition 2.1 ([19])Let ω0 be a mapping defined on [a1,b1], g1 is a differentiable strictly increasing function on [a1,b1]. The space χpω(a1,b1),1p< is the space of all Lebesgue measurable functions f1 defined on [a1,b1] for which f1χpω, where

    f1χpω=(b1a1|ω(ϰ)f1(ϰ)|pg1(ϰ)dϰ)1p,1<p< (2.1)

    and

    f1χpω=esssupa1ϰb1|ω(ϰ)f1(ϰ)|<. (2.2)

    Remark 1. Clearly we see that f1χpω(a1,b1) ω(ϰ)f1(ϰ)(g11(ϰ))1/pLp(a1,b1) for 1p< and f1χpω(a1,b1) ω(ϰ)f1(ϰ)L(a1,b1).

    Now, we show a novel fractional integral operator which is known as the weighted generalized proportional fractional integral operator with respect to monotone function Ψ.

    Definition 2.2. Let f1χpω(a1,b1) and ω0 be a function on [a1,b1]. Also, assume that Ψ is a continuously differentiable function on [a1,b1] with ψ>0 on [a1,b1]. Then the left and right-sided weighted generalized proportional fractional integral operator with respect to another function Ψ of order α>0 are described as:

    ΨωΩρ;αa1f1(ϰ)=ω1(ϰ)ραΓ(α)ϰa1exp[ρ1ρ(Ψ(ϰ)Ψ(μ))](Ψ(ϰ)Ψ(μ))1αf1(μ)ω(μ)Ψ(μ)dμ,a1<ϰ (2.3)

    and

    ΨωΩρ;αb1f1(ϰ)=ω1(ϰ)ραΓ(α)b1ϰexp[ρ1ρ(Ψ(μ)Ψ(ϰ))](Ψ(μ)Ψ(ϰ))1αf1(μ)ω(μ)Ψ(μ)dμ,ϰ<b1, (2.4)

    where ρ(0,1] is the proportionality index, αC,(α)>0 and Γ(ϰ)=0μϰ1eμdμ is the Gamma function.

    Remark 2. Some particular fractional operators are the special cases of (2.3) and (2.4).

    (1) Setting Ψ(ϰ)=ϰ, in Definition (2.2), then we get the weighted generalized proportional fractional operators stated as follows:

    ωΩρ;αa1f1(ϰ)=ω1(ϰ)ραΓ(α)ϰa1exp[ρ1ρ(ϰμ)](ϰμ)1αf1(μ)ω(μ)dμ,a1<ϰ (2.5)

    and

    ωΩρ;αb1f1(ϰ)=ω1(ϰ)ραΓ(α)b1ϰexp[ρ1ρ(μϰ)](μϰ)1αf1(μ)ω(μ)dμ,ϰ<b1. (2.6)

    (2) Setting Ψ(ϰ)=ϰ and ρ=1 in Definition (2.2), then we get the weighted Riemann-Liouville fractional operators stated as follows:

    ωΩαa1f1(ϰ)=ω1(ϰ)Γ(α)ϰa1f1(μ)ω(μ)dμ(ϰμ)1α,a1<ϰ (2.7)

    and

    ωΩαb1f1(ϰ)=ω1(ϰ)Γ(α)b1ϰf1(μ)ω(μ)dμ(μϰ)1α,ϰ<b1. (2.8)

    (3) Setting Ψ(ϰ)=lnϰ and a1>0 in Definition (2.2), we get the weighted generalized proportional Hadamard fractional operators stated as follows:

    ωΩρ;αa1f1(ϰ)=ω1(ϰ)ραΓ(α)ϰa1exp[ρ1ρ(lnϰμ)](lnϰμ)1αf1(μ)ω(μ)μdμ,a1<ϰ (2.9)

    and

    ωΩρ;αb1f1(ϰ)=ω1(ϰ)ραΓ(α)b1ϰexp[ρ1ρ(lnμϰ)](lnμϰ)1αf1(μ)ω(μ)μdμ,ϰ<b1. (2.10)

    (4) Setting Ψ(ϰ)=lnϰ and a1>0 along with ρ=1 in Definition (2.2), then we get the weighted Hadamard fractional operators stated as follows:

    ωΩαa1f1(ϰ)=ω1(ϰ)Γ(α)ϰa1f1(μ)ω(μ)dμμ(lnϰμ)1α,a1<ϰ (2.11)

    and

    ωΩαb1f1(ϰ)=ω1(ϰ)Γ(α)b1ϰf1(μ)ω(μ)dμμ(lnμϰ)1α,ϰ<b1. (2.12)

    (5) Setting Ψ(ϰ)=ϰττ(τ>0) in Definition (2.2), then we get the weighted generalized fractional operators in terms of Katugampola stated as follows:

    ωΩαa1f1(ϰ)=ω1(ϰ)Γ(α)ϰa1(ϰτμττ)α1f1(μ)ω(μ)dμμ1τ,a1<ϰ (2.13)

    and

    ωΩαb1f1(ϰ)=ω1(ϰ)Γ(α)b1ϰ(μτϰττ)α1f1(μ)ω(μ)dμμ1τ,ϰ<b1. (2.14)

    Remark 3. Several existing integral operators can be derived from Definition 2.2 as follows:

    (1) Letting ω(ϰ)=1, then we get the Definition 4 proposed by Rashid et al. [46] and Definition 3.2 introduced by Jarad et al. [47], independently.

    (2) Letting ω(ϰ)=1,Ψ(ϰ)=ϰ, then we get the Definition 3.4 defined by Jarad et al. [48].

    (3) Letting ω(ϰ)=1 and Ψ(ϰ)=lnϰ along with a1>0, then we get the Definition 2.1 defined by Rahman et al. [49].

    (4) Letting ω(ϰ)=ρ=1 and Ψ(ϰ)=lnϰ along with a1>0, then we get the operator defined by Kilbas et al. [3] and Smako et al. [5], respectively.

    (5) Letting ω(ϰ)=ρ=1 and Ψ(ϰ)=ϰ, then we get the operator defined by Kilbas et al [3].

    (6) Letting ω(ϰ)=1 and Ψ(ϰ)=ϰττ,(τ>0), then we get the operator defined by Katugampola et al. [7].

    (7) Letting ω(ϰ)=ρ=1 and Ψ(ϰ)=ϰτ+sτ+s,τ(0,1],sR, then we get the Definition 2 defined by Khan and Khan et al [50].

    (8) Letting ω(ϰ)=ρ=1 and Ψ(ϰ)=(ϰa1)ττ, and Ψ(ϰ)=(b1ϰ)ττ,(τ>0), then we get the operator defined by Jarad et al. [51].

    Theorem 2.3. For α>0,ρ(0,1],1p and f1χpω(a1,b1). Then ΨωΩρ;αa1 is bounded in χpω(a1,b1) and

    ΨωΩρ;αa1f1χpω(Ψ(b1)Ψ(a1))αf1χpωραΓ(α+1).

    Proof. For 1p, we have

    ΨωΩρ;αa1f1χpω=1ραΓ(α)(b1a1|ϰa1exp[ρ1ρΨ(ϰ)Ψ(μ)](Ψ(ϰ)Ψ(μ))1αω(μ)f1(μ)Ψ(μ)dμ|pΨ(ϰ)dϰ)1/p=1ραΓ(α)(Ψ(b1)Ψ(a1)|t2Ψ(a1)exp[ρ1ρ(t2t1)](t2t1)1αω(Ψ1(t1))f1(Ψ1(t1))|pdt2)1/p.

    Using the fact that |exp[ρ1ρ(t2t1)]|<1. Taking into account the generalized Minkowski inequality [5], we can write

    ΨωΩρ;αa1f1χpω1ραΓ(α)Ψ(b1)Ψ(a1)(|ω(Ψ1(t1))f1(Ψ1(t1))|pΨ(b1)t1(t2t1)p(α1)dt2)1/pdt1=1ραΓ(α)Ψ(b1)Ψ(a1)(|ω(Ψ1(t1))f1(Ψ1(t1))|((Ψ(b1)t1)p(α1)+1p(α1)+1)1/pdt1.

    By employing the well-known Hölder inequality satisfying p1+q1=1, we obtain

    ΨωΩρ;αa1f1χpω1ραΓ(α)(Ψ(b1)Ψ(a1)|ω(Ψ1(t1))f1(Ψ1(t1))|pdt1)1/p(Ψ(b1)Ψ(a1)((Ψ(b1)t1)p(α1)+1p(α1)+1)q/pdt1)1/q1ραΓ(α)(b1a1|ω(ϰ)f1(ϰ)|pΨ(ϰ)dϰ)1/p(Ψ(b1)Ψ(a1)((Ψ(b1)t1)p(α1)+1p(α1)+1)q/pdt1)1/q(Ψ(b1)Ψ(a1))αf1χpωραΓ(α+1).

    Now, for p=, we have

    |ω(ϰ)ΨωΩρ;αa1f1(ϰ)|=1ραΓ(α)ϰa1exp[ρ1ρ(Ψ(ϰ)Ψ(μ))](Ψ(ϰ)Ψ(μ))1αf1(μ)ω(μ)Ψ(μ)dμ1ραΓ(α)ϰa1exp[ρ1ρ(Ψ(ϰ)Ψ(μ))](Ψ(ϰ)Ψ(μ))1α|f1(μ)ω(μ)|Ψ(μ)dμ,Since(|exp[ρ1ρ(t2t1)]|<1)f1χωραΓ(α)ϰa1(Ψ(ϰ)Ψ(μ))α1dμ(Ψ(ϰ)Ψ(a1))αf1χωραΓ(α+1)=(Ψ(b1)Ψ(a1))αf1χωραΓ(α+1).

    This ends the proof.

    Our next result is the semi group property for weighted generalized proportional fractional integral operator with respect to monotone function.

    Theorem 2.4. For α,β>0,ρ(0,1] with 1p and let f1χpω(a1,b1). Then

    (ΨωΩρ;αa1ΨωΩρ;βa1)f1=(ΨωΩρ;α+βa1)f1. (2.15)

    Proof.

    (ΨωΩρ;αa1ΨωΩρ;βa1f1)(ϰ)=ω1(ϰ)ραΓ(α)ϰa1exp[ρ1ρ(Ψ(ϰ)Ψ(μ))](Ψ(ϰ)Ψ(μ))1αω(μ)(ΨωΩρ;βa1f1)(μ)Ψ(μ)dμ=ω1(ϰ)ρα+βΓ(α)Γ(β)ϰa1μa1exp[ρ1ρ(Ψ(ϰ)Ψ(μ))](Ψ(ϰ)Ψ(μ))1αexp[ρ1ρ(Ψ(μ)Ψ(ν))](Ψ(μ)Ψ(ν))1β×ω(ν)f1(ν)Ψ(ν)Ψ(μ)dμdν.

    By making change of variable technique θ=Ψ(μ)Ψ(a1)Ψ(ϰ)Ψ(a1), we can write

    (ΨωΩρ;αa1ΨωΩρ;βa1f1)(ϰ)=ω1(ϰ)ρα+βΓ(α)Γ(β)10θβ1(1θ)α1dθϰa1exp[ρ1ρ(Ψ(ϰ)Ψ(ν))](Ψ(ϰ)Ψ(ν))1αβω(ν)f1(ν)Ψ(ν)dν=ω1(ϰ)ρα+βΓ(α)Γ(β)Γ(α)Γ(β)Γ(α+β)ϰa1exp[ρ1ρ(Ψ(ϰ)Ψ(ν))](Ψ(ϰ)Ψ(ν))1αβω(ν)f1(ν)Ψ(ν)dν=(ΨωΩρ;α+βa1f1)(ϰ),

    where B(α,β)=Γ(α)Γ(β)Γ(α+β)=10θβ1(1θ)α1dθ is known to be Euler Beta function.

    This section contains some significant generalizations for weighted integral inequalities by employing weighted generalized proportional fractional integral operator, for the consequences relating to (1.1) and (1.2), it is suppose that all mappings are integrable in the Riemann sense.

    Throughout this investigation, we use the following assumptions:

    I. Let f1 and g1 be two synchronous functions on [0,).

    II. Let Ψ:[0,)(0,) is an increasing function with continuous derivative Ψ on the interval (0,).

    Lemma 3.1. If the supposition I and II are satisfied and let Q and P be two non-negative continuous mappings on [0,). Then the inequality

    ΨωΩρ;α0+(P)(ϰ)ΨωΩρ;α0+(Qf1g1)(ϰ)+ΨωΩρ;α0+(Pf1g1)(ϰ)ΨωΩρ;α0+(Q)(ϰ)ΨωΩρ;α0+(Pg1)(ϰ)ΨωΩρ;α0+(Qf1)(ϰ)+ΨωΩρ;α0+(Pf1)(ϰ)ΨωΩρ;α0+(Qg1)(ϰ), (3.1)

    holds for all ρ(0,1],αC with (α)>0.

    Proof. Since f1 and g1 are two synchronous functions on [0,), then for all μ>0 and ν>0, we have

    (f1(μ)f1(ν))(g1(μ)g1(ν))0. (3.2)

    By (3.2), we write

    f1(μ)g1(μ)+f1(ν)g1(ν)g1(μ)f1(ν)+g1(ν)f1(μ). (3.3)

    If we multiply both sides of (3.3) by exp[ρ1ρ(Ψ(ϰ)Ψ(μ))]Q(μ)ω(μ)Ψ(μ)ραΓ(α)(Ψ(ϰ)Ψ(μ))1α and integrating the resulting inequality with respect to μ from 0 to ϰ, we get

    1ραΓ(α)ϰ0exp[ρ1ρ(Ψ(ϰ)Ψ(μ))]Q(μ)ω(μ)Ψ(μ)ραΓ(α)(Ψ(ϰ)Ψ(μ))1αf1(μ)g1(μ)dμ+f1(ν)g1(ν)ραΓ(α)ϰ0exp[ρ1ρ(Ψ(ϰ)Ψ(μ))]Q(μ)ω(μ)Ψ(μ)ραΓ(α)(Ψ(ϰ)Ψ(μ))1αdμf1(ν)ραΓ(α)ϰ0exp[ρ1ρ(Ψ(ϰ)Ψ(μ))]Q(μ)ω(μ)Ψ(μ)ραΓ(α)(Ψ(ϰ)Ψ(μ))1αg1(ν)dν+g1(ν)ραΓ(α)ϰ0exp[ρ1ρ(Ψ(ϰ)Ψ(μ))]Q(μ)ω(μ)Ψ(μ)ραΓ(α)(Ψ(ϰ)Ψ(μ))1αf1(μ)dμ. (3.4)

    Taking product both sides of the above equation by ω1(ϰ) and in view of Definition (2.2), we have

    ΨωΩρ;α0+(Qf1g1)(ϰ)+f1(ν)g1(ν)ΨωΩρ;α0+(Q)(ϰ)g1(ν)ΨωΩρ;α0+(Qf1)(ϰ)+f1(ν)ΨωΩρ;α0+(Qg1)(ϰ). (3.5)

    Further, if we multiply both sides of (3.5) by exp[ρ1ρ(Ψ(ϰ)Ψ(ν))]P(ν)ω(ν)Ψ(ν)ραΓ(α)(Ψ(ϰ)Ψ(ν))1α and integrating the resulting inequality with respect to ν from 0 to ϰ. Then, multiplying by ω1(ϰ) and in view of Definition 2.2, we obtain

    ΨωΩρ;α0+(P)(ϰ)ΨωΩρ;α0+(Qf1g1)(ϰ)+ΨωΩρ;α0+(Pf1g1)(ϰ)ΨωΩρ;α0+(Q)(ϰ)ΨωΩρ;α0+(Pg1)(ϰ)ΨωΩρ;α0+(Qf1)(ϰ)+ΨωΩρ;α0+(Pf1)(ϰ)ΨωΩρ;α0+(Qg1)(ϰ), (3.6)

    which implies (3.1).

    Theorem 3.2. Under the assumption of I, II and let r, s and t be three non-negative continuous functions on [0,). Then the inequality

    2ΨωΩρ;α0+r(ϰ)(ΨωΩρ;α0+s(ϰ)ΨωΩρ;α0+(tf1g1)(ϰ)+ΨωΩρ;α0+(sf1g1)(ϰ)ΨωΩρ;α0+t(ϰ))+2ΨωΩρ;α0+(rf1g1)(ϰ)ΨωΩρ;α0+s(ϰ)ΨωΩρ;α0+t(ϰ)ΨωΩρ;α0+r(ϰ)(ΨωΩρ;α0+(sg1)(ϰ)ΨωΩρ;α0+(tf1)(ϰ)+ΨωΩρ;α0+(sf1)(ϰ)ΨωΩρ;α0+(tg1)(ϰ))+ΨωΩρ;α0+s(ϰ)(ΨωΩρ;α0+(rg1)(ϰ)ΨωΩρ;α0+(tf1)(ϰ)+ΨωΩρ;α0+(rf1)(ϰ)ΨωΩρ;α0+(tg1)(ϰ))+ΨωΩρ;α0+s(ϰ)(ΨωΩρ;α0+(sg1)(ϰ)ΨωΩρ;α0+(rf1)(ϰ)+ΨωΩρ;α0+(sf1)(ϰ)ΨωΩρ;α0+(rg1)(ϰ)) (3.7)

    holds for all ρ(0,1],αC with (α)>0.

    Proof. By means of Lemma 3.1 and setting P=r,Q=s, we can write

    ΨωΩρ;α0+s(ϰ)ΨωΩρ;α0+(tf1g1)(ϰ)+ΨωΩρ;α0+(sf1g1)(ϰ)ΨωΩρ;α0+t(ϰ)ΨωΩρ;α0+(sg1)(ϰ)ΨωΩρ;α0+(tf1)(ϰ)+ΨωΩρ;α0+(sf1)(ϰ)ΨωΩρ;α0+(tg1)(ϰ). (3.8)

    Conducting product both sides of (3.8) by ΨωΩρ;α0+r(ϰ), we obtain

    ΨωΩρ;α0+r(ϰ)(ΨωΩρ;α0+s(ϰ)ΨωΩρ;α0+(tf1g1)(ϰ)+ΨωΩρ;α0+(sf1g1)(ϰ)ΨωΩρ;α0+t(ϰ))ΨωΩρ;α0+r(ϰ)(ΨωΩρ;α0+(sg1)(ϰ)ΨωΩρ;α0+(tf1)(ϰ)+ΨωΩρ;α0+(sf1)(ϰ)ΨωΩρ;α0+(tg1)(ϰ)). (3.9)

    By means of Lemma 3.1 and setting P=r,Q=t, we can write

    ΨωΩρ;α0+r(ϰ)ΨωΩρ;α0+(tf1g1)(ϰ)+ΨωΩρ;α0+(rf1g1)(ϰ)ΨωΩρ;α0+t(ϰ)ΨωΩρ;α0+(rg1)(ϰ)ΨωΩρ;α0+(tf1)(ϰ)+ΨωΩρ;α0+(rf1)(ϰ)ΨωΩρ;α0+(tg1)(ϰ). (3.10)

    Conducting product of (3.10) by ΨωΩρ;α0+s(ϰ), we obtain

    ΨωΩρ;α0+s(ϰ)(ΨωΩρ;α0+r(ϰ)ΨωΩρ;α0+(tf1g1)(ϰ)+ΨωΩρ;α0+(rf1g1)(ϰ)ΨωΩρ;α0+t(ϰ))ΨωΩρ;α0+s(ϰ)(ΨωΩρ;α0+(rg1)(ϰ)ΨωΩρ;α0+(tf1)(ϰ)+ΨωΩρ;α0+(rf1)(ϰ)ΨωΩρ;α0+(tg1)(ϰ)). (3.11)

    By similar argument as we did before, yields

    ΨωΩρ;α0+t(ϰ)(ΨωΩρ;α0+r(ϰ)ΨωΩρ;α0+(sf1g1)(ϰ)+ΨωΩρ;α0+(rf1g1)(ϰ)ΨωΩρ;α0+t(ϰ))ΨωΩρ;α0+s(ϰ)(ΨωΩρ;α0+(sg1)(ϰ)ΨωΩρ;α0+(rf1)(ϰ)+ΨωΩρ;α0+(sf1)(ϰ)ΨωΩρ;α0+(rg1)(ϰ)). (3.12)

    Adding (3.9), (3.11) and (3.12), we get the desired inequality (3.8).

    Lemma 3.3. Under the assumption of I, II and let Q and P be two non-negative continuous functions on [0,). Then the inequality

    ΨωΩρ;α0+(Pf1g1)(ϰ)ΨωΩρ;β0+Q(ϰ)+ΨωΩρ;α0+P(ϰ)ΨωΩρ;β0+(Qf1g1)(ϰ)ΨωΩρ;α0+(Pf1)(ϰ)ΨωΩρ;β0+(Qg1)(ϰ)+ΨωΩρ;α0+(Pg1)(ϰ)ΨωΩρ;β0+(Qf1)(ϰ),

    holds for all ρ(0,1],α,βC with (α),(β)>0.

    Proof. If we multiply both sides of (3.2) by exp[ρ1ρ(Ψ(ϰ)Ψ(ν))]Q(ν)ω(ν)Ψ(ν)ρβΓ(β)(Ψ(ϰ)Ψ(ν))1β and integrating the resulting inequality with respect to ν from 0 to ϰ, we have

    f1(μ)g1(μ)ρβΓ(β)ϰ0exp[ρ1ρ(Ψ(ϰ)Ψ(ν))]Q(ν)ω(ν)Ψ(ν)(Ψ(ϰ)Ψ(ν))1βdν+f1(ν)g1(ν)ρβΓ(β)ϰ0exp[ρ1ρ(Ψ(ϰ)Ψ(ν))]Q(ν)ω(ν)Ψ(ν)(Ψ(ϰ)Ψ(ν))1βdνg1(μ)ρβΓ(β)ϰ0exp[ρ1ρ(Ψ(ϰ)Ψ(ν))]Q(ν)ω(ν)Ψ(ν)(Ψ(ϰ)Ψ(ν))1βf1(ν)dν+f1(μ)ρβΓ(β)ϰ0exp[ρ1ρ(Ψ(ϰ)Ψ(ν))]Q(ν)ω(ν)Ψ(ν)(Ψ(ϰ)Ψ(ν))1βg1(ν)dν. (3.13)

    Taking product both sides of the above equation by ω1(ϰ) and in view of Definition (2.2), we have

    f1(μ)g1(μ)ΨωΩρ;β0+Q(ϰ)+ΨωΩρ;β0+(Qf1g1)(ϰ)f1(μ)ΨωΩρ;β0+(Qg1)(ϰ)+g1(μ)ΨωΩρ;β0+(Qf1)(ϰ). (3.14)

    Again, multiplying both sides of (3.14) by exp[ρ1ρ(Ψ(ϰ)Ψ(μ))]P(μ)ω(μ)Ψ(μ)ραΓ(α)(Ψ(ϰ)Ψ(μ))1α and integrating the resulting inequality with respect to ν from 0 to ϰ, we have

    ΨωΩρ;β0+Q(ϰ)ραΓ(α)ϰ0exp[ρ1ρ(Ψ(ϰ)Ψ(μ))]P(μ)ω(μ)Ψ(μ)(Ψ(ϰ)Ψ(μ))1αf1(μ)g1(μ)dμ+ΨωΩρ;β0+(Qf1g1)(ϰ)ραΓ(α)ϰ0exp[ρ1ρ(Ψ(ϰ)Ψ(μ))]P(μ)ω(μ)Ψ(μ)(Ψ(ϰ)Ψ(μ))1αdμΨωΩρ;β0+(Qg1)(ϰ)ραΓ(α)ϰ0exp[ρ1ρ(Ψ(ϰ)Ψ(μ))]P(μ)ω(μ)Ψ(μ)(Ψ(ϰ)Ψ(μ))1αf1(μ)dμ+ΨωΩρ;β0+(Qf1)(ϰ)ραΓ(α)ϰ0exp[ρ1ρ(Ψ(ϰ)Ψ(μ))]P(μ)ω(μ)Ψ(μ)(Ψ(ϰ)Ψ(μ))1αg1(μ)dμ. (3.15)

    Taking product both sides of the above equation by ω1(ϰ) and in view of Definition (2.2), we obtain

    ΨωΩρ;α0+(Pf1g1)(ϰ)ΨωΩρ;β0+Q(ϰ)+ΨωΩρ;α0+P(ϰ)ΨωΩρ;β0+(Qf1g1)(ϰ)ΨωΩρ;α0+(Pf1)(ϰ)ΨωΩρ;β0+(Qg1)(ϰ)+ΨωΩρ;α0+(Pg1)(ϰ)ΨωΩρ;β0+(Qf1)(ϰ),

    which implies (3.13).

    Theorem 3.4. Under the assumptions I, II and let r, s and t be three non-negative continuous functions on [0,). Then the inequality

    ΨωΩρ;α0+r(ϰ)(ΨωΩρ;α0+(sf1g1)(ϰ)ΨωΩρ;β0+t(ϰ)+2ΨωΩρ;α0+s(ϰ)ΨωΩρ;β0+(tf1g1)(ϰ)+ΨωΩρ;β0+t(ϰ)ΨωΩρ;α0+(sf1g1)(ϰ))+(ΨωΩρ;β0+t(ϰ)ΨωΩρ;α0+s(ϰ)+ΨωΩρ;α0+t(ϰ)ΨωΩρ;β0+s(ϰ))ΨωΩρ;α0+(rf1g1)(ϰ)ΨωΩρ;α0+r(ϰ)(ΨωΩρ;α0+(sf1)(ϰ)ΨωΩρ;β0+(tg1)(ϰ)+ΨωΩρ;α0+(sg1)(ϰ)ΨωΩρ;β0+(tf1)(ϰ))+ΨωΩρ;α0+s(ϰ)(ΨωΩρ;α0+(rf1)(ϰ)ΨωΩρ;β0+(tg1)(ϰ)+ΨωΩρ;α0+(rg1)(ϰ)ΨωΩρ;β0+(tf1)(ϰ))+ΨωΩρ;α0+t(ϰ)(ΨωΩρ;α0+(rf1)(ϰ)ΨωΩρ;β0+(sg1)(ϰ)+ΨωΩρ;α0+(rg1)(ϰ)ΨωΩρ;β0+(sf1)(ϰ)) (3.16)

    holds for all ρ(0,1],α,βC with (α),(β)>0.

    Proof. By means of Lemma 3.3 and setting P=s,Q=t, we can write

    ΨωΩρ;α0+(sf1g1)(ϰ)ΨωΩρ;β0+t(ϰ)+ΨωΩρ;α0+s(ϰ)ΨωΩρ;β0+(tf1g1)(ϰ)ΨωΩρ;α0+(sf1)(ϰ)ΨωΩρ;β0+(tg1)(ϰ)+ΨωΩρ;α0+(sg1)(ϰ)ΨωΩρ;β0+(tf1)(ϰ). (3.17)

    Conducting product both sides of (3.17) by ΨωΩρ;α0+r(ϰ), we obtain

    ΨωΩρ;α0+r(ϰ)(ΨωΩρ;α0+(sf1g1)(ϰ)ΨωΩρ;β0+t(ϰ)+ΨωΩρ;α0+s(ϰ)ΨωΩρ;β0+(tf1g1)(ϰ))ΨωΩρ;α0+r(ϰ)(ΨωΩρ;α0+(sf1)(ϰ)ΨωΩρ;β0+(tg1)(ϰ)+ΨωΩρ;α0+(sg1)(ϰ)ΨωΩρ;β0+(tf1)(ϰ)). (3.18)

    Again, by means of Lemma 3.3 and setting P=r,Q=t, we can write

    ΨωΩρ;α0+(rf1g1)(ϰ)ΨωΩρ;β0+t(ϰ)+ΨωΩρ;α0+r(ϰ)ΨωΩρ;β0+(tf1g1)(ϰ)ΨωΩρ;α0+(rf1)(ϰ)ΨωΩρ;β0+(tg1)(ϰ)+ΨωΩρ;α0+(rg1)(ϰ)ΨωΩρ;β0+(tf1)(ϰ). (3.19)

    Conducting product both sides of (3.19) by ΨωΩρ;α0+s(ϰ), we obtain

    ΨωΩρ;α0+s(ϰ)(ΨωΩρ;α0+(rf1g1)(ϰ)ΨωΩρ;β0+t(ϰ)+ΨωΩρ;α0+r(ϰ)ΨωΩρ;β0+(tf1g1)(ϰ))ΨωΩρ;α0+s(ϰ)(ΨωΩρ;α0+(rf1)(ϰ)ΨωΩρ;β0+(tg1)(ϰ)+ΨωΩρ;α0+(rg1)(ϰ)ΨωΩρ;β0+(tf1)(ϰ)). (3.20)

    By similar arguments as we did before, yields

    ΨωΩρ;α0+t(ϰ)(ΨωΩρ;α0+(sf1g1)(ϰ)ΨωΩρ;β0+r(ϰ)+ΨωΩρ;α0+s(ϰ)ΨωΩρ;β0+(rf1g1)(ϰ))ΨωΩρ;α0+t(ϰ)(ΨωΩρ;α0+(rf1)(ϰ)ΨωΩρ;β0+(sg1)(ϰ)+ΨωΩρ;α0+(rg1)(ϰ)ΨωΩρ;β0+(sf1)(ϰ)). (3.21)

    Adding (3.18), (3.20) and (3.21), we get the desired inequality (3.16).

    Remark 4. Theorem 3.2 and Theorem 3.4 lead to the following conclusions:

    (1) Let f1 and g1 are the asynchronous functions on [0,), then (3.8) and (3.16) are reversed.

    (2) Let r,s and t are negative on [0,), then (3.8) and (3.16) are reversed.

    (3) Let r,s are positive t is negative on [0,), then (3.8) and (3.16) are reversed.

    In the next, we derive certain novel Grüss-type integral inequalities via weighted generalized proportional fractional integral operators.

    Lemma 3.5. Suppose an integrable function f1 defined on [0,) satisfying the assertions I,II and (1.7) on [0,) and let a continuous function r defined on [0,). Then the inequality

    ΨωΩρ;α0+r(ϰ)ΨωΩρ;α0+(rf21)(ϰ)(ΨωΩρ;α0+(rf1)(ϰ))2(ΦΨωΩρ;α0+x(ϰ)ΨωΩρ;α0+(rf1)(ϰ))(ΨωΩρ;α0+(rf1)(ϰ)ϕΨωΩρ;α0+r(ϰ))ΨωΩρ;α0+r(ϰ)ΨωΩρ;α0+(r(ϰ)(Φf1(ϰ))(f1(ϰ)ϕ)) (3.22)

    holds for all ρ(0,1],αC with (α)>0.

    Proof. By the given hypothesis and utilizing (1.7). For any μ,ν[0,), we have

    (Φf1(ν))(f1(μ)ϕ)+(Φf1(μ))(f1(ν)ϕ)(Φf1(μ))(f1(μ)ϕ)(Φf1(ν))(f1(ν)ϕ)f21(μ)+f21(ν)2f1(μ)f1(ν). (3.23)

    Multiplying both sides of (3.23) by exp[ρ1ρ(Ψ(ϰ)Ψ(ν))]r(ν)ω(ν)Ψ(ν)ραΓ(α)(Ψ(ϰ)Ψ(ν))1α and integrating the resulting inequality with respect to ν from 0 to ϰ, we have

    (f1(μ)ϕ)ραΓ(α)ϰ0exp[ρ1ρ(Ψ(ϰ)Ψ(ν))]r(ν)ω(ν)Ψ(ν)(Ψ(ϰ)Ψ(ν))1α(Φf1(ν))dν+(Φf1(μ))ραΓ(α)ϰ0exp[ρ1ρ(Ψ(ϰ)Ψ(ν))]r(ν)ω(ν)Ψ(ν)(Ψ(ϰ)Ψ(ν))1α(f1(ν)ϕ)dν(Φf1(μ))(f1(μ)ϕ)ραΓ(α)ϰ0exp[ρ1ρ(Ψ(ϰ)Ψ(ν))]r(ν)ω(ν)Ψ(ν)(Ψ(ϰ)Ψ(ν))1αdν1ραΓ(α)ϰ0exp[ρ1ρ(Ψ(ϰ)Ψ(ν))]r(ν)ω(ν)Ψ(ν)(Ψ(ϰ)Ψ(ν))1α(Φf1(ν))(f1(ν)ϕ)dνf21(μ)ραΓ(α)ϰ0exp[ρ1ρ(Ψ(ϰ)Ψ(ν))]r(ν)ω(ν)Ψ(ν)(Ψ(ϰ)Ψ(ν))1αdν+1ραΓ(α)ϰ0exp[ρ1ρ(Ψ(ϰ)Ψ(ν))]r(ν)ω(ν)Ψ(ν)(Ψ(ϰ)Ψ(ν))1αf21(ν)dν2f1(μ)ραΓ(α)ϰ0exp[ρ1ρ(Ψ(ϰ)Ψ(ν))]r(ν)ω(ν)Ψ(ν)(Ψ(ϰ)Ψ(ν))1αf1(ν)dν. (3.24)

    Taking product both sides of the above equation by ω1(ϰ) and in view of Definition (2.2), we obtain

    (ΦΨωΩρ;α0+r(ϰ)ΨωΩρ;α0+(rf1)(ϰ))(f1(μ)ϕ)+(Φf1(μ))(ΨωΩρ;α0+(rf1)(ϰ)ϕΨωΩρ;α0+r(ϰ))(Φf1(μ))(f1(μ)ϕ)ΨωΩρ;α0+r(ϰ)ΨωΩρ;α0+(r(ϰ)(Φf1(ϰ))(f1(ϰ)ϕ))f21(μ)ΨωΩρ;α0+r(ϰ)+ΨωΩρ;α0+(rf21)(ϰ)2f1(μ)ΨωΩρ;α0+(rf1)(ϰ). (3.25)

    Multiplying both sides of (3.25) by exp[ρ1ρ(Ψ(ϰ)Ψ(μ))]r(μ)ω(μ)Ψ(μ)ραΓ(α)(Ψ(ϰ)Ψ(μ))1α and integrating the resulting inequality with respect to μ from 0 to ϰ, we have

    (ΦΨωΩρ;α0+r(ϰ)ΨωΩρ;α0+(rf1)(ν))1ραΓ(α)ϰ0exp[ρ1ρ(Ψ(ϰ)Ψ(μ))]r(μ)ω(μ)Ψ(μ)(Ψ(ϰ)Ψ(μ))1α(f1(μ)ϕ)dμ+(ΨωΩρ;α0+(rf1)(ϰ)ϕΨωΩρ;α0+r(ϰ))1ραΓ(α)ϰ0exp[ρ1ρ(Ψ(ϰ)Ψ(μ))]r(μ)ω(μ)Ψ(μ)(Ψ(ϰ)Ψ(μ))1α(Φf1(μ))dμ(1ραΓ(α)ϰ0exp[ρ1ρ(Ψ(ϰ)Ψ(μ))]r(μ)ω(μ)Ψ(μ)(Ψ(ϰ)Ψ(μ))1α(Φf1(μ))(f1(μ)ϕ)dμ)ΨωΩρ;α0+r(ϰ)ΨωΩρ;α0+(r(ϰ)(Φf1(ν))(f1(ν)ϕ)1ραΓ(α)ϰ0exp[ρ1ρ(Ψ(ϰ)Ψ(μ))]r(μ)ω(μ)Ψ(μ)(Ψ(ϰ)Ψ(μ))1αdν(1ραΓ(α)ϰ0exp[ρ1ρ(Ψ(ϰ)Ψ(μ))]r(μ)ω(μ)Ψ(μ)(Ψ(ϰ)Ψ(μ))1αf21(μ)dμ)ΨωΩρ;α0+r(ϰ)+(1ραΓ(α)ϰ0exp[ρ1ρ(Ψ(ϰ)Ψ(μ))]r(μ)ω(μ)Ψ(μ)(Ψ(ϰ)Ψ(μ))1αdμ)ΨωΩρ;α0+(rf21)(ϰ)2(1ραΓ(α)ϰ0exp[ρ1ρ(Ψ(ϰ)Ψ(μ))]r(μ)ω(μ)Ψ(μ)(Ψ(ϰ)Ψ(μ))1αf1(μ)dμ)ΨωΩρ;α0+(rf1)(ϰ). (3.26)

    Taking product both sides of the above equation by ω1(ϰ) and in view of Definition (2.2), we obtain

    (ΦΨωΩρ;α0+r(ϰ)ΨωΩρ;α0+(rf1)(ϰ))(ΨωΩρ;α0+(rf1)(ϰ)ϕΨωΩρ;α0+r(ϰ))+(ΦΨωΩρ;α0+r(ϰ)ΨωΩρ;α0+(rf1)(ϰ))(ΨωΩρ;α0+(rf1)(ϰ)ϕΨωΩρ;α0+r(ϰ))ΨωΩρ;α0+(r(ϰ)(Φf1(ϰ))(f1(ϰ)ϕ))ΨωΩρ;α0+r(ϰ)ΨωΩρ;α0+r(ϰ)ΨωΩρ;α0+(r(ϰ)(Φf1(ϰ))(f1(ϰ)ϕ))ΨωΩρ;α0+(rf21)(ϰ)ΨωΩρ;α0+r(ϰ)+ΨωΩρ;α0+r(ϰ)ΨωΩρ;α0+(rf21)(ϰ)2ΨωΩρ;α0+(rf1)(ϰ)ΨωΩρ;α0+(rf1)(ϰ), (3.27)

    which gives (3.22) and proves the lemma.

    Theorem 3.6. Suppose two integrable functions f1 and g1 defined on [0,) satisfying the assertions I,II and (1.7) on [0,) and let a continuous function r defined on [0,). Then the inequality

    |ΨωΩρ;α0+r(ϰ)ΨωΩρ;α0+(rf1g1)(ϰ)ΨωΩρ;α0+(rf1)(ϰ)ΨωΩρ;α0+(rg1)(ϰ)|(Φϕ)(Υγ)4(ΨωΩρ;α0+r(ϰ))2 (3.28)

    holds for all ρ(0,1],αC with (α)>0.

    Proof. By the given hypothesis stated in Theorem 3.6. Also, assume that μ,ν be defined by

    T(μ,ν)=(f1(μ)f1(ν))(g1(μ)g1(ν)),μ,ν[0,ϰ],ϰ>0. (3.29)

    Multiplying both sides of (3.30) by exp[ρ1ρ(Ψ(ϰ)Ψ(μ))]r(μ)ω(μ)Ψ(μ)ραΓ(α)(Ψ(ϰ)Ψ(μ))1αexp[ρ1ρ(Ψ(ϰ)Ψ(ν))]r(ν)ω(ν)Ψ(ν)ραΓ(α)(Ψ(ϰ)Ψ(ν))1α and integrating the resulting inequality with respect to μ and ν from 0 to ϰ, we can state that

    1ρ2αΓ2(α)ϰ0ϰ0exp[ρ1ρ(Ψ(ϰ)Ψ(μ))]r(μ)ω(μ)Ψ(μ)(Ψ(ϰ)Ψ(μ))1α×exp[ρ1ρ(Ψ(ϰ)Ψ(ν))]r(ν)ω(ν)Ψ(ν)(Ψ(ϰ)Ψ(ν))1αT(μ,ν)dμdν=1ρ2αΓ2(α)ϰ0ϰ0exp[ρ1ρ(Ψ(ϰ)Ψ(μ))]r(μ)ω(μ)Ψ(μ)(Ψ(ϰ)Ψ(μ))1α×exp[ρ1ρ(Ψ(ϰ)Ψ(ν))]r(ν)ω(ν)Ψ(ν)(Ψ(ϰ)Ψ(ν))1α×(f1(μ)f1(ν))(g1(μ)g1(ν))dμdν. (3.30)

    Taking product both sides of the above equation by ω1(ϰ) and in view of Definition (2.2), we obtain

    ω2(ϰ)ρ2αΓ2(α)ϰ0ϰ0exp[ρ1ρ(Ψ(ϰ)Ψ(μ))]r(μ)ω(μ)Ψ(μ)(Ψ(ϰ)Ψ(μ))1α×exp[ρ1ρ(Ψ(ϰ)Ψ(ν))]r(ν)ω(ν)Ψ(ν)(Ψ(ϰ)Ψ(ν))1αT(μ,ν)dμdν=2ΨωΩρ;α0+r(ϰ)ΨωΩρ;α0+(rf1g1)(ϰ)2ΨωΩρ;α0+(rf1)(ϰ)ΨωΩρ;α0+(rg1)(ϰ). (3.31)

    Thanks to the weighted Cauchy-Schwartz integral inequality for double integrals, we can write that

    (ω2(ϰ)ρ2αΓ2(α)ϰ0ϰ0exp[ρ1ρ(Ψ(ϰ)Ψ(μ))]r(μ)ω(μ)Ψ(μ)(Ψ(ϰ)Ψ(μ))1α×exp[ρ1ρ(Ψ(ϰ)Ψ(ν))]r(ν)ω(ν)Ψ(ν)(Ψ(ϰ)Ψ(ν))1αT(μ,ν)dμdν)2(ω2(ϰ)ρ2αΓ2(α)ϰ0ϰ0exp[ρ1ρ(Ψ(ϰ)Ψ(μ))]r(μ)ω(μ)Ψ(μ)(Ψ(ϰ)Ψ(μ))1α×exp[ρ1ρ(Ψ(ϰ)Ψ(ν))]r(ν)ω(ν)Ψ(ν)(Ψ(ϰ)Ψ(ν))1α(f1(μ)f1(ν))dμdν)(ω2(ϰ)ρ2αΓ2(α)ϰ0ϰ0exp[ρ1ρ(Ψ(ϰ)Ψ(μ))]r(μ)ω(μ)Ψ(μ)(Ψ(ϰ)Ψ(μ))1α×exp[ρ1ρ(Ψ(ϰ)Ψ(ν))]r(ν)ω(ν)Ψ(ν)(Ψ(ϰ)Ψ(ν))1α(g1(μ)g1(ν))dμdν)=4(ΨωΩρ;α0+r(ϰ)ΨωΩρ;α0+(rf21)(ϰ)(ΨωΩρ;α0+(rf1)(ϰ))2)×(ΨωΩρ;α0+r(ϰ)ΨωΩρ;α0+(rg21)(ϰ)(ΨωΩρ;α0+(rg1)(ϰ))2). (3.32)

    Since (Φf1(μ))(f1(μ)ϕ)0 and (Υg1(μ))(g1(μ)γ)0, we have

    ΨωΩρ;α0+r(ϰ)ΨωΩρ;α0+(r(ϰ)(Φf1(μ))(f1(μ)ϕ))0, (3.33)

    and

    ΨωΩρ;α0+r(ϰ)ΨωΩρ;α0+(r(ϰ)(Υg1(μ))(g1(μ)γ))0. (3.34)

    Therefore, from (3.33), (3.34) and Lemma 3.5, we get

    ΨωΩρ;α0+r(ϰ)ΨωΩρ;α0+(rf21)(ϰ)(ΨωΩρ;α0+(rf1)(ϰ))2(ΦΨωΩρ;α0+r(ϰ)ΨωΩρ;α0+(rf1)(ϰ))(ΨωΩρ;α0+(rf1)(ϰ)ϕΨωΩρ;α0+r(ϰ)) (3.35)

    and

    ΨωΩρ;α0+r(ϰ)ΨωΩρ;α0+(rg21)(ϰ)(ΨωΩρ;α0+(rg1)(ϰ))2(ΥΨωΩρ;α0+r(ϰ)ΨωΩρ;α0+(rg1)(ϰ))(ΨωΩρ;α0+(rg1)(ϰ)γΨωΩρ;α0+r(ϰ)). (3.36)

    Combining (3.30), (3.31), (3.35) and (3.36), we deduce that

    (ΨωΩρ;α0+r(ϰ)ΨωΩρ;α0+(xf1g1)(ϰ)ΨωΩρ;α0+(rf1)(ϰ)ΨωΩρ;α0+(rg1)(ϰ))2(ΦΨωΩρ;α0+r(ϰ)ΨωΩρ;α0+(rf1)(ϰ))(ΨωΩρ;α0+(rf)(ϰ)ϕΨωΩρ;α0+r(ϰ))×(ΥΨωΩρ;α0+r(ϰ)ΨωΩρ;α0+(rg1)(ϰ))(ΨωΩρ;α0+(rg1)(ϰ)γΨωΩρ;α0+r(ϰ)). (3.37)

    Taking into consideration the elementary inequality 4a1a2(a1+a2)2,a1,a2R, we can state that

    4(ΦΨωΩρ;α0+r(ϰ)ΨωΩρ;α0+(rf1)(ϰ))(ΨωΩρ;α0+(rf1)(ϰ)ϕΨωΩρ;α0+r(ϰ))(ΨωΩρ;α0+r(ϰ)(Φϕ))2 (3.38)

    and

    4(ΥΨωΩρ;α0+r(ϰ)ΨωΩρ;α0+(rg1)(ϰ))(ΨωΩρ;α0+(rg1)(ϰ)γΨωΩρ;α0+r(ϰ))(ΨωΩρ;α0+r(ϰ)(Υγ))2. (3.39)

    From (3.37)-(3.39), we obtain (3.28). This completes the proof of Theorem 3.6.

    Lemma 3.7. Suppose two integrable functions f1 and g1 defined on [0,) satisfying the assertions I,II and (1.7) on [0,) and let two continuous function r and s defined on [0,). Then the inequality

    (ΨωΩρ;α0+r(ϰ)ΨωΩρ;β0+(sf1g1)(ϰ)+ΨωΩρ;β0+s(ϰ)ΨωΩρ;α0+(rf1g1)(ϰ)ΨωΩρ;α0+(rf1)(ϰ)ΨωΩρ;β0+(sg1)(ϰ)ΨωΩρ;α0+(sf1)(ϰ)ΨωΩρ;α0+(rg1)(ϰ))2(ΨωΩρ;α0+r(ϰ)ΨωΩρ;β0+(sf21)(ϰ)+ΨωΩρ;β0+s(ϰ)ΨωΩρ;α0+(rf21)(ϰ)2ΨωΩρ;α0+(rf1)(ϰ)ΨωΩρ;β0+(sf1)(ϰ))×(ΨωΩρ;α0+r(ϰ)ΨωΩρ;β0+(sg21)(ϰ)+ΨωΩρ;β0+s(ϰ)ΨωΩρ;α0+(rg21)(ϰ)2ΨωΩρ;α0+(rg1)(ϰ)ΨωΩρ;β0+(sg1)(ϰ)) (3.40)

    holds for all ρ(0,1],α,βC with (α),(β)>0.

    Proof. Taking product (3.30) by exp[ρ1ρ(Ψ(ϰ)Ψ(μ))]r(μ)ω(μ)Ψ(μ)ραΓ(α)(Ψ(ϰ)Ψ(μ))1αexp[ρ1ρ(Ψ(ϰ)Ψ(ν))]s(ν)ω(ν)Ψ(ν)ρβΓ(β)(Ψ(ϰ)Ψ(ν))1β and integrating the resulting inequality with respect to μ and ν from 0 to ϰ, we can state that

    1ραΓ(α)ρβΓ(β)ϰ0ϰ0exp[ρ1ρ(Ψ(ϰ)Ψ(μ))]r(μ)ω(μ)Ψ(μ)(Ψ(ϰ)Ψ(μ))1α×exp[ρ1ρ(Ψ(ϰ)Ψ(ν))]s(ν)ω(ν)Ψ(ν)(Ψ(ϰ)Ψ(ν))1βT(μ,ν)dμdν=1ραΓ(α)ρβΓ(β)ϰ0ϰ0exp[ρ1ρ(Ψ(ϰ)Ψ(μ))]r(μ)ω(μ)Ψ(μ)(Ψ(ϰ)Ψ(μ))1α×exp[ρ1ρ(Ψ(ϰ)Ψ(ν))]s(ν)ω(ν)Ψ(ν)(Ψ(ϰ)Ψ(ν))1β×(f1(μ)f1(ν))(g1(μ)g1(ν))dμdν. (3.41)

    Taking product both sides of the above equation by ω2(ϰ) and utilizing Definition (2.2), we have

    ω2(ϰ)ραΓ(α)ρβΓ(β)ϰ0ϰ0exp[ρ1ρ(Ψ(ϰ)Ψ(μ))]r(μ)ω(μ)Ψ(μ)(Ψ(ϰ)Ψ(μ))1α×exp[ρ1ρ(Ψ(ϰ)Ψ(ν))]s(ν)ω(ν)Ψ(ν)(Ψ(ϰ)Ψ(ν))1βT(μ,ν)dμdν=ΨωΩρ;α0+r(ϰ)ΨωΩρ;β0+(sf1g1)(ϰ)+ΨωΩρ;β0+s(ϰ)ΨωΩρ;α0+(rf1g1)(ϰ)ΨωΩρ;α0+(rf1)(ϰ)ΨωΩρ;β0+(sg1)(ϰ)ΨωΩρ;α0+(sf1)(ϰ)ΨωΩρ;α0+(rg1)(ϰ). (3.42)

    Then, thanks to the weighted Cauchy-Schwartz integral inequality for double integrals, we conclude (3.40).

    Lemma 3.8. Suppose an integrable function f1 defined on [0,) satisfying the assertions I and II on [0,) and let two continuous function r and s defined on [0,). Then the inequality

    ΨωΩρ;β0+(sf21)(ϰ)ΨωΩρ;α0+r(ϰ)+ΨωΩρ;α0+(rf21)(ϰ)ΨωΩρ;β0+s(ϰ)2ΨωΩρ;β0+(sf1)(ϰ)ΨωΩρ;α0+(rf1)(ϰ)(ΦΨωΩρ;α0+r(ϰ)ΨωΩρ;α0+(rf1)(ϰ))(ΨωΩρ;β0+(sf1)(ϰ)ϕΨωΩρ;β0+s(ϰ))+(ΦΨωΩρ;β0+s(ϰ)ΨωΩρ;β0+(sf1)(ϰ))(ΨωΩρ;α0+(rf1)(ϰ)ϕΨωΩρ;α0+r(ϰ))ΨωΩρ;β0+(s(ϰ)(Φf1(ϰ))(f1(ϰ)ϕ))ΨωΩρ;α0+r(ϰ)ΨωΩρ;β0+s(ϰ)ΨωΩρ;α0+(r(ϰ)(Φf1(ϰ))(f1(ϰ)ϕ)) (3.43)

    holds for all ρ(0,1],α,βC with (α),(β)>0.

    Proof. Multiplying both sides of (3.25) by exp[ρ1ρ(Ψ(ϰ)Ψ(μ))]r(μ)ω(μ)Ψ(μ)ρβΓ(β)(Ψ(ϰ)Ψ(μ))1β and integrating the resulting inequality with respect to μ from 0 to ϰ. Then, by multiplying with ω1(ϰ) and in view of Definition 2.2, concludes

    (ΦΨωΩρ;α0+r(ϰ)ΨωΩρ;α0+(rf1)(ϰ))(ΨωΩρ;β0+(sf1)(ϰ)ϕΨωΩρ;β0+s(ϰ))+(ΦΨωΩρ;β0+s(ϰ)ΨωΩρ;β0+(sf1)(ϰ))(ΨωΩρ;α0+(rf1)(ϰ)ϕΨωΩρ;α0+r(ϰ))ΨωΩρ;β0+(s(ϰ)(Φf1(ϰ))(f1(ϰ)ϕ))ΨωΩρ;α0+r(ϰ)ΨωΩρ;β0+s(ϰ)ΨωΩρ;α0+(r(ϰ)(Φf1(ϰ))(f1(ϰ)ϕ))ΨωΩρ;β0+(sf21)(ϰ)ΨωΩρ;α0+r(ϰ)+ΨωΩρ;α0+(rf21)(ϰ)ΨωΩρ;β0+s(ϰ)2ΨωΩρ;β0+(sf1)(ϰ)ΨωΩρ;α0+(rf1)(ϰ), (3.44)

    which gives (3.43) and proves the lemma.

    Theorem 3.9. Suppose two integrable functions f1 and g1 defined on [0,) satisfying the assertions I,II and (1.7) on [0,) and let two continuous function r and s defined on [0,). Then the inequality

    (ΨωΩρ;α0+r(ϰ)ΨωΩρ;β0+(sf1g1)(ϰ)+ΨωΩρ;β0+s(ϰ)ΨωΩρ;α0+(rf1g1)(ϰ)ΨωΩρ;α0+(rf1)(ϰ)ΨωΩρ;β0+(sg1)(ϰ)ΨωΩρ;α0+(sf1)(ϰ)ΨωΩρ;α0+(rg1)(ϰ))2{(ΦΨωΩρ;α0+r(ϰ)ΨωΩρ;α0+(rf1)(ϰ))(ΨωΩρ;β0+(sf1)(ϰ)ϕΨωΩρ;β0+s(ϰ))+(ΨωΩρ;α0+(rf1)(ϰ)ϕΨωΩρ;α0+r(ϰ))(ΦΨωΩρ;β0+s(ϰ)ΨωΩρ;β0+(sf1)(ϰ))}×{(ΥΨωΩρ;α0+r(ϰ)ΨωΩρ;α0+(rg1)(ϰ))(ΨωΩρ;β0+(sg1)(ϰ)γΨωΩρ;β0+s(ϰ))+(ΨωΩρ;α0+(rg1)(ϰ)γΨωΩρ;α0+r(ϰ))(ΥΨωΩρ;β0+s(ϰ)ΨωΩρ;β0+(sg1)(ϰ))} (3.45)

    holds for all ρ(0,1],α,βC with (α),(β)>0.

    Proof. Since (Φf1(μ))(f1(μ)ϕ)0 and (Υg1(μ))(g1(μ)γ)0, we have

    ΨωΩρ;α0+r(ϰ)ΨωΩρ;β0+(s(ϰ)(Φf1(ϰ))(f1(ϰ)ϕ))ΨωΩρ;β0+s(ϰ)ΨωΩρ;α0+(r(ϰ)(Φf1(ϰ))(f1(ϰ)ϕ))0 (3.46)

    and

    ΨωΩρ;α0+r(ϰ)ΨωΩρ;β0+(s(ϰ)(Υg1(ϰ))(g1(ϰ)γ))ΨωΩρ;β0+s(ϰ)ΨωΩρ;α0+(r(ϰ)(Υg1(ϰ))(g1(ϰ)γ))0. (3.47)

    Utilizing Lemma 3.8 to f1 and g1, and utilizing Lemma 3.7 and the inequalities (3.46) and (3.47), yields (3.45).

    Theorem 3.10. Suppose two integrable functions f1 and g1 defined on [0,) satisfying the assertions I,II and (1.7) on [0,) and let two continuous function r and s defined on [0,). Then the inequality

    |ΨωΩρ;α0+r(ϰ)ΨωΩρ;β0+(sf1g1)(ϰ)+ΨωΩρ;β0+s(ϰ)ΨωΩρ;α0+(rf1g1)(ϰ)ΨωΩρ;α0+(rf1)(ϰ)ΨωΩρ;β0+(sg1)(ϰ)ΨωΩρ;α0+(sf1)(ϰ)ΨωΩρ;α0+(rg1)(ϰ)|ΨωΩρ;α0+r(ϰ)ΨωΩρ;β0+s(ϰ)(Φϕ)(Υγ) (3.48)

    holds for all ρ(0,1],α,βC with (α),(β)>0.

    Proof. Taking into consideration the assumption (1.7), we have

    |f1(μ)f1(ν)|Φϕ,|g1(μ)g1(ν)|Υγ,μ,ν[0,), (3.49)

    which implies that

    |T(μ,ν)|=|f1(μ)f1(ν)||g1(μ)g1(ν)|(Φϕ)(Υγ). (3.50)

    From (3.42) and (3.50), we obtain that

    |ΨωΩρ;α0+r(ϰ)ΨωΩρ;β0+(sf1g1)(ϰ)+ΨωΩρ;β0+s(ϰ)ΨωΩρ;α0+(rf1g1)(ϰ)ΨωΩρ;α0+(rf1)(ϰ)ΨωΩρ;β0+(sg1)(ϰ)ΨωΩρ;α0+(sf1)(ϰ)ΨωΩρ;α0+(rg1)(ϰ)|ω2(ϰ)ραΓ(α)ρβΓ(β)ϰ0ϰ0exp[ρ1ρ(Ψ(ϰ)Ψ(μ))]r(μ)ω(μ)Ψ(μ)(Ψ(ϰ)Ψ(μ))1α×exp[ρ1ρ(Ψ(ϰ)Ψ(ν))]s(ν)ω(ν)Ψ(ν)(Ψ(ϰ)Ψ(ν))1βT(μ,ν)dμdνω2(ϰ)ραΓ(α)ρβΓ(β)ϰ0ϰ0exp[ρ1ρ(Ψ(ϰ)Ψ(μ))]r(μ)ω(μ)Ψ(μ)(Ψ(ϰ)Ψ(μ))1α×exp[ρ1ρ(Ψ(ϰ)Ψ(ν))]s(ν)ω(ν)Ψ(ν)(Ψ(ϰ)Ψ(ν))1β((Φϕ)(Υγ))dμdν=ΨωΩρ;α0+r(ϰ)ΨωΩρ;β0+s(ϰ)(Φϕ)(Υγ). (3.51)

    This ends the proof.

    Theorem 3.11. Suppose two integrable functions f1 and g1 defined on [0,) satisfying the assertions I,II and (1.7) on [0,) and let two continuous function r and s defined on [0,). Then the inequality

    |ΨωΩρ;α0+r(ϰ)ΨωΩρ;β0+(sf1g1)(ϰ)+ΨωΩρ;β0+s(ϰ)ΨωΩρ;α0+(rf1g1)(ϰ)ΨωΩρ;α0+(rf1)(ϰ)ΨωΩρ;β0+(sg1)(ϰ)ΨωΩρ;α0+(sf1)(ϰ)ΨωΩρ;α0+(rg1)(ϰ)|L(ΨωΩρ;α0+r(ϰ)ΨωΩρ;β0+(sg21)(ϰ)+ΨωΩρ;β0+s(ϰ)ΨωΩρ;α0+(rg21)(ϰ)2ΨωΩρ;α0+(rg1)(ϰ)ΨωΩρ;β0+(sg1)(ϰ)) (3.52)

    holds for all ρ(0,1],α,βC with (α),(β)>0.

    Proof. Taking into consideration the assumption (1.12), we have

    |f1(μ)f1(ν)|L|g1(μ)g1(ν)|μ,ν[0,), (3.53)

    which implies that

    |T(μ,ν)|=|f1(μ)f1(ν)||g1(μ)g1(ν)|L(g1(μ)g1(ν))2. (3.54)

    From (3.42) and (3.54), we obtain that

    |ΨωΩρ;α0+r(ϰ)ΨωΩρ;β0+(sf1g1)(ϰ)+ΨωΩρ;β0+s(ϰ)ΨωΩρ;α0+(rf1g1)(ϰ)ΨωΩρ;α0+(rf1)(ϰ)ΨωΩρ;β0+(sg1)(ϰ)ΨωΩρ;α0+(sf1)(ϰ)ΨωΩρ;α0+(rg1)(ϰ)|ω2(ϰ)ραΓ(α)ρβΓ(β)ϰ0ϰ0exp[ρ1ρ(Ψ(ϰ)Ψ(μ))]r(μ)ω(μ)Ψ(μ)(Ψ(ϰ)Ψ(μ))1α×exp[ρ1ρ(Ψ(ϰ)Ψ(ν))]s(ν)ω(ν)Ψ(ν)(Ψ(ϰ)Ψ(ν))1βT(μ,ν)dμdνLω2(ϰ)ραΓ(α)ρβΓ(β)ϰ0ϰ0exp[ρ1ρ(Ψ(ϰ)Ψ(μ))]r(μ)ω(μ)Ψ(μ)(Ψ(ϰ)Ψ(μ))1α×exp[ρ1ρ(Ψ(ϰ)Ψ(ν))]s(ν)ω(ν)Ψ(ν)(Ψ(ϰ)Ψ(ν))1β(g1(μ)g1(ν))2dμdν=L(ΨωΩρ;α0+r(ϰ)ΨωΩρ;β0+(sg21)(ϰ)+ΨωΩρ;β0+s(ϰ)ΨωΩρ;α0+(rg21)(ϰ)2ΨωΩρ;α0+(rg1)(ϰ)ΨωΩρ;β0+(sg1)(ϰ)). (3.55)

    This ends the proof.

    Theorem 3.12. Suppose two integrable functions f1 and g1 defined on [0,) satisfying the assertions I,II and the lipschitzian condition with the constants M1 and M2 and let two continuous function r and s defined on [0,). Then the inequality

    |ΨωΩρ;α0+r(ϰ)ΨωΩρ;β0+(sf1g1)(ϰ)+ΨωΩρ;β0+s(ϰ)ΨωΩρ;α0+(rf1g1)(ϰ)ΨωΩρ;α0+(rf1)(ϰ)ΨωΩρ;β0+(sg1)(ϰ)ΨωΩρ;α0+(sf1)(ϰ)ΨωΩρ;α0+(rg1)(ϰ)|M1M2(ΨωΩρ;α0+r(ϰ)ΨωΩρ;β0+(ϰ2s(ϰ))+ΨωΩρ;β0+s(ϰ)ΨωΩρ;α0+(ϰ2r(ϰ))2ΨωΩρ;α0+(ϰr(ϰ))ΨωΩρ;β0+(ϰs(ϰ))) (3.56)

    holds for all ρ(0,1],α,βC with (α),(β)>0.

    Proof. By the given hypothesis, we have

    |f1(μ)f1(ν)|M1|μν||g1(μ)g1(ν)|M2|μν|μ,ν[0,), (3.57)

    which implies that

    |T(μ,ν)|=|f1(μ)f1(ν)||g1(μ)g1(ν)|M1M2(μν)2. (3.58)

    From (3.42) and (3.58), we obtain that

    |ΨωΩρ;α0+r(ϰ)ΨωΩρ;β0+(sf1g1)(ϰ)+ΨωΩρ;β0+s(ϰ)ΨωΩρ;α0+(rf1g1)(ϰ)ΨωΩρ;α0+(rf1)(ϰ)ΨωΩρ;β0+(sg1)(ϰ)ΨωΩρ;α0+(sf1)(ϰ)ΨωΩρ;α0+(rg1)(ϰ)|ω2(ϰ)ραΓ(α)ρβΓ(β)ϰ0ϰ0exp[ρ1ρ(Ψ(ϰ)Ψ(μ))]r(μ)ω(μ)Ψ(μ)(Ψ(ϰ)Ψ(μ))1α×exp[ρ1ρ(Ψ(ϰ)Ψ(ν))]s(ν)ω(ν)Ψ(ν)(Ψ(ϰ)Ψ(ν))1βT(μ,ν)dμdνLω2(ϰ)ραΓ(α)ρβΓ(β)ϰ0ϰ0exp[ρ1ρ(Ψ(ϰ)Ψ(μ))]r(μ)ω(μ)Ψ(μ)(Ψ(ϰ)Ψ(μ))1α×exp[ρ1ρ(Ψ(ϰ)Ψ(ν))]s(ν)ω(ν)Ψ(ν)(Ψ(ϰ)Ψ(ν))1β(μν)2dμdν=M1M2(ΨωΩρ;α0+r(ϰ)ΨωΩρ;β0+(ϰ2s(ϰ))+ΨωΩρ;β0+s(ϰ)ΨωΩρ;α0+(ϰ2r(ϰ))2ΨωΩρ;α0+(ϰr(ϰ))ΨωΩρ;β0+(ϰs(ϰ))). (3.59)

    This ends the proof.

    Corollary 1. Let f1 and g1 be two differentiable functions on [0,) and let r and s be two non-negative continuous functions on [0,). Then the inequality

    |ΨωΩρ;α0+r(ϰ)ΨωΩρ;β0+(sf1g1)(ϰ)+ΨωΩρ;β0+s(ϰ)ΨωΩρ;α0+(rf1g1)(ϰ)ΨωΩρ;α0+(rf1)(ϰ)ΨωΩρ;β0+(sg1)(ϰ)ΨωΩρ;α0+(sf1)(ϰ)ΨωΩρ;α0+(rg1)(ϰ)|f1g1(ΨωΩρ;α0+r(ϰ)ΨωΩρ;β0+(ϰ2s(ϰ))+ΨωΩρ;β0+s(ϰ)ΨωΩρ;α0+(ϰ2r(ϰ))2ΨωΩρ;α0+(ϰr(ϰ))ΨωΩρ;β0+(ϰs(ϰ))) (3.60)

    holds for all ρ(0,1],α,βC with (α),(β)>0.

    Proof. We have f1(μ)f1(ν)=μνf1(ϰ)dϰ and g1(μ)g1(ν)=μνg1(ϰ)dϰ. That is, |f1(μ)f1(ν)|f1|μν|, |g1(μ)g1(ν)|g1|μν|,μ,ν[0,), and the immediate consequence follows from Theorem 3.12. This completes the proof.

    Example 3.13. Let ρ,α>0,q1,q2>1 with q11+q12=1, and ω0 be a function on [0,). Let f1 be an integrable function defined on [0,) and ΨωΩρ;αa+1f1 be the weighted generalized proportional fractional integral operator satisfying assumption II. Then we have

    |(ΨωΩρ;αa+1f1)(ϰ)|Θ(f1ω)(μ)L1(a1,ϰ),

    where

    Θ=ω1(ϰ)(1)α1Γ(α){(ρq1(ρ1))α1+1/q1}1/q1Φ1/q1(q1(α1)+1,q1(ρ1)ρ(Ψ(ϰ)Ψ(a1)))

    and

    Φ(α,ϰ)=ϰ0evvα1dv

    is the incomplete gamma function [52,53].

    Proof. It follows from Definition 2.2 and the modulus property that

    |(ΨωΩρ;αa+1f1)(ϰ)|ω1(ϰ)ραΓ(ρ)ϰa1exp[ρ1ρ(Ψ(ϰ)Ψ(μ))](Ψ(ϰ)Ψ(μ))1αΨ(μ)|f1(μ)ω(μ)|dμ

    for ϰ>a1.

    Making use of the well-known Hölder inequality, we obtain

    |(ΨωΩρ;αa+1f1)(ϰ)|ω1(ϰ)ραΓ(ρ)(ϰa1q1exp[ρ1ρ(Ψ(ϰ)Ψ(μ))](Ψ(ϰ)Ψ(μ))q1(1α)Ψ(μ)dμ)1/q1f1ω(μ)L1(a1,ϰ).

    Let θ=Ψ(ϰ)Ψ(μ). Then elaborated computations lead to

    |(ΨωΩρ;αa+1f1)(ϰ)|(1)α1ω1(ϰ)ραΓ(α){(ρq1(ρ1))α1+1/q1}1/q1×Φ1/q1(q1(α1)+1,q1(ρ1)ρ(Ψ(ϰ)Ψ(a1)))f1ω(μ)L1(a1,ϰ).

    Here, we aim at present some new generalizations via weighted generalized proportional fractional, weighted generalized Riemann-Liouville and weighted Riemann-Liouville fractional integral operators, which are the new estimates of the main consequences.

    Lemma 4.1. Let f1 and g1 be two synchronous functions on [0,). Assume that Q and P be two non-negative continuous mappings on [0,). Then the inequality

    ωΩρ;α0+(P)(ϰ)ωΩρ;α0+(Qf1g1)(ϰ)+ωΩΩρ;α0+(Pf1g1)(ϰ)ΨωΩρ;α0+(Q)(ϰ)ωΩρ;α0+(Pg1)(ϰ)ωΩρ;α0+(Qf1)(ϰ)+ωΩρ;α0+(Pf1)(ϰ)ωΩρ;α0+(Qg1)(ϰ),

    holds for all ρ(0,1],αC with (α)>0.

    Proof. Letting Ψ(ϰ)=ϰ and Lemma 3.1 yields the proof of Lemma 4.1.

    Lemma 4.2. Let f1 and g1 be two synchronous functions on [0,). Assume that Q and P be two non-negative continuous mappings on [0,). Then the inequality

    ωΩρ;α0+(P)(ϰ)ωΩρ;α0+(Qf1g1)(ϰ)+ωΩΩρ;α0+(Pf1g1)(ϰ)ΨωΩρ;α0+(Q)(ϰ)ωΩρ;α0+(Pg1)(ϰ)ωΩρ;α0+(Qf1)(ϰ)+ωΩρ;α0+(Pf1)(ϰ)ωΩρ;α0+(Qg1)(ϰ),

    holds for all ρ(0,1],αC with (α)>0.

    Proof. Letting Ψ(ϰ)=ϰ and Lemma 3.1 yields the proof of Lemma 4.2.

    Lemma 4.3. Under the assumption of Lemma 3.1, then the inequality

    ΨωΩα0+(P)(ϰ)ΨωΩα0+(Qf1g1)(ϰ)+ΨωΩα0+(Pf1g1)(ϰ)ΨωΩρ;α0+(Q)(ϰ)ΨωΩα0+(Pg1)(ϰ)ΨωΩα0+(Qf1)(ϰ)+ΨωΩρ;α0+(Pf1)(ϰ)ΨωΩα0+(Qg1)(ϰ),

    holds for all αC with (α)>0.

    Proof. Letting ρ=1 and Lemma 3.1 yields the proof of Lemma 4.3.

    Lemma 4.4. Under the assumption of Lemma 4.2, then the inequality

    ωΩα0+(P)(ϰ)ωΩα0+(Qf1g1)(ϰ)+ωΩα0+(Pf1g1)(ϰ)ωΩρ;α0+(Q)(ϰ)ωΩα0+(Pg1)(ϰ)ωΩα0+(Qf1)(ϰ)+ωΩρ;α0+(Pf1)(ϰ)ωΩα0+(Qg1)(ϰ),

    holds for all αC with (α)>0.

    Proof. Letting ρ=1,Ψ(ϰ)=ϰ and Lemma 3.1 yields the proof of Lemma 4.4.

    Theorem 4.5. Let f1 and g1 be two synchronous functions on [0,). Assume that r, s and t be three non-negative continuous functions on [0,). Then the inequality

    2ωΩρ;α0+r(ϰ)(ωΩρ;α0+s(ϰ)ωΩρ;α0+(tf1g1)(ϰ)+ωΩρ;α0+(sf1g1)(ϰ)ωΩρ;α0+t(ϰ))+2ωΩρ;α0+(rf1g1)(ϰ)ωΩρ;α0+s(ϰ)ωΩρ;α0+t(ϰ)ωΩρ;α0+r(ϰ)(ωΩρ;α0+(sg1)(ϰ)ωΩρ;α0+(tf1)(ϰ)+ωΩρ;α0+(sf1)(ϰ)ωΩρ;α0+(tg1)(ϰ))+ωΩρ;α0+s(ϰ)(ωΩρ;α0+(rg1)(ϰ)ωΩρ;α0+(tf1)(ϰ)+ωΩρ;α0+(rf1)(ϰ)ωΩρ;α0+(tg1)(ϰ))+ωΩρ;α0+s(ϰ)(ωΩρ;α0+(sg1)(ϰ)ωΩρ;α0+(rf1)(ϰ)+ωΩρ;α0+(sf1)(ϰ)ωΩρ;α0+(rg1)(ϰ))

    holds for all ρ(0,1],αC with (α)>0.

    Proof. Letting Ψ(ϰ)=ϰ and Theorem 3.2 yields the proof of Theorem 4.5.

    Theorem 4.6. Under the assumption of I, II and let r, s and t be three non-negative continuous functions on [0,). Then the inequality

    2ΨωΩα0+r(ϰ)(ΨωΩα0+s(ϰ)ΨωΩα0+(tf1g1)(ϰ)+ΨωΩα0+(sf1g1)(ϰ)ΨωΩα0+t(ϰ))+2ΨωΩα0+(rf1g1)(ϰ)ΨωΩα0+s(ϰ)ΨωΩα0+t(ϰ)ΨωΩα0+r(ϰ)(ΨωΩα0+(sg1)(ϰ)ΨωΩα0+(tf1)(ϰ)+ΨωΩα0+(sf1)(ϰ)ΨωΩα0+(tg1)(ϰ))+ΨωΩα0+s(ϰ)(ΨωΩα0+(rg1)(ϰ)ΨωΩα0+(tf1)(ϰ)+ΨωΩα0+(rf1)(ϰ)ΨωΩα0+(tg1)(ϰ))+ΨωΩα0+s(ϰ)(ΨωΩα0+(sg1)(ϰ)ΨωΩα0+(rf1)(ϰ)+ΨωΩα0+(sf1)(ϰ)ΨωΩα0+(rg1)(ϰ))

    holds for all αC with (α)>0.

    Proof. Letting ρ=1 and Theorem 3.2 yields the proof of Theorem 4.6.

    Theorem 4.7. Under the assumption of Theorem 4.5, then the inequality

    2ωΩα0+r(ϰ)(ωΩα0+s(ϰ)ωΩα0+(tf1g1)(ϰ)+ωΩα0+(sf1g1)(ϰ)ωΩα0+t(ϰ))+2ωΩα0+(rf1g1)(ϰ)ωΩα0+s(ϰ)ωΩα0+t(ϰ)ωΩα0+r(ϰ)(ωΩα0+(sg1)(ϰ)ωΩα0+(tf1)(ϰ)+ωΩα0+(sf1)(ϰ)ωΩα0+(tg1)(ϰ))+ωΩα0+s(ϰ)(ωΩα0+(rg1)(ϰ)ωΩα0+(tf1)(ϰ)+ωΩα0+(rf1)(ϰ)ωΩα0+(tg1)(ϰ))+ωΩα0+s(ϰ)(ωΩα0+(sg1)(ϰ)ωΩα0+(rf1)(ϰ)+ωΩα0+(sf1)(ϰ)ωΩα0+(rg1)(ϰ))

    holds for all αC with (α)>0.

    Proof. Letting ρ=1,Ψ(ϰ)=ϰ and Theorem 3.2 yields the proof of Theorem 4.7.

    Remark 5. The computed results lead to the following conclusion:

    (1) Setting ρ=1,Ψ(ϰ)=ϰ and r(ϰ)=s(ϰ)=1, and using the relation (2.7), (2.8) and the assumption ω(ϰ)=1, then Theorem 3.6 and Theorem 3.9 reduces to the known results due to Dahmani et al. [38].

    (2) Setting ρ=1,Ψ(ϰ)=ϰ and using the relation (2.7), (2.8) and the assumption ω(ϰ)=1, then Theorem 3.10–3.12, and Corollary 1 reduces to the known results due to Dahmani et al. [38] and Dahmani [40], respectively.

    A new generalized fractional integral operator is proposed in this paper. The novel investigation is used to generate novel weighted fractional operators in the Riemann-Liouville, generalized Riemann-Liouville, Hadamard, Katugampola, Generalized proportional fractional, generalized Hadamard proportional fractional and henceforth, which effectively alleviates the adverse effect of another function Ψ and proportionality index ρ. Utilizing the weighted generalized proportional fractional operator technique, we derived the analogous versions of the extended Chebyshev and Grüss type inequalities that improve the accuracy and efficiency of the proposed technique. Contemplating the Remark 2 and 3, several existing results can be identified in the literature. Some innovative particular cases constructed by this method are tested and analyzed for statistical theory, fractional Schrödinger equation [20,21]. The results show that the method proposed in this paper can stably and efficiently generate integral inequalities for convexity with better operators performance, thus providing a reliable guarantee for its application in control theory [54].

    The authors declare that they have no competing interests.

    The authors would like to express their sincere thanks to referees for improving the article and also thanks to Natural Science Foundation of China (Grant Nos. 61673169) for providing financial assistance to support this research. The authors would like to express their sincere thanks to the support of Taif University Researchers Supporting Project Number (TURSP-2020/217), Taif University, Taif, Saudi Arabia.



    [1] R. Gorenflo, F. Mainardi, I. Podlubny, Fractional differential equations, Academic Press, 1999,683–699.
    [2] R. Hilfer, Applications of fractional calculus in physics, Word Scientific, 2000.
    [3] A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and application of fractional differential equations, elsevier, 2006.
    [4] R. L. Magin, Fractional calculus in bioengineering, Begell House, 2006.
    [5] S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional integrals and derivatives: Theory and applications, Gordon and Breach, Yverdon, 1993.
    [6] F. Jarad, T. Abdeljawad, D. Baleanu, Caputo-type modification of the Hadamard fractional derivative, Adv. Differ. Equ., 2012 (2012), 1–8. doi: 10.1186/1687-1847-2012-1
    [7] U. N. Katugampola, New approach to generalized fractional integral, Appl. Math. Comput., 218 (2010), 860–865.
    [8] U. N. Katugampola, A new approach to generalized fractional derivatives, Bull. Math. Anal. Appl., 6 (2014), 1–15.
    [9] F. Jarad, T. Abdeljawad, J. Alzabut, Generalized fractional derivatives generated by a class of local proportional derivatives, Eur. Phys. J. Spec. Top., 226 (2017), 3457–3471. doi: 10.1140/epjst/e2018-00021-7
    [10] S. S. Zhou, S. Rashid, S. Parveen, A. O. Akdemir, Z. Hammouch, New computations for extended weighted functionals within the Hilfer generalized proportional fractional integral operators, AIMS Mathematics, 6 (2021), 4507–4525. doi: 10.3934/math.2021267
    [11] M. Al-Qurashi, S. Rashid, S. Sultana, H. Ahmad, K. A. Gepreel, New formulation for discrete dynamical type inequalities via -discrete fractional operator pertaining to nonsingular kernel, Math. Biosci. Eng., 18 (2021), 1794–1812. DOI: 10.3934/mbe.2021093.
    [12] Y. M. Chu, S. Rashid, J. Singh, A novel comprehensive analysis on generalized harmonically Ψ-convex with respect to Raina's function on fractal set with applications, Math. Method. Appl. Sci., 2021, DOI: 10.1002/mma.7346.
    [13] S. Rashid, Y. M. Chu, J. Singh, D. Kumar, A unifying computational framework for novel estimates involving discrete fractional calculus approaches, Alex. Eng. J., 60 (2021), 2677–2685. doi: 10.1016/j.aej.2021.01.003
    [14] S. Rashid, Z. Hammouch, R. Ashraf, Y. M. Chu, New computation of unified bounds via a more general fractional operator using generalized Mittag-Leffler function in the kernel, Comp. Model. Eng., 126 (2021), 359–378.
    [15] O. P. Agrawal, Generalized Multiparameters fractional variational calculus, Int. J. Differ. Equ., 2012 (2012), 1–38. doi: 10.1186/1687-1847-2012-1
    [16] O. P. Agrawal, Some generalized fractional calculus operators and their applications in integral equations, Fract. Calc. Appl. Anal., 15 (2012), 700–711.
    [17] M. Al-Refai, A. M. Jarrah, Fundamental results on weigted Caputo-Fabrizio fractional derivative, Chaos Soliton. Fract., 126 (2019), 7–11. doi: 10.1016/j.chaos.2019.05.035
    [18] M. Al-Refai, On weighted Atangana-Baleanu fractional operators, Adv. Differ. Equ., 2020 (2020), 1–11. doi: 10.1186/s13662-019-2438-0
    [19] F. Jarard, T. Abdeljawad, K. Shah, On the weighted fractional operators of a function with respect to another function, Fractals, 28 (2020), 2040011. doi: 10.1142/S0218348X20400113
    [20] Y. Zhang, X. Xing Liu, M. R. Belic, W. Zhong, Y. P. Zhang, M. Xiao, Propagation Dynamics of a Light Beam in a Fractional Schrödinger Equation, Phys. Rev. Lett., 115 (2015), 180403. doi: 10.1103/PhysRevLett.115.180403
    [21] Y. Zhang, H. Zhong, M. R. Belic, Y. Zhu, W. P. Zhong, Y. Zhang, et al. PT symmetry in a fractional Schrödinger equation, Laser Photonics Rev., 10 (2016), 526–531. doi: 10.1002/lpor.201600037
    [22] S. Belarbi, Z. Dahmani, On some new fractional integral inequalities, J. Inequal. Pure Appl. Math., 10 (2009), 1–12.
    [23] S. I. Butt, A. O. Akdemir, M. Y. Bhatti, M. Nadeem, New refinements of Chebyshev-Polya-Szego-type inequalities via generalized fractional integral operators, J. Inequal. Appl., 2020 (2020), 1–13. doi: 10.1186/s13660-019-2265-6
    [24] S. Rashid, F. Jarad, H. Kalsoom, Y. M. Chu, On Polya-Szego and Cebysev type inequalities via generalized k-fractional integrals, Adv. Differ. Equ., 2020 (2020), 1–18. doi: 10.1186/s13662-019-2438-0
    [25] E. Set, Z. Dahmani, İ. Mumcu, New extensions of Chebyshev type inequalities using generalized Katugampola integrals via Polya-Szego inequality, IJOCTA, 8 (2018), 137–144.
    [26] Z. Dahmani, New inequalities in fractional integrals, Int. J. Nonlinear Sci., 9 (2010), 493–497.
    [27] V. Chinchane, D. Pachpatte, On some integral inequalities using Hadamard fractional integral, J. Mat., 1 (2012), 62–66.
    [28] K. Brahim, S. Taf, On some fractional q-integral inequalities, J. Mat., 3 (2013), 21–26.
    [29] S. B. Chen, S. Rashid, M. A. Noor, R. Ashraf, Y. M. Chu, A new approach on fractional calculus and probability density function, AIMS Mathematics, 5 (2020), 7041–7054. doi: 10.3934/math.2020451
    [30] P. L. Chebyshev, Sur les expressions approximatives des integrales definies par les autres prises entre les mmes limites, Proc. Math. Soc. Charkov, 2 (1882), 93–98.
    [31] G. Grüss, Uber das Maximum des absoluten Betrages von 1b1a1b1a1f1(ϰ)g1(ϰ)dϰ(1b1a1)2b1a1f1(ϰ)dϰb1a1g1(ϰ)dϰ, Math. Z., 39 (1935), 215–226. doi: 10.1007/BF01201355
    [32] D. S. Mitrinovic, J. E. Pecaric, A. M. Fink, Classical and new inequalities in analysis, Springer, Dordrecht, 1993.
    [33] S. Rashid, T. Abdeljawad, F. Jarad, M. A. Noor, Some estimates for generalized Riemann-Liouville fractional integrals of exponentially convex functions and their applications, Mathematics, 7 (2019), 807. doi: 10.3390/math7090807
    [34] T. H. Zhao, M. K. Wang, Y. M. Chu, A sharp double inequality involving generalized complete elliptic integral of the first kind, AIMS Mathematics, 5 (2020), 4512–4528. doi: 10.3934/math.2020290
    [35] M. Adil Khan, J. E. Pecaric, Y. M. Chu, Refinements of Jensen's and McShane's inequalities with applications, AIMS Mathematics, 5 (2020), 4931–4945. doi: 10.3934/math.2020315
    [36] S. S. Dragomir, Quasi Grüss type inequalities for continuous functions of selfadjoint operators in Hilbert spaces, Filomat, 27 (2013), 277–289. doi: 10.2298/FIL1302277D
    [37] S. S. Dragomir, Some integral inequalities of Grüss type, Indian J. Pure Appl. Math., 4 (1998), 397–415.
    [38] Z. Dahmani, L. Tabharit, S. Taf, New generalisations of Grüss inequality using Riemann-Liouville fractional integrals, Bull. Math. Anal. Appl., 2 (2010), 93–99.
    [39] Z. Dahmani, A. Benzidane, New weighted Grüss type inequalities via (α,β) fractional q-integral inequalities, IJIAS, 1 (2012), 76–83.
    [40] Z. Dahmani, Some results associate with fractional integrals involving the extended Chebyshev functional, Acta Univ. Apulens, 27 (2011), 217–224
    [41] Z. Dahmani, L. Tabharit, S. Taf, New results using fractional integrals, Journal of Interdisciplinary Mathematics, 13 (2010), 601–606. doi: 10.1080/09720502.2010.10700721
    [42] E. Set, M. Tomar, M. Z. Sarikaya, On generalized Grüss type inequalities for k-fractional integrals, Appl. Math. Comput., 269 (2015), 29–34.
    [43] S. B. Chen, S. Rashid, M. A. Noor, Z. Hammouch, Y. M. Chu, New fractional approaches for n-polynomial p-convexity with applications in special function theory, Adv. Differ. Equ., 2020 (2020), 1–31. doi: 10.1186/s13662-019-2438-0
    [44] T. Abdeljawad, S. Rashid, Z. Hammouch, İ. İşcan, Y. M. Chu, Some new Simpson-type inequalities for generalized p-convex function on fractal sets with applications, Adv. Differ. Equ., 2020 (2020), 1–26. doi: 10.1186/s13662-019-2438-0
    [45] F. Jarad, T. Abdeljawad, S. Rashid, Z. Hammouch, More properties of the proportional fractional integrals and derivatives of a function with respect to another function, Adv. Differ. Equ., 2020 (2020), 1–16. doi: 10.1186/s13662-019-2438-0
    [46] S. Rashid, F. Jarad, M. A. Noor, H. Kalsoom, Y. M. Chu, Inequalities by means of generalized proportional fractional integral operators with respect to another function, Mathematics, 7 (2019), 1225. doi: 10.3390/math7121225
    [47] F. Jarad, M. A. Alqudah, T. Abdeljawad, On more generalized form of proportional fractional operators, Open Math., 18 (2020), 167–176. doi: 10.1515/math-2020-0014
    [48] F. Jarad, T. Abdeljawad, J. Alzabut, Generalized fractional derivatives generated by a class of local proportional derivatives, Eur. Phys. J. Spec. Top., 226 (2017), 3457–3471. doi: 10.1140/epjst/e2018-00021-7
    [49] G. Rahman, T. Abdeljawad, F. Jarad, A. Khan, K. S. Nisar, Certain inequalities via generalized proportional Hadamard fractional integral operators, Adv. Differ. Equ., 2019 (2019), 1–10. doi: 10.1186/s13662-018-1939-6
    [50] T. U. Khan, M. Adil Khan, Generalized conformable fractional operators, J. Comput. Appl. Math., 346 (2019), 378–389. doi: 10.1016/j.cam.2018.07.018
    [51] F. Jarad, E. Ugurlu, T. Abdeljawad, D. Baleanu, On a new class of fractional operators, Adv. Differ. Equ., 2017 (2017), 1–16. doi: 10.1186/s13662-016-1057-2
    [52] G. J. O. Jameson, The incomplete gamma functions, The Mathematical Gazette, 100 (2016), 298–306. doi: 10.1017/mag.2016.67
    [53] N. N. Lebedev, Special functions and their applications Prentice-Hall, INC. Englewood Cliffs, 1965.
    [54] D. R. Anderson, D. J. Ulness, Newly defined conformable derivatives, Adv. Dyn. Syst. Appl., 10 (2015), 109–137.
  • This article has been cited by:

    1. Mohammed Shehu Shagari, Qiu-Hong Shi, Saima Rashid, Usamot Idayat Foluke, Khadijah M. Abualnaja, Fixed points of nonlinear contractions with applications, 2021, 6, 2473-6988, 9378, 10.3934/math.2021545
    2. Farhat Safdar, Muhammad Attique, Some new generalizations for exponentially (s, m)-preinvex functions considering generalized fractional integral operators, 2021, 1016-2526, 861, 10.52280/pujm.2021.531203
    3. Shuang-Shuang Zhou, Saima Rashid, Erhan Set, Abdulaziz Garba Ahmad, Y. S. Hamed, On more general inequalities for weighted generalized proportional Hadamard fractional integral operator with applications, 2021, 6, 2473-6988, 9154, 10.3934/math.2021532
    4. Saima Rashid, Aasma Khalid, Omar Bazighifan, Georgia Irina Oros, New Modifications of Integral Inequalities via ℘-Convexity Pertaining to Fractional Calculus and Their Applications, 2021, 9, 2227-7390, 1753, 10.3390/math9151753
    5. Saima Rashid, Fahd Jarad, Khadijah M. Abualnaja, On fuzzy Volterra-Fredholm integrodifferential equation associated with Hilfer-generalized proportional fractional derivative, 2021, 6, 2473-6988, 10920, 10.3934/math.2021635
    6. SAIMA RASHID, ELBAZ I. ABOUELMAGD, AASMA KHALID, FOZIA BASHIR FAROOQ, YU-MING CHU, SOME RECENT DEVELOPMENTS ON DYNAMICAL ℏ-DISCRETE FRACTIONAL TYPE INEQUALITIES IN THE FRAME OF NONSINGULAR AND NONLOCAL KERNELS, 2022, 30, 0218-348X, 10.1142/S0218348X22401107
    7. Wengui Yang, Certain New Chebyshev and Grüss-Type Inequalities for Unified Fractional Integral Operators via an Extended Generalized Mittag-Leffler Function, 2022, 6, 2504-3110, 182, 10.3390/fractalfract6040182
    8. Shuang-Shuang Zhou, Saima Rashid, Asia Rauf, Khadija Tul Kubra, Abdullah M. Alsharif, Initial boundary value problems for a multi-term time fractional diffusion equation with generalized fractional derivatives in time, 2021, 6, 2473-6988, 12114, 10.3934/math.2021703
    9. Songkran Pleumpreedaporn, Chanidaporn Pleumpreedaporn, Weerawat Sudsutad, Jutarat Kongson, Chatthai Thaiprayoon, Jehad Alzabut, On a novel impulsive boundary value pantograph problem under Caputo proportional fractional derivative operator with respect to another function, 2022, 7, 2473-6988, 7817, 10.3934/math.2022438
    10. SAIMA RASHID, AASMA KHALID, YELIZ KARACA, YU-MING CHU, REVISITING FEJÉR–HERMITE–HADAMARD TYPE INEQUALITIES IN FRACTAL DOMAIN AND APPLICATIONS, 2022, 30, 0218-348X, 10.1142/S0218348X22401338
    11. Bounmy Khaminsou, Weerawat Sudsutad, Jutarat Kongson, Somsiri Nontasawatsri, Adirek Vajrapatkul, Chatthai Thaiprayoon, Investigation of Caputo proportional fractional integro-differential equation with mixed nonlocal conditions with respect to another function, 2022, 7, 2473-6988, 9549, 10.3934/math.2022531
    12. Fuxiang Liu, Jielan Li, Analytical Properties and Hermite–Hadamard Type Inequalities Derived from Multiplicative Generalized Proportional σ-Riemann–Liouville Fractional Integrals, 2025, 17, 2073-8994, 702, 10.3390/sym17050702
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2924) PDF downloads(126) Cited by(12)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog