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1. Introduction

In recent years, a useful extension has been proposed from the classical calculus by permitting
derivatives and integrals of arbitrary orders is known as fractional calculus. It emerged from a
celebrated logical conversation between Leibniz and L’Hopital in 1695 and was enhanced by different
scientists like Laplace, Abel, Euler, Riemann, and Liouville [1]. Fractional calculus has gained
popularity on the account of diverse applications in various areas of science and technology [2—4].
The concept of this new calculus was applied in several distinguished areas previously with excellent
developments in the frame of novel approaches and posted scholarly papers, see [5-18]. Various
notable generalized fractional integral operators such as the Riemann-Liouville, Hadamard, Caputo,
Marichev-Saigo-Maeda, Riez, the Gaussian hypergeometric operators and so on, their attempts
helpful for researchers to recognize the real world phenomena. Therefore, the Caputo and
Riemann-Liouville was the most used fractional operators having singular kernels. It is remarkable
that all the above mentioned operators are the particular cases of the operators investigated by Jarad et
al. [19]. The utilities to weighted generalized fractional operators are undertaking now.

Adopting the excellency of the above work, we introduce a new weighted framework of
generalized proportional fractional integral operator with respect to monotone function Y. Also, some
new characteristics of the aforesaid operator are apprehended to explore new ideas to amplify the
fractional operators and acquire fractional integral inequalities via generalized fractional operators
(see Remark 2 and 3 below).

Recently, by employing the fractional integral operators, several researchers have established a
bulk of fractional integral inequalities and their variant forms with fertile applications. These sorts of
speculations have noteworthy applications in fractional differential/difference equations and fractional
Schrodinger equations [20,21]. By the use of Riemann-Liouville fractional integral operator, Belarbi
and Dahmani [22] contemplated the subsequent integral inequalities as follows:

If fi and g, are two synchronous functions on [0, c0), then

r 1
Q" (g0 < D)0 (8160 (L.1)
and
a B
T U060 + F @ g6 < QNG00 + PR @), (12)

for all » > 0, @, > 0. Butt et al. [23], Rashid et al. [24] and Set et al. [25] established the fractional
integral inequalities via generalized fractional integral operator having Raina’s function, generalized
K-fractional integral and Katugampola fractional integral inequalities similar to the variants (1.1) and
(1.2), respectively. Here we should emphasize that, inequalities (1.1) and (1.2) are a remarkable
instrument for reconnoitering plentiful scientific regions of investigation encompassing probability
theory, statistical analysis, physics, meteorology, chaos and henceforth.

More general version of inequalities (1.1) and (1.2) proposed by Dahmani [26] by employing
Riemann-Liouville fractional integral operator.

Let f; and g, be two synchronous functions on [0, o) and let r, s : [0, c0) — [0, o). Then

Q"P)Q(Qf181)0%) + Q*"Q()Q™ (P f181)(%)
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> Q"Qf1)(0)Q"(Pg1) (%) + QU(Pf1)()Q"(Qg1) (%) (1.3)
and

QP (@Qf1g1) (%) + QLQUNQ (P fig1)(%)
> QU@Q[EOL (Pg1)(x) + QP [))Q (Qg1) (%) (1.4)

for all » > 0,a,8 > 0. Chinchane and Pachpatte [27], Brahim and Taf [28] and Shen et al. [29]
explored the Hadamard fractional integral inequalities, the fractional version of integral inequalities
in two variable quantum deformation and the Riemann-Liouville fractional integral operator on time
scale analysis coincide to variants (1.3) and (1.4), respectively.

Let us define the most distinguished Chebyshev functional [30]:

by

bl bl

1 1 1

p f S100)g1G0)dx — f fi(x)dx f g1(x)dx, (1.5)
1—a by —a; by —a;

ai

(f1,81) =

where f; and g; are two integrable functions on [ay, b;]. In [31], Griiss proposed the well-known
generalization:

1
[X(fi 80| < (@ = $)(T =), (1.6)
where fi and g; are two integrable functions on [ay, b;] satisfying the assumptions
¢Sfl(%)sq)7 7581(%)§T, ¢a®,%T€R,%€[al,bl]- (17)

The inequality (1.6) is known to be Griiss inequality. In recent years, the Griiss type integral
inequality has been the subject of very active research. Mathematicians and scientists can see them in
research papers, monographs, and textbooks devoted to the theory of inequalities [32-35] such as,
Dragomir [36] demonstrated certain variants with the supposition of vectors and continuous mappings
of selfadjoint operators in Hilbert space similar to (1.6). In this context, f; and g; are holding the
assumptions (1.7), Dragomir [37] derived several functionals in two and three variable sense as
follows:

by
1 2
|1, 81,P)] < (@ = @) - y)( f %(%)dx) : (1.8)

where

1
S(f1,81,P) = Ez(fl’gl»P)

b b by by
_ f Plo)dn f Po) i (g1 () — f Po) i ()it f PogiGodx (1.9)
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and
by by by by
WinPQ = [Quodx [ Peaficoneade+ [ Peod [ @uoficogaa
by by by by
- f Q%) f1(20)d> f P(e)g1(x)dxn — f PO fr(x)dx f Q(x)g1(%)dx.
ap ap ap aj
(1.10)
In [37], Dragomir established the inequality:
If f], 8] € Lo(ay, by), then
by by by )
B8] < 1Al f Ploe)d f P - f wPodz) | (111)
ap ap aj
Moreover, author [37] proved numerous variants for Lipschitzian functions as follows:
If fi is L-g,-Lipschitzian on [a, b{], that is
i - f] < Ligiw) -], L>0, v ela, bl (1.12)
and
by by by 5
B RIE L( f P(o)dx f POPG)dx — ( f gl(%)P(%)d%) ) (1.13)
ap ap ap
Furthermore, if f; and g, are L; and L,-Lipschitzian functions on [a;, b;], then
by by by ,
(/1. 81, P)| SLILZ( f P(x)dx f %250(%)(1%—( f %P(%)d%) ) (1.14)

Owing to the above tendency, Dhamani et al. [38] proposed the fractional integral inequalities in
the Riemann-Liouville parallel to variant (1.6) with the suppositions (1.7). Additionally, Dahamani
and Benzidane [39] introduced weighted Griiss type inequality via (a,/()-fractional g-integral
inequality resemble to (1.8) under the hypothesis of (1.5). Author [40, 41] derived the extended
functional of (1.10) by employing Riemann-Liouville integral corresponds to variants (1.11), (1.13)
and (1.14), respectively. In this flow, Set et al. [42] contemplated the Griiss type inequalities
considering the generalized K-fractional integral. Chen et al. [43] obtained the novel refinements of
Hermite-Hadamard type inequalities for n-polynomial p-convex functions within the generalized
fractional integral operators. Abdeljawad et al. [44] derived the Simpson’s type inequalities for
generalized p-convex functions involving fractal set. Jarad et al. [45] investigated the properties of the
more general form of generalized proportional fractional operators in Laplace transforms.
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The motivation of this paper is twofold. First, we propose a novel framework named weighted
generalized proportional fractional integral operator based on characteristics, as well as considering
the boundedness and semi-group property and able to be widely applied to many scientific results.
Second, the current operator employed to the extended weighted Chebyshev and Griiss type
inequalities for exploring the analogous versions of (1.5) and (1.6). Some special cases are pictured
with new fractional operators which are not computed yet. Interestingly, particular cases are designed
for Riemann-Liouville fractional integral, generalized Riemann-Liouville fractional integral and
generalized proportional fractional integral inequalities. It is worth mentioning that these operators
have the ability to recapture several generalizations in the literature by considering suitable
assumptions of ¥, w and p.

2. Prelude

In this section, we demonstrate the space where the weighted fractional integrals are bounded and
also, provide certain specific features of these operators.

Definition 2.1. ( [19])Let w # 0 be a mapping defined on [ay, b;], g, is a differentiable strictly
increasing function on [a;,b;]. The space x’(a;,b;), 1 < p < oo is the space of all Lebesgue
measurable functions fi defined on [ay, b;] for which [|fi]],», where

by

il = f sl gidx) . 1< p<oo @.1)
and
Ifillg, = ess sup |w() f1 ()| < c0. (2.2)

Remark 1. Clearly we see that f; € x/(ai,b)) = w()fi(x)(g; ()" € Ly(a;,by) for 1 < p < oo
and fi € xyg(ai, b)) = w*)fi(x) € Lo(ay, by).

Now, we show a novel fractional integral operator which is known as the weighted generalized
proportional fractional integral operator with respect to monotone function V.

Definition 2.2. Let f; € x’(a;,b;) and w # 0 be a function on [a,, b;]. Also, assume that ¥ is a
continuously differentiable function on [ay, ;] with ¥ > 0 on [a;, b,]. Then the left and right-sided
weighted generalized proportional fractional integral operator with respect to another function ¥ of
order @ > 0 are described as:

wGe) [Pl (W) — P(w))]
pT(@) ) (Po) — ()i

aj

S i) = Sl Wdu, ar <x (2.3)

and

W) ([ expISL (P W) — W)

]
T@ ) () =Wy WY wdp, x < b, 2.4)

S i) =

AIMS Mathematics Volume 6, Issue 8, 8001-8029.



8006

where p € (0, 1] is the proportionality index, @ € C,R(a) > 0 and I'(x) = fooo wle ™ dy is the
Gamma function.

Remark 2. Some particular fractional operators are the special cases of (2.3) and (2.4).
(1) Setting W(x) = x, in Definition (2.2), then we get the weighted generalized proportional fractional
operators stated as follows:

WG [ exPIE (= )]
pT(@) (=)'

aj

U fi(x) = Hwodu, a; < x (2.5)

and

- WGy (explSh = )]
100 = TS | s R Uwndu, 7 < by (2.6)

(2) Setting W(x%) = x and p = 1 in Definition (2.2), then we get the weighted Riemann-Liouville
fractional operators stated as follows:

w0 [ fiwwdy
@ J x-p

aj

WO fi(x) = a4y <x 2.7)

and

by
w ') (" hwwdy
['(a) (u =)=

o J100) = , % <by. (2.8)

(3) Setting (%) = Inx and a; > 0O in Definition (2.2), we get the weighted generalized proportional
Hadamard fractional operators stated as follows:

w'(x) (explS(In% )fl(/u)w(ﬂ)
pT(@) (Inz)"™ H

o 1) = , ap <% (2.9)

and

WG (ORI )] £y We) ,

Qpa
0= S ) ek

u, % < by (2.10)

(4) Setting WY(x%) = Inx and a; > 0 along with p = 1 in Definition (2.2), then we get the weighted
Hadamard fractional operators stated as follows:

w0 [ fiwwdy

,a; <% (2.11)
[(a) p(In )=

Qp fi(x) =
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and

by
w'G)  fiww(wdu
I(a) p(In &yt

S fi(x) = , % < by (2.12)

(5) Setting W(x) = "7 (r > 0) in Definition (2.2), then we get the weighted generalized fractional
operators in terms of Katugampola stated as follows:

RO (£ fed
- ,

wQZlf](%) = @) P a < (2.13)
and
—1 h T _ T e
S i) =2 o (= T% ) lﬁwi(i)_(f)d”, # < by. (2.14)

I'()

Remark 3. Several existing integral operators can be derived from Definition 2.2 as follows:

(1) Letting w(x) = 1, then we get the Definition 4 proposed by Rashid et al. [46] and Definition 3.2
introduced by Jarad et al. [47], independently.

(2) Letting w(x) = 1, W(%) = x, then we get the Definition 3.4 defined by Jarad et al. [48].

(3) Letting w(x) = 1 and W(x) = Inx along with a; > 0, then we get the Definition 2.1 defined by
Rahman et al. [49].

(4) Letting w(x) = p = 1 and Y(%) = Inx along with a; > 0, then we get the operator defined by
Kilbas et al. [3] and Smako et al. [5], respectively.

(5) Letting w(x) = p = 1 and (%) = x, then we get the operator defined by Kilbas et al [3].

(6) Letting w(x) = 1 and W(x) = "77, (t > 0), then we get the operator defined by Katugampola et
al. [7].

(7) Letting w(x) = p = 1 and Y(x) =
Khan and Khan et al [50].

(8) Letting w(x) = p = 1 and ¥(x) = @, and W(x) = M, (t > 0), then we get the operator
defined by Jarad et al. [S51].

xT+S

7 € (0,1], s € R, then we get the Definition 2 defined by

T+s’

Theorem 2.3. For @ > 0,p € (0,1], 1 < p < oo and f; € x'(ai,by). Then F*QU" is bounded in
Xolay, by) and

(P(by) —Y(a)lfill,»
pT(a+1) '

Y oe:
IR fily <

Proof. For 1 < p < oo, we have

w() fr) Y (wdp

S 14 1/p
125 fill,r ‘P’(%)dx)

w=%a

o (ﬂ  exp[S1 W) — F(u)]
T (@) (W(x) — P(w)'
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f exp[ZL(, - 1))

p 1/p
(ty — )1~ dtz) .

(P D)) Y1)

1 (f‘l’(bl)
~ (@) W(ay)

Using the fact that | exp[’%l(tz —11)]| < 1. Taking into account the generalized Minkowski inequality [5],
we can write

¥(ay)

¥ o 1 en -1 -1 p‘P(”l) @, )"
1296l < s | et anncr ) [ = nyeva) Can
1 T _1 1 (P(by) — ty)Pla=Dril/p
- f (‘w(q, ()i (P (n))\( ThT ) d,.

W(ar)

By employing the well-known Holder inequality satisfying p~™' + g~ = 1, we obtain

o, < | (f%l)‘w(\p—l(ﬁ))ﬁ(l}l—‘(t]))‘pdtl)]/p( fwm ((‘P(bl)—tl)P(Q—l)H)q/pdt])l/q

P\ Jyay) ¥(a)) pla—-1)+1
(b1)

. paI}(a)( Lbl 'w(%)f1(%)‘p‘{"(%)d%)l/p( L(al) ((\P(li)(lc)yitll;pf_llm )q/pdtl)l/q

o (F®) —¥a)rlifilly,
= pT(a+1)

Now, for p = oo, we have

by 1 expli (e ) v
N | e e (s
_ f”exp[’%‘clfw) - Yl oo 6o
pT@) ) — (oo — Byt VI #
-1
Since (‘exp [pp (1, — tl)” < 1)
il (o wr ot
< s | ovon - waora
_ (¥ = W@ llfilh
- pT(a+1)
(W) — W) fills
B pT(a+1) '
This ends the proof. O

Our next result is the semi group property for weighted generalized proportional fractional integral
operator with respect to monotone function.

AIMS Mathematics Volume 6, Issue 8, 8001-8029.
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Theorem 2.4. For a,3> 0,p € (0,1] with 1 < p < oo and let f; € ' (ay,b;). Then

(Sot Senf)fi = (Leu)fi @15
Proof.
-1 ‘ L g - @
(Yo vopif)oy = <) [P TN s o

pT(a ) (Peo) — P!

“(%) f fexp[ L (V) — P(w)] exp[=- F(P() - PO

p*BL()T(B) (P() — P ()'— (‘P(,u) P!+
Xw() iV VY (w)dudy.
By making change of variable technique 6 = %, we can write
(B sty )<%>
W [ e, [P @) - PO))] ,
= TG f ¢'(1-6)"'de o) — Ty YA Oy
wl(x) T(@T(P) GXP[%(‘I’(%) -¥Y(»)] ,
@I B T@ +6) | (oo —wopys O
= (Y £ ) o),
1
where B(a, 8) = %Eﬁ(ﬁ)) = f 6*-1(1 — 6)*>'d0 is known to be Euler Beta function. o
0

3. Main results

This section contains some significant generalizations for weighted integral inequalities by
employing weighted generalized proportional fractional integral operator, for the consequences
relating to (1.1) and (1.2), it is suppose that all mappings are integrable in the Riemann sense.

Throughout this investigation, we use the following assumptions:

I. Let f; and g; be two synchronous functions on [0, c0).
IL Let ¥ : [0,00) — (0,00) is an increasing function with continuous derivative ¥’ on the interval
(0, 00).

Lemma 3.1. If the supposition I and II are satisfied and let Q and P be two non-negative continuous
mappings on [0, o). Then the inequality

S (P)e) DU (Qf181)(0) + QU (PFig1) (%) U (Q) ()
> PR (Pg1) () s Q)00 + QN (PF)(x) ST (Qg1)(0), (3.1)

holds for all p € (0, 1], @ € C with R(a) > 0.

AIMS Mathematics Volume 6, Issue 8, 8001-8029.
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Proof. Since f; and g; are two synchronous functions on [0, o), then for all 4 > 0 and v > 0, we have

(i) = i)(gi1(w) — g1(») = 0. (3.2)
By (3.2), we write

Siwgiw) + fing1(v) =2 g1(w) f1(v) + g1 () f1(w). (3.3)

eXP['%l(‘P(%)—‘P(u))]Q(ﬂ)w(u)‘P’(ﬂ)

If we multiply both sides of (3.3) by ()PP

with respect to u from 0 to x%, we get
f exp[~- H(P(0) — P QW)Y ()
“F(a) P T(@) (P () — P()'—

and integrating the resulting inequality

Siwg (wdu

0810 [ XPLTCHC) — WGP 40

d
prT@) ) 0T(a)(P(x) — P(w))' @ H
S fiv) exP[—(‘P(%) P()]Quw )Y () J
pT(a) 0T (@) (P(x) — P(u)) @ &1(V)dv
0
@) [ exXPIEL (W00 — P(u)IQUuw )P (1) ] »
pT(a) ) P T(@)(W(x) — P(w)' hGodp. (34)

Taking product both sides of the above equation by w™!(x) and in view of Definition (2.2), we have

SN (@Qf181)00) + [ing1 () ST (Q)00) = g1(0) QT (@QF)(0) + i) g (Qg)(0). (3.5

. . . eXp[Pp;l(‘P(%)—‘P(V))]P(V)w(V)‘P’(V)
Further, if we multiply both sides of (3.5) by @) (o) F )

inequality with respect to v from O to x. Then, multiplying by w~'(x) and in view of Definition 2.2, we
obtain

and integrating the resulting

S (P S (Qf181)(0) + QL (PLig1)(30) ST (Q)(x)
> YOO (Pg)0) EOLT Q)0 + EQEN(P L)) QN Qg ) (), (3.6)

which implies (3.1). O

Theorem 3.2. Under the assumption of I, Il and let r, s and t be three non-negative continuous
functions on [0, 00). Then the inequality

2P0 (o) S (o) B (1£181)60) + EE (s £181)(00) L 160))
+2 Q0 (rfig1) () QU 5(6) S 1)
> P0G QU (581)00) SQU (/)G + B (s.£)00) P (181)(0))
+ oGO SR (rgn) () S (L)) + BT (rf)Go) S (11)(0))
+ PO sGo)( QU (581)00) FQL (rfi)G0) + QU (s 1)) B (r1) () 3.7

holds for all p € (0, 1], @ € C with R(a) > 0.
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Proof. By means of Lemma 3.1 and setting # = r, Q = s, we can write
o 500 QT (1£181) () + SO (5.£181)0¢) Qi 102)
> SO0 (581)00) g (L)) + SO (s£1)0) 5 (181)(30). (3.8)

Conducting product both sides of (3.8) by Q. r(x), we obtain

PO B s P (t181)(0) + P (s£181)(0) B H(x0))

> YOO QL (5g1)00) B ()60 + B (s.1)(20) B (11) (). (3.9)

By means of Lemma 3.1 and setting £ = r, Q = ¢, we can write

PO 0 PO (1181)00) + B (rfig1) () B H(30)
> POU(rg1)(x) SN (1)) + S (r 1) () S U (181) (30). (3.10)

Conducting product of (3.10) by JQs(x), we obtain

Eﬂgi“s(%)( SO () SO (tf181) () + LT (rfig1)(0) Eﬂﬁi"t(%))
> 3Qﬁi‘ls(%)( SO (rgn) () g (1)) + QU (rf1) () ﬁﬁg’i"(tgl)(%))- (3.11)

By similar argument as we did before, yields

PO O 2 G0 F (s£181)(0) + QL (rfign)(e) L 1))
> YOG D (581)60) LU (rf)ee) + PO (sf)e0) P (rg)e0). (B.12)

Adding (3.9), (3.11) and (3.12), we get the desired inequality (3.8).
O

Lemma 3.3. Under the assumption of I, Il and let Q and P be two non-negative continuous functions
on [0, 00). Then the inequality

YL (P g0 FAPQG) + I Pe) PP (Qfig1) ()
> YR P )G PP Qe (%) + EO (P10 ET QS (),

holds for all p € (0, 1], a,B € C with R(a), R(B) > 0.

eXp[pﬁl(‘I’(%)—‘f’(V))]Q(V)w(V)‘I”(V)

Proof. If we multiply both sides of (3.2) by BT F )P

inequality with respect to v from O to %, we have

and integrating the resulting

Awa @) [ PSP — FM)IQMwMY' ()
PTE) (P(x) — W(1))!+

dv

AIMS Mathematics Volume 6, Issue 8, 8001-8029.
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02 RIS - POIROWMY)
PTE) (¥(2) -~ ¥(0))1 P

yan r exp[’%(\m)—T(v))]a(ww(v)v(v)f
TR (P(x) — P() !

G [ Rl - YOm0 )
P ) (o) — P ()1

dv

)dv

g1(v)dv.

(3.13)

Taking product both sides of the above equation by w™!(x) and in view of Definition (2.2), we have

AWeg () 2P Q) + 2P (Qfig) ) = fi(w) FOF Qe (0) + g1 () PP @Qf)(x).  (3.14)

expl 2 (W)~ ()P () ¥ (1)

Again, multiplying both sides of (3.14) by @) BP0

inequality with respect to v from O to %, we have

and integrating the resulting

YO Q) [ explSH(W(x) — P)IPWww) ¥ ()

d,
pI'(a) ) (P(x) — P(u)'- fiwg1 (wdu
YO (Qfig) ) [ explS (P () - HOIP R @

pT(a) J (W) — W) H

_ SpP@gee) [ expLE(HE) — PEIPGLE Y G
T pT@ (o) = ()

0
A CING f expl[ £ () — Y PG ()
pPT@ (FGo) = ¥ )~

Si(udu

g1(wydu. (3.15)

Taking product both sides of the above equation by w™!(x) and in view of Definition (2.2), we obtain

LN P800 FAPQG) + TP PP (Qfig1) ()
> YR P L) PP Q1)) + PO (P () PP @Qf ) (),

which implies (3.13). O

Theorem 3.4. Under the assumptions I, Il and let r, s and t be three non-negative continuous functions
on [0, 00). Then the inequality

PO OO 2 (sig1)00) E P60 + 2 X s(0) L (1 £181) () + 2 H() L (s ig1)(0)

+( BP0 PO (o) + 2T H0) B 5(0)) B (1 fig1)(20)

AIMS Mathematics Volume 6, Issue 8, 8001-8029.
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> PO (o QL (/)60 FE (191 () + FQ (s81)00) EEL(1£1)(20))
+ 50 s Q0 (r () ST 1g1)Ge) + QLT (rg1) ) LUE (11)(20))
+ PO GO SO ()60 EE (sg1)(0) + EQ (rg1)(G0) LT (s £1)(20))
holds for all p € (0, 1], a,B € C with R(a), R(B) > 0.
Proof. By means of Lemma 3.3 and setting = 5,Q = f, we can write
PO (s181)(6) s QUL 1Ge) + B 5CGo) B (1 f11)(2¢)
> PO (sf)00) ST (1g1)Go) + QT (s81)(oe) ST (2 £1) o).

Conducting product both sides of (3.17) by YQf*r(x), we obtain

w==0t

PO OO 2 (s 18100 EULGe) + FQU s(0) EQE (1 fig1)(0))

> SO0 rGo( S0 (sf0)(0) S (1)) + EQT (sg0)(0) LT (1£)00)).

Again, by means of Lemma 3.3 and setting # = r,Q = ¢, we can write

SO (rfig1) o) n QP 1) + FQ (o) EQUP (2 £181)(0)
> YOP(rf)00) Y (1g1) () + PO (rg 1)) FOEP (1 £1) (0).

N

Conducting product both sides of (3.19) by BQ‘& s(x), we obtain

PO sGe)( P (rfig)e0) LTG0 + 2QE () L (£11)(0)

> PO sGo( B ()G EE (191 () + B (rg1)60) EQLT (2 £1)(20))-

By similar arguments as we did before, yields

PO 1) EOE (5181060 B re) + L s(0) EQUP (1 fig1)(00))

> PO G0 ST (rf)G) EUE (591 (o) + B (rg1)00) EQUE (s £1)(20))-

Adding (3.18), (3.20) and (3.21), we get the desired inequality (3.16).

Remark 4. Theorem 3.2 and Theorem 3.4 lead to the following conclusions:

(1) Let f; and g; are the asynchronous functions on [0, c0), then (3.8) and (3.16) are reversed.

(2) Let r, s and ¢ are negative on [0, c0), then (3.8) and (3.16) are reversed.
(3) Let r, s are positive ¢ is negative on [0, o), then (3.8) and (3.16) are reversed.

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)

In the next, we derive certain novel Griiss-type integral inequalities via weighted generalized

proportional fractional integral operators.
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Lemma 3.5. Suppose an integrable function f, defined on [0, ) satisfying the assertions I,Il and
(1.7) on [0, o) and let a continuous function r defined on [0, 00). Then the inequality

YO ) L (rf2)00) - (L) 60))
< (@FQxCe) = T AICO)( B (rf)50) — ¢ 2 (0))
— SO0 G B (rGo(@ = AGO)(fi () - ¢)) (3.22)
holds for all p € (0,1], a € C with R(a) > 0.
Proof. By the given hypothesis and utilizing (1.7). For any u, v € [0, c0), we have
(@ = AN = #) + (@ = i) (i) = 9) = (@ = AW)AE = 9) = (@ = AN = 9)
< fE@ + f10) = 2fi) fiv), (3.23)

eXp[’%l(‘I’(%)—‘I’(V))]r(V)w(V)‘P’ )
PT(@(FC)-F ()~

Multiplying both sides of (3.23) by
with respect to v from O to »%, we have

and integrating the resulting inequality

(i - @) [ exPIELEE) — YO IrMwm)¥' (»)
pT@) (¥(x) - P

(® - fi(m)dv

(D - fi(u) A eXp[‘%(‘I’(%) = Y)IrMwmY¥' (v)
pl(a) X (P(x) — ¥(v))!-@

(fi(v) — ¢)dv

(@ - AW - ¢) [ exp —(‘I’(%) YONIrMwm¥' (v)

o°T(a) (P(x) — P(v))@ v

exp —(‘I’(%) PONIrMw»)¥' (v)
“F(a) f (@ - iM)(fi(v) — p)dv

(PG - YY)

fl(,u) r expl S ((x) — Y)W (v)
-~ pT () ) (P =Y

dv

Ji(dv

1 [ explSH ) - YOIremY' o)
"I(a) f (F(0) — o) !

LS [ SRS - YOI )em)¥ )
"o (PG =¥

Sidy. (3.24)

Taking product both sides of the above equation by w™!(») and in view of Definition (2.2), we obtain

(O S () — LT (rfEO) i) = @) + (@ = AT (rfi)(0) — ¢ QL ()
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—(@ = A)(fi(w) — @) U r () — S (D — £1(0))(f1 () — 8))
< FR 20Ty + EQEN(r () = 21 () R0 (r ) (0). (3.25)

GXP[‘%I(‘P(M)—q’(u))]r(u)w(ﬂ)‘}”(u)

Multiplying both sides of (3.25) by @) (P00 PG

with respect to u from O to », we have

and integrating the resulting inequality

xpl 2 (W) = P r(ww(@) ¥ ()
(P(¢) = Y()'

¥ey ¥y 1 [ explEE P — )l (1)
Hul ()6 = 60 0%, r(%))p“r(a) Of (P(x) — P(w)' -

(fi(w) — $)dp

. . 1 [e
(05160~ L) Of

(© - fi(w)du

(@ = AGO)Fi(w) - B)du) 10470

( 1 f"expv’%(w(m = W(u)Ir()ew() ¥ (1)
pT(a) X (P(x) — P(u)'-

. 1 [ explS (P00 — P eV (1)
-G @ = AN - ) [ i
PT@ )

(Peo) — P!

IA

( 1 f"exp[’%(\l!(z)—T(u))]r@)w(y)w'm)
pT(a) )

2 Y o
o) — PG FRGdi) 5% 1o

1 explSH e — Yo () N,
=t | ) SO )
0

(PG =¥

FiGd) 195 o) (3.26)

o 1 f"exp[’%l(\m—w»]rw)wwwm
pT@ J (¥ () =¥~

Taking product both sides of the above equation by w™!(x) and in view of Definition (2.2), we obtain

(O Q0 r(0) = S (r ) (&% (rfi)(3) — ¢ w4 ()
HD S 0) — ST (r D)) (U (rf)() — ¢ U r ()
— o QO (rGe)(@ — fiGO)(fi () — ¢)) 4 r(20)
— SO0 EQ (rGO(@ = AGO)fi () - ¢))
< QT (D00 g r(e) + QT r(36) SO (r ) (2¢)
=2 ST (rf1)20) QY (rf)(0), (3.27)
which gives (3.22) and proves the lemma. |

Theorem 3.6. Suppose two integrable functions f| and g, defined on [0, 00) satisfying the assertions
L II and (1.7) on [0, o0) and let a continuous function r defined on [0, o). Then the inequality

. . . . D - )T - .
1O o) L rfi) — SO ) S o] < T TV R (38)
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holds for all p € (0, 1], @ € C with R(a) > 0.

Proof. By the given hypothesis stated in Theorem 3.6. Also, assume that y, v be defined by

TL(,u, V) = (fl(:u) - fl(v))(gl(ﬂ) - gl(V)), M,V € [0’ %]’ x> 0. (329)

. ) expl 2L (Y0~ () r(w()¥’ () expl L (P —F0))Ir(mw() ¥’ (v)
Multiplying both sides of (3.30) by pp”r((l)(‘l‘(%)—‘l’(/l))l_" ”p @ E T

the resulting inequality with respect to u and v from O to %, we can state that

and integrating

expl 2 (¥(0) — P Ir(ww () ()
W(a)f f (¥() = P ()~
exp[%l(\P(x) — ¥OIrMM ¥ ()
(Fe) = YD
[ el ) - Y Irwe¥ (0
) Zar2<a>f f (F00) — F()'-
expl (W) = FONIr(o)¥' ()

(PG =Y
X(fitw) = L)1 (W) — g1(»))dudy. (3.30)

T(u, v)dudy

Taking product both sides of the above equation by w™!(x) and in view of Definition (2.2), we obtain

w2(%) f feXp —(‘P(%) Y Ir@w o) (1)
p*T*(a) (Y Ce) = P()' =
exp[p,%(‘l’(%) - YONIrMwM¥(v)

(PG =Y
= 2,071 (0) ST (rfign)(0) = 2 GO (rf1)(0) QT (rg1) (). (3.31)

T(u, v)dudy

Thanks to the weighted Cauchy-Schwartz integral inequality for double integrals, we can write that

(w—z(%) f fexp[ H(Pt) — P)Ir()w(@) P ()
p* T () (W(x) — P(p))'-e

exp[’%(\lf(x) - PONIr ()P ()
(P(x) — Y1)~

2
T, v)d,udv)

w2(x) exp —(‘P(%) P Ir )’ (u)
2“1"2(01)[ f (PG — P!

eXp[pTl(‘I’(%) - YONIrMw()¥(v)

(P(x) — P(v))l-@ (fiw = fi (V))dludv)
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W) [ [P (PG = ) @w() ¥ @)
W(a) f f (W00 = ()

6XP[’)7](‘P(%) = YONIrMw(»)¥(v)
(PG =Y

= (b tog e - (M )
{1060 B0 g - (10 g el ) (3.32)

(8140 - ¢1(7)dud)

Since (© - /i)(fi(w) - ¢) = 0:and (T - g1())(g1 (1) —7) = 0, we have
S G0 S (re0(@ = fiG0)(fi(G) ~ ¢)) = O, (3:33)
and
P00 20 (rea (T = @1)(81(w) — ¥)) = 0. (3.34)
Therefore, from (3.33), (3.34) and Lemma 3.5, we get
O ) B (20 — (R )G
< (@I — LTG0 B ()G — ¢ EUr(0)) (3.35)
and
O ) L (gD ) — (L (rg) (o))
< (T FQrG0) — P (rgn)C) ) QU (rg) ) — v 2 (0)). (3.36)
Combining (3.30), (3.31), (3.35) and (3.36), we deduce that
(B8 r60) 2O2 (e fig)00) — B f)00) EU (g 0))

< (@I G0 = SO ()60 (BT ()G = ¢ LY r(0))
X( QT rGe) = B (rg) o)) EQU (rg) ) — v B (20))- (3.37)
Taking into consideration the elementary inequality 4a,a, < (a; + a,)?, a;,a> € R, we can state that
4@ LG — LTG0 LG - B 1RG0 < (K@ - 0) (338)
and
4T B G0 - H O re )00 U (ren 60 — ¥ E00) < (FETrGO(E - ) . (3.39)

From (3.37)-(3.39), we obtain (3.28). This completes the proof of Theorem 3.6. O
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Lemma 3.7. Suppose two integrable functions f; and g, defined on [0, 0o) satisfying the assertions
L II and (1.7) on [0, o0) and let two continuous function r and s defined on [0, 00). Then the inequality

(Z“Qp“r<%>“’fzpﬁ<sf1g1)<x> + B8PS0 1O g
~EQE(r)6) LB (5g1)00) — LT (5f)00) B (rg )(0))
< (10400 BOEE s 00 + B 560 B )60
=2 2O (1 fi) () S (s £1)(20))
><( ‘PQP;"r(%) YO (sg) () + 2O 500) X (rgh) ()

200 (rg1)(0) LY (581)())
(3.40)

holds for all p € (0, 1], @, B € C with R(a), R(B) > 0.
eXP[pp;l(‘P(%)—q’(ﬂ))] r(wwy’ () eXP[pp;l(‘1’(%)—‘1’(1’))]S(V)w(V)‘I"(V)

Pr Oofj Ta_kmg Pf_odUCF (3.30) by — rame v PTB T )—F) P
resulting inequality with respect to ¢ and v from O to x, we can state that

! f f expl ! () = V() Ir()w()¥ ()
PT@PTE) ) ) (¥G) — )

expl 5= ((%) — ¥(0)ls(Mw(m)¥' ()
(‘P(%) Yo'~

_ f fexp [ (P 00) = () r()w() ¥ ()
= a]"(a)pﬁr(ﬁ) (W(x) — \P('u))l—(z

eXP['DP—](‘I’(%) - YO Is(Mw()¥'(v)
(P(x) = P(v)'#
X(fiw) = i)(g1(w) — g1(v))dudy. (3.41)

Taking product both sides of the above equation by w™>2(x) and utilizing Definition (2.2), we have

and integrating the

(u, v)dudv

o) f fexp[ LW () — P () () ()P’ (u)
p°T(@)pPT(B) (P(x) — P(w))l-e
expl[ 1 (W(x) — W(v))]s(v)w(v)\l"(v)z »
8 (W) = )P (t V)dpdy
= 3Q€fr<x>zﬂﬁf<sﬁg1)(%) + 0P 5(x) “’Qﬂ“(rflgl)(x)

—PQ0(rf)00) ST (581)() — BQT (sf1)00) LT (rg1)(0). (3.42)

Then, thanks to the weighted Cauchy-Schwartz integral inequality for double integrals, we conclude
(3.40). O
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Lemma 3.8. Suppose an integrable function f, defined on [0, o) satisfying the assertions I and II on
[0, ) and let two continuous function r and s defined on [0, c0). Then the inequality

PP 00 B0 + Q0T (r e R T 5Ce) — 2 EQUE (s 1)) O (r /1) (20)
< (O Q0 () — ST ()OS UE (sf1) () — ¢ H % 5(32))
+H(@ 2 QL 500) — QUL (s ) (ST (rfi)o) = ¢ LU r())
=S¥ (s60(@ — ACONFi00) — ) 5% 1)
— 2T s00) QA (rOe)@ = FGONSi () - 9)) (3.43)

holds for all p € (0, 1], @, B € C with R(a), R(B) > 0.

o : expl 1 (PP (w( ¥ (1)
Proof. Multiplying both sides of (3.25) by £ T B0 PP

inequality with respect to u from 0 to %. Then, by multiplying with w™!(x) and in view of Definition
2.2, concludes

and integrating the resulting

(@ X0 r(e) — 2L f)CO)(EQLP (s £1) () — ¢ 2P 5(0))
HD PP 500) — PP (s )G (EQE(r 1)) — ¢ 2 QL r())

— (5@ — HL)(fi0) — 8)) L r(0)
— ol s00) gQﬁi“(r(%)(fb — GO (fi(x) — ¢))

< YOO (s R0 B (o) + QU (rfR00) B s(30)
=20 ()60 Q1 (rf1) o), (3.44)
which gives (3.43) and proves the lemma. O

Theorem 3.9. Suppose two integrable functions f| and g, defined on [0, 00) satisfying the assertions
L II and (1.7) on [0, o) and let two continuous function r and s defined on [0, ). Then the inequality

(FrGo) FUL (s fige) + PTG T (rfig) )
OB ()0 LB (581000 — L (5f)00) B (rg)60))
<@ FQrGe) — B (e (EL (s f) ) — ¢ ET ()
+(BQ0 (rf)(0) — ST CO)(@ 2P 56e) = EUT(s£1)(0)]
{(0 PG — 2L (rg)(O)(F UL (sg1)ee) — v QE 5(20))
+( B (g0 — ¥ 20N EQE se) - Q% F (5g1)(0))) (3.45)
holds for all p € (0,11, @, B € C with R(a), R(B) > 0.
Proof. Since (® = fi()(fi(1) = ¢) = 0 and (1 = g1(1))(g1(1) — ¥) = 0, we have
— 160 S (sC@ = i (fi () = 9) = ST 56e) SO (ra)(@ = fiGO)fi) = 9)) < 0 (3.46)
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and

= PO BQP (56T = £160)(8160) — 7)) — 2 s0) B (rG) (T = g1(0))(g1(2) ) < 0

Utilizing Lemma 3.8 to fj and g;, and utilizing Lemma 3.7 and the inequalities (3.46) and (3.47), yields (3.45).

(3.47)

O

Theorem 3.10. Suppose two integrable functions f; and g, defined on [0, o) satisfying the assertions
L II and (1.7) on [0, o0) and let two continuous function r and s defined on [0, ). Then the inequality

YO0 TP (s f1g1)00) + FOEF s(0) QL (rf181) ()
— PO (r f)() PP (s81)(0) — O (s /)() B (rg 1) ()
< YL (o) Y 5N (@ - $)(T — )
holds for all p € (0, 1], a,B € C with R(a), R(B) > 0.

Proof. Taking into consideration the assumption (1.7), we have

fiw - o)) c@=g,  |a@ -] <T-y, wyelo,w)

which implies that

[T ] = [ - Li)||giw - 21| < @ = )T - .
From (3.42) and (3.50), we obtain that

'gQ" r(0) Y (s f181)() + HI’Q"[”s(%)‘yﬂp S(rfign)()
— o ()00 ST (s81)(00) — ST (8/)60) SO (rg 1))

w0 f fexp[ S (P06) — W) r()w() ¥ (1)
P T(@)pT(B) (Fo) = P

exp[%l(‘lf(x) — Y))IsMw) ¥ (v)
(¥00) - ?(v))l—ﬁ
o) expl S+ (Y () — W) Ir(ww () ¥ ()
P T(@)PPT(B) f f (W) — ()
exp[f%(\lf(z) — Y))IsMw) ¥ (v)
(P(x) — P()'
= YO8 PP sGo) (@ — 9)(T - ).

w==0t w==0t

T(u, v)dudy

(@ = &) = y))dpudy

This ends the proof.

(3.48)

(3.49)

(3.50)

(3.51)

O
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Theorem 3.11. Suppose two integrable functions f; and g, defined on [0, o) satisfying the assertions
L II and (1.7) on [0, o0) and let two continuous function r and s defined on [0, 00). Then the inequality

| 0G0 S (s fig)60) + EQhE s B (rfign(@0)
— WL )G QL (581)00) = SO (5F1)(2) S (rg1)0)
< L( 50000 DO E(sg ) + 50T (o) S0 (rg}) ()
200 (rg ) (2) £ %P (s581)(0))

holds for all p € (0, 1], a,B € C with R(a), R(B) > 0.
Proof. Taking into consideration the assumption (1.12), we have
i - £i0)| < Llgr - 21| v € 10,00),
which implies that
|2 )] = [ - £0)||0160 - 21| < 1160 - 21
From (3.42) and (3.54), we obtain that
| ) S (s fign)Go) + LS B ign))
— 2 (rf)00) PP (581)(0) — FQET (s £1)(oe) EQ (rg1)20)

LW [ [ el Re) — Y)W ()
P T(@)pT(B) f f (¥0) = W)~

exp[%(\?(x) ~ ¥ ¥ ()
(¥ = ¥0)7

LW [ [l Re) — Y)Y ()
T @B f f (¥o) = W)~

explZL(F () — YODISMw)P () .
(P(x) —P(v)!+ (g1(u) — g1(v)) "dudv

= L( 200 2P (sghe) + 20 s() P (rgh )

—2 O (rg1)(0) FU P (sg1)(0)).

T(u, v)dudy

This ends the proof.

(3.52)

(3.53)

(3.54)

(3.55)

O

Theorem 3.12. Suppose two integrable functions f, and g, defined on [0, 0o) satisfying the assertions
I, II and the lipschitzian condition with the constants M, and M, and let two continuous function r

and s defined on [0, o). Then the inequality

2100 ST (sFig0)6e) + ST 60 SO (g (o)
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— o (rf) ) U P(sg1)(%) — SO (s 1)) S (rg1) ()
<M MZ(WQP’“;»(%)‘VQP””(% s()) + 2O s() L (P ()

=2 O (er () PP (5(0)))
(3.56)

holds for all p € (0, 1], @, B € C with R(a), R(B) > 0.
Proof. By the given hypothesis, we have
i = A0 < Ml =] [e1) = 210)| < Mol —=>] v € 10,00), (3.57)

which implies that

[T )| = |60 = A0 |a1 - 1) < MiMa(u - vY. (3.58)
From (3.42) and (3.58), we obtain that
| 060 S (s fig60) + QPG B (rfign(@0)
= LB )60 SO s — LG (s )60 SO (rgn(@)

Wi f f eXp[‘%](‘I’(%) = P Ir(w@)®’ (1)
= pT(@)pT(B) (Yo = P
eXp[pTI(‘P(%) - YONIsw()¥(v)
(‘P(%) YY)+
w0 f feXp[ (P (2) — P () ¥ (w)
“F(a)pﬁF(B) (Yo = P
eXp[pTI(‘P(%) - YONIsw()¥(v)
(Yo =Y
= MiM( Q0 rGe) P (2 500)) + 1Y s() LY (P r(a0))
=2 YO Ger()) £ E (5(0))). (3.59)

T(u, v)dudy

(1 — v)>dudv

This ends the proof.
]

Corollary 1. Let f| and g, be two differentiable functions on [0, 00) and let r and s be two non-negative
continuous functions on [0, o). Then the inequality

‘VQp“rw)‘VQ”ﬁ(sﬁgl)(m + PO () FOL (r fig1) (%)
— PO )60 EP (sg1) () — 2O (s fi)() Qg 1) ()

< ||f1||m||g1||m(jﬂg;“rm)‘jszg;ﬁ(% $00) + SQUL500) L 71 ()
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PP oer(x)) ‘PQpﬁ(%s(%)))

w==0t w==0t

(3.60)
holds for all p € (0, 1], @, B € C with R(a), R(B) > 0.

M
Proof. We have fi(u) — fi(v) = f f{Ge)dx and g\(u) — &1(v) = f g\(0dx. That is, |fi(u) — fi(v)] <

117 llo < ||g1||°o v € [0, 00), and the 1mmed1ate consequence follows from
Theorem 3. 12 This completes the proof O

Example 3.13. Let p, @ > 0, ¢g1,¢> > 1 with ¢;' + ¢;' = 1, and w # 0 be a function on [0, c0). Let

/i be an integrable function defined on [0, c0) and S fi be the weighted generalized proportional
1

fractional integral operator satisfying assumption II. Then we have

(e ke =0 xtn
where

w‘l(%)(—l)“‘l{( 0 )a—1+1/q1}1/q1

O =
['(a) qip—1)

q)l/ql(ql(a’ — 1) + 1,

-1
%(‘Pw) - W(a))

and
VA

O(a,x) = fe_vv"_ldv

0
is the incomplete gamma function [52, 53].

Proof. 1t follows from Definition 2.2 and the modulus property that

W) [ SXPIEHP() — ()]
PP ) (Yoo =)™

(tex fi)eo| < W (40)| i ()00 | du

for % > a;.
Making use of the well-known Holder inequality, we obtain

(e Yoo < w‘l(%)( f a1 exp[SH(P() - P(u)]
w=at 1 =

1/q1
paF(P) (\11(%) _ \P(ﬂ))ql(l—a) \P'(/.t)dlu) ”fl © w(ﬂ)”Ll(al,%).

Let 6 = WY(x%) — W(u). Then elaborated computations lead to

(—1)0_1(1)_1(%) P a=1+1/q1\1/q1
@ \gp-n)
q1(p-1)
o

(b n)eo| <
S/ (m(a S+, (P(x) - ‘P(al)))Hfl 0 W)l (ay 0)-

O
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4. Special cases

Here, we aim at present some new generalizations via weighted generalized proportional
fractional, weighted generalized Riemann-Liouville and weighted Riemann-Liouville fractional
integral operators, which are the new estimates of the main consequences.

Lemma 4.1. Let f; and g, be two synchronous functions on [0, ). Assume that Q and P be two
non-negative continuous mappings on [0, o). Then the inequality

o€ (P)CO) oi“(Qflgl)(%) + QO (Pfi1)(x) Q% (Q)()
Qp Q(Pgl)(%) Q (Qfl)(%) + a)Qo+ (Pfl)(%) wQ0+ (le)(%)7
holds for all p € (0, 1], @ € C with R(a) > 0.
Proof. Letting W(x) = » and Lemma 3.1 yields the proof of Lemma 4.1. O

Lemma 4.2. Let fi and g, be two synchronous functions on [0, ). Assume that Q and P be two
non-negative continuous mappings on [0, o). Then the inequality

Qp“(7>)(%) 7 (Qf18)() + QX (Pfi81)(%) w5 (Q)0)
W (Pg1)(0) QL)) + QL (P13 w2 (Qg1) (),
holds for all p € (0, 1], @ € C with R(a) > 0.
Proof. Letting W(x) = » and Lemma 3.1 yields the proof of Lemma 4.2. O
Lemma 4.3. Under the assumption of Lemma 3.1, then the inequality
o (P)C0) 55 (Qf1g 1)) + “’Q&(Pﬁgl)(x)w 0 (@)
> 505 (P1)() 5 Q6 Q)G + SOG (PG 52 (Qg1)0),
holds for all @ € C with R(a) > 0.
Proof. Letting p = 1 and Lemma 3.1 yields the proof of Lemma 4.3. O
Lemma 4.4. Under the assumption of Lemma 4.2, then the inequality
w2+ (P)00) 2 (Qf181)00) + o2 (P181)(4) o Q5 (@)
> Q0 (Pg1)(#) Q- (QF1)() + QL (PF(3) Q- (Qg1) (),
holds for all a € C with R(a) > 0.
Proof. Letting p = 1, W(%) = »« and Lemma 3.1 yields the proof of Lemma 4.4. O

Theorem 4.5. Let f| and g, be two synchronous functions on [0, o). Assume that r, s and t be three
non-negative continuous functions on [0, 00). Then the inequality

2 Qp;a”(%)( WU 500) S (L 181) () + wﬂﬁf’(Sflgl)(%)wQSi“t(%))
+2 , Q0 (rf181)(0¢) €% 5(%) U 1()
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> Q0 W (581)() WU (1)06) + WU (5.1)(2) % (181)(20))
+ W% 560 w2 (r81)(0) WU (L)) + WU (1)) WU (181)0))
Q0 506)( WU (581)00) QU (rf1)06) + W (511)06) QU (r81) ()

holds for all p € (0, 1], @ € C with R(a) > 0.

Proof. Letting W(x) = » and Theorem 3.2 yields the proof of Theorem 4.5. O

Theorem 4.6. Under the assumption of I, Il and let r, s and t be three non-negative continuous
functions on [0, o). Then the inequality

208 r(e)( 1 500) Q0 (t£181)00) + 1 (s.£181)(0) 1 1(20))

+2 5 Q6. (rfig0) (o) o QG s(¢) § Q. 1(2)

gQgﬂ”(%)( o2 (581)(0) Q- (1)) + L (sf1)(¢) Q. (fgl)(%))

+ 595 sG55 (rg1)00) DO (1)) + QG (1)) 2% (11)(0)
+ 0 Q. 500 £Q- (s81)60) 595 (ri) () + 5O (/1)) 525 (rg1)(20))

v

holds for all a € C with R(a) > 0.

Proof. Letting p = 1 and Theorem 3.2 yields the proof of Theorem 4.6. O

Theorem 4.7. Under the assumption of Theorem 4.5, then the inequality

2,95 70 Q- () W (1£181)(0) + W (5.£181) () Q1))
+2 Q0 (r£181)(6) Wy 50¢) Q2 1:2)

> Q5100 W (581)00) W (11)00) + WO ()(30) 2 (121)00))
+ o2 56O % (r81)60) 2 (1)) + W (1) (20) W2 (181)(0))
+ 098 500( 2 (58100 QG (MG + W95 (5100 21 (rg1)(0))

holds for all @ € C with R(a) > 0.

Proof. Letting p = 1, W(x%) = x and Theorem 3.2 yields the proof of Theorem 4.7. m|

Remark 5. The computed results lead to the following conclusion:

(1) Setting p = 1,W(x%) = » and r(x) = s(x¢) = 1, and using the relation (2.7), (2.8) and the assumption
w(x) = 1, then Theorem 3.6 and Theorem 3.9 reduces to the known results due to Dahmani et al. [38].
(2) Setting p = 1,'¥(%) = » and using the relation (2.7), (2.8) and the assumption w(%) = 1, then
Theorem 3.10-3.12, and Corollary 1 reduces to the known results due to Dahmani et al. [38] and
Dahmani [40], respectively.

AIMS Mathematics Volume 6, Issue 8, 8001-8029.



8026

5. Conclusions

A new generalized fractional integral operator is proposed in this paper. The novel investigation is
used to generate novel weighted fractional operators in the Riemann-Liouville, generalized
Riemann-Liouville, Hadamard, Katugampola, Generalized proportional fractional, generalized
Hadamard proportional fractional and henceforth, which effectively alleviates the adverse effect of
another function ¥ and proportionality index p. Utilizing the weighted generalized proportional
fractional operator technique, we derived the analogous versions of the extended Chebyshev and
Griiss type inequalities that improve the accuracy and efficiency of the proposed technique.
Contemplating the Remark 2 and 3, several existing results can be identified in the literature. Some
innovative particular cases constructed by this method are tested and analyzed for statistical theory,
fractional Schrodinger equation [20,21]. The results show that the method proposed in this paper can
stably and efficiently generate integral inequalities for convexity with better operators performance,
thus providing a reliable guarantee for its application in control theory [54].
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