Research article

New integral inequalities using exponential type convex functions with applications

  • Received: 29 January 2021 Accepted: 28 April 2021 Published: 13 May 2021
  • MSC : 26A51, 26A33, 26D07, 26D10, 26D15

  • In this paper, we establish some new Hermite-Hadamard type inequalities for differential exponential type convex functions and discuss several special cases. Moreover, in order to give the efficient of our main results, some applications for special means and error estimations are obtain.

    Citation: Jian Wang, Saad Ihsan But, Artion Kashuri, Muhammad Tariq. New integral inequalities using exponential type convex functions with applications[J]. AIMS Mathematics, 2021, 6(7): 7684-7703. doi: 10.3934/math.2021446

    Related Papers:

    [1] Shuang-Shuang Zhou, Saima Rashid, Muhammad Aslam Noor, Khalida Inayat Noor, Farhat Safdar, Yu-Ming Chu . New Hermite-Hadamard type inequalities for exponentially convex functions and applications. AIMS Mathematics, 2020, 5(6): 6874-6901. doi: 10.3934/math.2020441
    [2] Attazar Bakht, Matloob Anwar . Ostrowski and Hermite-Hadamard type inequalities via $ (\alpha-s) $ exponential type convex functions with applications. AIMS Mathematics, 2024, 9(10): 28130-28149. doi: 10.3934/math.20241364
    [3] Muhammad Imran Asjad, Waqas Ali Faridi, Mohammed M. Al-Shomrani, Abdullahi Yusuf . The generalization of Hermite-Hadamard type Inequality with exp-convexity involving non-singular fractional operator. AIMS Mathematics, 2022, 7(4): 7040-7055. doi: 10.3934/math.2022392
    [4] Hu Ge-JiLe, Saima Rashid, Muhammad Aslam Noor, Arshiya Suhail, Yu-Ming Chu . Some unified bounds for exponentially $tgs$-convex functions governed by conformable fractional operators. AIMS Mathematics, 2020, 5(6): 6108-6123. doi: 10.3934/math.2020392
    [5] Jamshed Nasir, Shahid Qaisar, Saad Ihsan Butt, Hassen Aydi, Manuel De la Sen . Hermite-Hadamard like inequalities for fractional integral operator via convexity and quasi-convexity with their applications. AIMS Mathematics, 2022, 7(3): 3418-3439. doi: 10.3934/math.2022190
    [6] Muhammad Samraiz, Kanwal Saeed, Saima Naheed, Gauhar Rahman, Kamsing Nonlaopon . On inequalities of Hermite-Hadamard type via $ n $-polynomial exponential type $ s $-convex functions. AIMS Mathematics, 2022, 7(8): 14282-14298. doi: 10.3934/math.2022787
    [7] Attazar Bakht, Matloob Anwar . Hermite-Hadamard and Ostrowski type inequalities via $ \alpha $-exponential type convex functions with applications. AIMS Mathematics, 2024, 9(4): 9519-9535. doi: 10.3934/math.2024465
    [8] Sevda Sezer, Zeynep Eken . The Hermite-Hadamard type inequalities for quasi $ p $-convex functions. AIMS Mathematics, 2023, 8(5): 10435-10452. doi: 10.3934/math.2023529
    [9] Tekin Toplu, Mahir Kadakal, İmdat İşcan . On n-Polynomial convexity and some related inequalities. AIMS Mathematics, 2020, 5(2): 1304-1318. doi: 10.3934/math.2020089
    [10] Thongchai Botmart, Soubhagya Kumar Sahoo, Bibhakar Kodamasingh, Muhammad Amer Latif, Fahd Jarad, Artion Kashuri . Certain midpoint-type Fejér and Hermite-Hadamard inclusions involving fractional integrals with an exponential function in kernel. AIMS Mathematics, 2023, 8(3): 5616-5638. doi: 10.3934/math.2023283
  • In this paper, we establish some new Hermite-Hadamard type inequalities for differential exponential type convex functions and discuss several special cases. Moreover, in order to give the efficient of our main results, some applications for special means and error estimations are obtain.



    Let ψ:I be a real valued function. A function ψ is said to be convex, if

    ψ(χμ1+(1χ)μ2)χψ(μ1)+(1χ)ψ(μ2) (1.1)

    holds for all μ1,μ2I and χ[0,1].

    Theory of convexity has a lot of applications in pure and applied mathematics and plays an important and fundamental role in the development of various branches of engineering, financial mathematics, economics and optimization. In recent years, the concept of convex functions and their variant forms have been extended and generalized using innovative techniques to study complicated problems. It is well known that convexity is closely related to inequality theory. Many generalizations, variants and extensions for the convexity have attracted the attention of many researchers, see [1,2,3,4].

    The following remarkable Hermite-Hadamard inequality states that, if ψ:I is a convex function for all μ1,μ2I, then

    ψ(μ1+μ22)1μ2μ1μ2μ1ψ(x)dxψ(μ1)+ψ(μ2)2. (1.2)

    For interested readers, see the references [5,6,7,8,9,10,11,12,13,14,15,16,17,18]. In 1929, the notion of exponential convexity was 1st time defined and investigated by Bernstein [19]. After Bernstein, Widder [20] investigated these functions as a subclass of convex functions in a given interval (a, b). The sizeable and worthwhile research on big data analysis and extensive learning has recently increased the attentiveness in information theory involving exponentially convex functions. So especially in the last few decades, different mathematicians namely Antczak (2001), Pecaric (2013), Dragomir (2015), Pal (2017), Alirezaei (2018), Awan (2018), Saima (2019), Noor (2019), Kadakal (2020), worked on the concept of exponential type convexity in different directions and contributed in the field of analysis. Due to aforesaid worked, these functions have proceeded as a remarkable and crucial new class of convex functions, which have noteworthy benefits in technology, data science, information sciences, data mining, statistics, stochastic optimization, statistical learning and sequential prediction. Some notable results and wonderful literature on the term inequalities can be found for the exponential convexity, see [21,22,23,24,25].

    In [26], Kadakal and İşcan introduced the following class of convex functions.

    Definition 1.1. A nonnegative function ψ:I, is said to be exponential type convex, if

    ψ(χμ1+(1χ)μ2)(eχ1)ψ(μ1)+(e1χ1)ψ(μ2) (1.3)

    holds for all μ1,μ2I and χ[0,1].

    Moreover, authors in [26], proved the following Proposition 1 that will be used in Section 4.

    Proposition 1. Every nonnegative convex function is exponential type convex function.

    Functions, like ψ1(x)=xs where s>1; ψ2(x)=ex and ψ3(x)=1x for all x>0, are exponential type convex.

    The article consists of five sections. In Section 2 we recall two lemmas for deriving our main results. In Section 3 several new Hermite-Hadamard type integral inequalities for differential exponential type convex functions will be established and some special cases will be given as well. In Section 4, by using the main results, we will obtain some applications for special means and error estimations as well. Section 5 concludes the article finally.

    The following notations will be used in the sequel.

    Let denote I the interior of I and L[μ1,μ2] the set of all integrable functions on [μ1,μ2]. In order to prove our main results regarding some Hermite-Hadamard type inequalities for differential exponential type convex function, we need the following lemmas.

    Lemma 2.1. ([27]) Let ψ:I be differentiable on I and let ρ,σ,μ1,μ2I with μ1<μ2. Assume that ψL[μ1,μ2] and 0<ϵ<μ2μ1. Then

    ϵρψ(μ1)+(μ2μ1ϵ)σψ(μ2)+[ϵ(1ρ)+(μ2μ1ϵ)(1σ)]ψ(μ1+ϵ)μ2μ1ψ(x)dx=10[ϵ2(1ρχ)ψ(χμ1+(1χ)(μ1+ϵ))+(μ2μ1ϵ)2(σχ)ψ(χ(μ1+ϵ)+(1χ)μ2)]dχ.

    Lemma 2.2. ([14]) Let m>0 and 0s1. Then

    10|sχ|mdχ=sm+1+(1s)m+1m+1,10χ|sχ|mdχ=sm+2+(m+1+s)(1s)m+1(m+1)(m+2).

    Using Lemma 2.1 and Lemma 2.2, we have the following new results.

    Theorem 3.1. Let ψ:I be differentiable on I and let ρ,σ[0,1],μ1,μ2I with μ1<μ2. Assume that ψL[μ1,μ2] and 0<ϵ<μ2μ1. If |ψ|q is exponential type convex on [μ1,μ2] with q1, then

    |ϵρψ(μ1)+(μ2μ1ϵ)σψ(μ2)+[ϵ(1ρ)+(μ2μ1ϵ)(1σ)]ψ(μ1+ϵ)μ2μ1ψ(x)dx|ϵ2((1ρ)2+ρ22)11q{12(2C1(ρ,ϵ)e1ϵμ2μ12ρ2+2ρ1)|ψ(μ1)|q+12(2C2(ρ,ϵ)eϵμ2μ12ρ2+2ρ1)|ψ(μ2)|q}1q+(μ2μ1ϵ)2(σ2+(1σ)22)11q×{12(2C3(σ,ϵ)2σ2+2σ1)|ψ(μ1)|q+12(2C4(σ,ϵ)2σ2+2σ1)|ψ(μ2)|q}1q, (3.1)

    where

    C1(ρ,ϵ):=10|1ρχ|eϵχμ2μ1dχ,
    C2(ρ,ϵ):=10|1ρχ|eϵχμ2μ1dχ,
    C3(σ,ϵ):=10|σχ|eχϵχμ2μ1dχ,

    and

    C4(σ,ϵ):=10|σχ|e1(χϵχμ2μ1)dχ.

    Proof. Consider that |ψ|q is exponential type convex on [μ1,μ2] with q1. Using Lemma 2.1 and property of the modulus, we have

    |ϵρψ(μ1)+(μ2μ1ϵ)σψ(μ2)+[ϵ(1ρ)+(μ2μ1ϵ)(1μ)]ψ(μ1+ϵ)μ2μ1ψ(x)dx|ϵ210|1ρχ||ψ(χμ1+(1χ)(μ1+ϵ))|dχ+(μ2μ1ϵ)210|σχ||ψ(χ(μ1+ϵ)+(1χ)μ2)|dχ.

    Case (q=1). This first case doesn't need Hölder's inequality. Using exponential type convexity of |ψ| and Lemma 2.2, we get

    10|1ρχ||ψ(χμ1+(1χ)(μ1+ϵ))|dχ=10|1ρχ||ψ((1ϵ(1χ)μ2μ1)μ1+ϵ(1χ)μ2μ1μ2)|dχ10|1ρχ|[(e1ϵ(1χ)μ2μ11)|ψ(μ1)|+(eϵ(1χ)μ2μ11)|ψ(μ2)|]dχ=10|1ρχ|e1ϵ(1χ)μ2μ1|ψ(μ1)|dχ+10|1ρχ|eϵ(1χ)bμ1|ψ(μ2)|dχ10|1ρχ|(|ψ(μ1)|+|ψ(μ2)|)dχ=e1ϵμ2μ1|ψ(μ1)|10|1ρχ|eϵχμ2μ1dχ+eϵμ2μ1|ψ(μ2)|10|1ρχ|eϵχμ2μ1dχ10|1ρχ|(|ψ(μ1)|+|ψ(μ2)|)dχ=C1(ρ,ϵ)e1ϵμ2μ1|ψ(μ1)|+C2(ρ,ϵ)eϵμ2μ1|ψ(μ2)|(1ρ)2+ρ22(|ψ(μ1)|+|ψ(μ2)|)=12(2C1(ρ,ϵ)e1ϵμ2μ12ρ2+2ρ1)|ψ(μ1)|+12(2C2(ρ,ϵ)eϵμ2μ12ρ2+2ρ1)|ψ(μ2)|.

    Similarly,

    10|σχ||ψ(χ(μ1+ϵ)+(1χ)μ2)|dχ=10|σχ||ψ((χϵχμ2μ1)μ1+(1(χϵχμ2μ1))μ2)|dχ10|σχ|{(eχϵχμ2μ11)|ψ(μ1)|+(e1(χϵχμ2μ1)1)|ψ(μ2)|}dχ=10|σχ|(eχϵχμ2μ1|ψ(μ1)|dχ+10|σχ|(e1(χϵχμ2μ1)|ψ(μ2)|dχ10|σχ|(|ψ(μ1)|+|ψ(μ2)|)dχ=C3(σ,ϵ)|ψ(μ1)|+C4(σ,ϵ)|ψ(μ2)|σ2+(1σ)22(|ψ(μ1)|+|ψ(μ2)|)=12(2C3(σ,ϵ)2σ2+2σ1)|ψ(μ1)|+12(2C4(σ,ϵ)2σ2+2σ1)|ψ(μ2)|.

    Thus

    |ϵρψ(μ1)+(μ2μ1ϵ)σψ(μ2)+[ϵ(1ρ)+(μ2μ1ϵ)(1μ)]ψ(μ1+ϵ)μ2μ1ψ(x)dx|ϵ22{(2C1(ρ,ϵ)e1ϵμ2μ12ρ2+2ρ1)|ψ(μ1)|+(2C2(ρ,ϵ)eϵμ2μ12ρ2+2ρ1)|ψ(μ2)|}+(μ2μ1ϵ)22{(2C3(σ,ϵ)2σ2+2σ1)|ψ(μ1)|+(2C4(σ,ϵ)2σ2+2σ1)|ψ(μ2)|}.

    Case (q>1). By Hölder's inequality and Lemma 2.2, we obtain

    |ϵρψ(μ1)+(μ2μ1ϵ)σψ(μ2)+[ϵ(1ρ)+(μ2μ1ϵ)(1σ)]ψ(μ1+ϵ)μ2μ1ψ(x)dx|ϵ2(10|1ρχ|dχ)11q(10|1ρχ||ψ(χμ1+(1χ)(μ1+ϵ))|qdχ)1q+(μ2μ1ϵ)2(10|σχ|dχ)11q(10|σχ||ψ(χ(μ1+ϵ)+(1χ)μ2)|qdχ)1q=ϵ2((1ρ)2+ρ22)11q(10|1ρχ||ψ(χμ1+(1χ)(μ1+ϵ))|qdχ)1q+(μ2μ1ϵ)2(σ2+(1σ)22)11q(10|σχ||ψ(χ(μ1+ϵ)+(1χ)μ2)|qdχ)1q.

    Applying exponential type convexity of |ψ|q and Lemma 2.2, we have

    10|1ρχ||ψ(χμ1+(1χ)(μ1+ϵ))|qdχ=10|1ρχ||ψ((1ϵ(1χ)μ2μ1)μ1+ϵ(1χ)μ2μ1μ2)|qdχ10|1ρχ|[(e1ϵ(1χ)μ2μ11)|ψ(μ1)|q+(eϵ(1χ)μ2μ11)|ψ(μ2)|q]dχ=10|1ρχ|e1ϵ(1χ)μ2μ1|ψ(μ1)|qdχ+10|1ρχ|eϵ(1χ)μ2μ1|ψ(μ2)|qdχ10|1ρχ|(|ψ(μ1)|q+|ψ(μ2)|q)dχ=e1ϵμ2μ1|ψ(μ1)|q10|1ρχ|eϵχμ2μ1dχ+eϵμ2μ1|ψ(μ2)|q10|1ρχ|eϵχμ2μ1dχ10|1ρχ|(|ψ(μ1)|q+|ψ(μ2)|q)dχ=C1(ρ,ϵ)e1ϵμ2μ1|ψ(μ1)|q+C2(ρ,ϵ)eϵμ2μ1|ψ(μ2)|q(1ρ)2+ρ22(|ψ(μ1)|q+|ψ(μ2)|q)=12(2C1(ρ,ϵ)e1ϵμ2μ12ρ2+2ρ1)|ψ(μ1)|q+12(2C2(ρ,ϵ)eϵμ2μ12ρ2+2ρ1)|ψ(μ2)|q.

    Similarly,

    10|σχ||ψ(χ(μ1+ϵ)+(1χ)μ2)|qdχ=10|σχ||ψ((χϵχμ2μ1)μ1+(1(χϵχμ2μ1))μ2)|qdχ10|σχ|[(eχϵχμ2μ11)|ψ(μ1)|q+(e1(χϵχμ2μ1)1)|ψ(μ2)|q]dχ=10|σχ|(eχϵχμ2μ1|ψ(μ1)|qdχ+10|σχ|(e1(χϵχμ2μ1)|ψ(μ2)|qdχ10|σχ|(|ψ(μ1)|q+|ψ(μ2)|q)dχ=C3(σ,ϵ)|ψ(μ1)|q+C4(σ,ϵ)|ψ(μ2)|qσ2+(1σ)22(|ψ(μ1)|q+|ψ(μ2)|q)=12(2C3(σ,ϵ)2σ2+2σ1)|ψ(μ1)|q+12(2C4(σ,ϵ)2σ2+2σ1)|ψ(μ2)|q.

    Thus

    |ϵρψ(μ1)+(μ2μ1ϵ)σψ(μ2)+[ϵ(1ρ)+(μ2μ1ϵ)(1σ)]ψ(μ1+ϵ)μ2μ1ψ(x)dx|ϵ2((1ρ)2+ρ22)11q×{12(2C1(ρ,ϵ)e1ϵμ2μ12ρ2+2ρ1)|ψ(μ1)|q+12(2C2(ρ,ϵ)eϵμ2μ12ρ2+2ρ1)|ψ(μ2)|q}1q+(μ2μ1ϵ)2(σ2+(1σ)22)11q×{12(2C3(σ,ϵ)2σ2+2σ1)|ψ(μ1)|q+12(2C4(σ,ϵ)2σ2+2σ1)|ψ(μ2)|q}1q,

    which completes the proof.

    Remark 1. We have also calculated all the coefficients C1(ρ,ϵ),C2(ρ,ϵ),C3(σ,ϵ) and C4(σ,ϵ) of Theorem 3.1 using software Maple 18. They are given as:

    C1(ρ,ϵ):=10|1ρχ|eϵχμ2μ1dχ
    =eϵμ2μ1[μ1ρϵeϵμ1μ2μ2ρϵeϵμ1μ2+μ21eϵμ1μ22μ1μ2eϵμ1μ2μ1ϵeϵμ1μ2+μ22eϵμ1μ2+μ2ϵeϵμ1μ2ϵ2
    2μ21eϵρμ1μ2+4μ1μ2eϵρμ1μ22μ22eϵρμ1μ2+μ1ϵρμ2ϵρ+(μ2μ1)2]ϵ2;
    C2(ρ,ϵ):=10|1ρχ|eϵχμ2μ1dχ
    =eϵρμ2μ1[2μ1μ2eϵ(ρ+1)μ1μ2+μ1ϵρeϵ(ρ+1)μ1μ2μ2ϵρeϵ(ρ+1)μ1μ2μ1ϵeϵρμ1μ2+μ2ϵeϵρμ1μ2μ21eϵ(ρ+1)μ1μ2μ22eϵ(ρ+1)μ1μ2ϵ2
    ++μ1ϵρeϵρμ1μ2μ2ϵρeϵρμ1μ2μ21eϵρμ1μ2μ22eϵρμ1μ2+2μ1μ2eϵρμ1μ2+2μ21eϵμ1μ2+2μ22eϵμ1μ24μ1μ2eϵμ1μ2]ϵ2;
    C3(σ,ϵ):=10|σχ|eχϵχμ2μ1dχ
    =eσμ2μ2μ1[μ21σeσμ2μ1μ22μ1μ2σeσμ2μ1μ2+μ1σϵeσμ2μ1μ2+μ22σeσμ2μ1μ2μ2σϵeσμ2μ1μ2+μ21σeσμ2+μ1μ2+ϵμ1μ2μ212μ1μ2+2μ1ϵ+μ222μ2ϵ+ϵ2
    +2μ1μ2σeσμ2+μ1μ2+ϵμ1μ2+μ1σϵeσμ2+μ1μ2+ϵμ1μ2+μ22σeσμ2+μ1μ2+ϵμ1μ2μ2σϵeσμ2+μ1μ2+ϵμ1μ2+μ21eσμ2μ1μ2μ212μ1μ2+2μ1ϵ+μ222μ2ϵ+ϵ2
    +2μ1μ2eσμ2μ1μ2+μ22eσμ2μ1μ22μ21eσ(μ1+ϵ)μ1μ2+4μ1μ2eσ(μ1+ϵ)μ1μ22μ22eσ(μ1+ϵ)μ1μ2+(μ2μ1)ϵeσμ2+μ1μ2+ϵμ1μ2]μ212μ1μ2+2μ1ϵ+μ222μ2ϵ+ϵ2

    and

    C4(σ,ϵ):=10|σχ|e1(χϵχμ2μ1)dχ
    =eσμ1+ϵσ+μ2μ2μ1[4μ1μ2σeσμ2+μ1μ1μ2+2μ1μ2eσμ1+ϵσ+μ1μ1μ2+4μ1μ2eσμ1+ϵσ+μ2ϵμ2μ1+μ1ϵσeσμ1+ϵσ+μ1μ1μ2μ212μ1μ2+2μ1ϵ+μ222μ2ϵ+ϵ2
    +μ2ϵσeσμ1+ϵσ+μ1μ1μ2+μ1ϵσeσμ1+ϵσ+μ2ϵμ1μ2μ2ϵσeσμ1+ϵσ+μ2ϵμ1μ22(μ21+μ22)eσμ1+ϵσ+μ2ϵμ1μ2μ212μ1μ2+2μ1ϵ+μ222μ2ϵ+ϵ2
    +(μ21+μ22μ21σμ22σ)eσμ1+ϵσ+μ1μ1μ2+(μ21σ+μ22σμ1ϵ+μ2ϵ)eσμ1+ϵσ+μ2ϵμ1μ2μ212μ1μ2+2μ1ϵ+μ222μ2ϵ+ϵ2
    +2μ1μ2σeσμ1+ϵσ+μ1μ1μ22μ1μ2σeσμ1+ϵσ+μ2ϵμ1μ2+2(μ21+μ22)eσμ2+μ1μ1μ2]μ212μ1μ2+2μ1ϵ+μ222μ2ϵ+ϵ2.

    Let us derive from Theorem 3.1 some new trapezium and midpoint type inequalities using special values of ρ,σ and suitable choices of ϵ.

    Corollary 1. Taking ρ=σ=0 in Theorem 3.1, then

    211q(μ2μ1)|ψ(μ1+ϵ)1μ2μ1μ2μ1ψ(x)dx|ϵ2{12(2C1(0,ϵ)e1ϵμ2μ11)|ψ(μ1)|q+12(2C2(0,ϵ)eϵμ2μ11)|ψ(μ2)|q}1q+(μ2μ1ϵ)2{12(2C3(0,ϵ)1)|ψ(μ1)|q+12(2C4(0,ϵ)1)|ψ(μ2)|q}1q.

    Corollary 2. Taking ρ=σ=12 in Theorem 3.1, then

    411q|ϵψ(μ1)+(μ2μ1ϵ)ψ(μ2)+(μ2μ1)ψ(μ1+ϵ)2μ2μ1ψ(x)dx|ϵ2{12(2C1(12,ϵ)e1ϵμ2μ112)|ψ(μ1)|q+12(2C2(12,ϵ)eϵμ2μ112)|ψ(μ2)|q}1q+(μ2μ1ϵ)2{12(2C3(12,ϵ)12)|ψ(μ1)|q+12(2C4(12,ϵ)12)|ψ(μ2)|q}1q.

    Corollary 3. Taking ρ=σ=1 in Theorem 3.1, then

    211q|ϵψ(μ1)+(μ2μ1ϵ)ψ(μ2)μ2μ1ψ(x)dx|ϵ2{12(2C1(1,ϵ)e1ϵμ2μ11)|ψ(μ1)|q+12(2C2(1,ϵ)eϵμ2a1)|ψ(μ2)|q}1q+(μ2μ1ϵ)2{12(2C3(1,ϵ)1)|ψ(μ1)|q+12(2C4(1,ϵ)1)|ψ(μ2)|q}1q.

    Corollary 4. Taking ϵ=μ2μ12 in Theorem 3.1, then

    |ρψ(μ1)+σψ(μ2)2+2ρσ2ψ(μ1+μ22)1μ2μ1μ2μ1ψ(x)dx|(μ2μ1)28((1ρ)2+ρ2)11q×{(2C1(ρ,μ2μ12)e122ρ2+2ρ1)|ψ(μ1)|q+(2C2(ρ,μ2μ12)e122ρ2+2ρ1)|ψ(μ2)|q}1q+(μ2μ1)28(σ2+(1σ)2)11q×{(2C3(σ,μ2μ12)2σ2+2σ1))|ψ(μ1)|q+(2C4(σ,μ2μ12)2σ2+2σ1))|ψ(μ2)|q}1q.

    Corollary 5. Taking ϵ=μ2μ13 in Theorem 3.1, then

    |ρψ(μ1)+2σψ(μ2)3+(1ρ32σ3)ψ(2μ1+μ23)1μ2μ1μ2μ1ψ(x)dx|(μ2μ1)218((1ρ)2+ρ2)11q×{(2C1(ρ,μ2μ13)e232λ2+2λ1)|ψ(μ1)|q+(2C2(ρ,μ2μ13)e232ρ2+2ρ1)|ψ(μ2)|q}1q+2(μ2μ1)29(σ2+(1σ)2)11q×{(2C3(σ,μ2μ13)2σ2+2σ1))|ψ(μ1)|q+(2C4(σ,μ2μ13)2σ2+2σ1))|ψ(μ2)|q}1q.

    Corollary 6. Taking ϵ=2(μ2μ1)3 in Theorem 3.1, then

    |2ρψ(μ1)+σψ(μ2)3+(12ρ3σ3)ψ(μ1+2μ23)1μ2μ1μ2μ1ψ(x)dx|2(μ2μ1)29((1ρ)2+ρ2)11q×{(2C1(ρ,2(μ2μ1)3)e132ρ2+2ρ1)|ψ(μ1)|q+(2C2(ρ,2(μ2μ1)3)e132ρ2+2ρ1)|ψ(μ2)|q}1q+(μ2μ1)218(σ2+(1σ)2)11q×{(2C3(σ,2(μ2μ1)3)2σ2+2σ1))|ψ(μ1)|q+(2C4(σ,2(μ2μ1)3)2σ2+2σ1))|ψ(μ2)|q}1q.

    Theorem 3.2. Let ψ:I be differentiable on I and let ρ,σ[0,1],μ1,μ2I with μ1<μ2. Assume that ψL[μ1,μ2] and 0<ϵ<μ2μ1. If |ψ|q is exponential type convex on [μ1,μ2] with q1, then

    |ϵρψ(μ1)+(μ2μ1ϵ)σψ(μ2)+[ϵ(1ρ)+(μ2μ1ϵ)(1σ)]ψ(μ1+ϵ)μ2μ1ψ(x)dx|ϵ2{(G5(q;ρ,ϵ)e1ϵμ2μ1(1ρ)q+1+ρq+1q+1)|ψ(μ1)|q+(G6(q;ρ,ϵ)eϵμ2μ1(1ρ)q+1+ρq+1q+1)|ψ(μ2)|q}1q+(μ2μ1ϵ)2{(G7(q;σ,ϵ)σq+1+(1σ)q+1q+1)|ψ(μ1)|q+(G8(q;σ,ϵ)σq+1+(1σ)q+1q+1)|ψ(μ2)|q}1q, (3.2)

    where

    G5(q;ρ,ϵ):=10|1ρχ|qeϵχμ2μ1dχ,G6(q;ρ,ϵ):=10|1ρχ|qeϵχμ2μ1dχ,
    G7(q;σ,ϵ):=10|σχ|qeχϵχμ2μ1dχ,G8(q;σ,ϵ):=10|σχ|qe1(χϵχμ2μ1)dχ.

    Proof. Consider that |ψ|q is exponential type convex on [μ1,μ2] with q1. If q=1, then using Theorem 3.1, we have

    |ϵρψ(μ1)+(μ2μ1ϵ)σψ(μ2)+[ϵ(1ρ)+(μ2μ1ϵ)(1σ)]ψ(μ1+ϵ)μ2μ1ψ(x)dx|ϵ22[(2C1(ρ,ϵ)e1ϵμ2μ12ρ2+2ρ1)|ψ(μ1)|+(2C2(ρ,ϵ)eϵμ2μ12ρ2+2ρ1)|ψ(μ2)|]+(μ2μ1ϵ)22×[(2C3(σ,ϵ)2σ2+2σ1)|ψ(μ1)|+(2C4(σ,ϵ)2σ2+2σ1)|ψ(μ2)|]=ϵ2[(C1(ρ,ϵ)e1ϵμ2μ1(1ρ)2+ρ22)|ψ(μ1)|+(C2(ρ,ϵ)eϵμ2μ1(1ρ)2+ρ22)|ψ(μ2)|]+(μ2μ1ϵ)2×[(C3(σ,ϵ)σ2+(1σ)22)|ψ(μ1)|+(C4(σ,ϵ)σ2+(1σ)22)|ψ(μ2)|].

    Next, we consider that q>1. Using Lemma 2.2 and the well-known power mean inequality, we get

    |ϵρψ(μ1)+(μ2μ1ϵ)σψ(μ2)+[ϵ(1ρ)+(μ2μ1ϵ)(1σ)]ψ(μ1+ϵ)μ2μ1ψ(x)dx|ϵ210|1ρχ||ψ(χμ1+(1χ)(μ1+ϵ))|dχ+(μ2μ1ϵ)210|σχ||ψ(χ(μ1+ϵ)+(1χ)μ2)|dχϵ2(10dχ)11q(10|1ρχ|q|ψ(χμ1+(1χ)(μ1+ϵ))|qdχ)1q+(μ2μ1ϵ)2(10dχ)11q(10|σχ|q|ψ(χ(μ1+ϵ)+(1χ)μ2)|qdχ)1q.

    Using exponential type convexity of |ψ|q and Lemma 2.2, we obtain

    10|1ρχ|q|ψ(χμ1+(1χ)(μ1+ϵ))|qdχ=10|1ρχ|q|ψ((1ϵ(1χ)μ2μ1)μ1+ϵ(1χ)μ2μ1μ2)|qdχ10|1ρχ|q[(e1ϵ(1χ)μ2μ11)|ψ(μ1)|q+(eϵ(1χ)μ2μ11)|ψ(μ2)|q]dχ=10|1ρχ|qe1ϵ(1χ)μ2μ1|ψ(μ1)|qdχ+10|1ρχ|qeϵ(1χ)μ2μ1|ψ(μ2)|qdχ10|1ρχ|q(|ψ(μ1)|q+|ψ(μ2)|q)dχ=e1ϵμ2μ1|ψ(μ1)|q10|1ρχ|qeϵχμ2μ1dχ+eϵμ2μ1|ψ(μ2)|q10|1ρχ|qeϵχμ2μ1dχ10|1ρχ|q(|ψ(μ1)|q+|ψ(μ2)|q)dχ=(G5(q;ρ,ϵ)e1ϵμ2μ1(1ρ)q+1+ρq+1q+1)|ψ(μ1)|q+(G6(q;ρ,ϵ)eϵμ2μ1(1ρ)q+1+ρq+1q+1)|ψ(μ2)|q.

    Similarly,

    10|σχ|q|ψ(χ(μ1+ϵ)+(1χ)μ2)|qdχ=10|σχ|q|ψ((χϵχμ2μ1)μ1+(1(χϵχμ2μ1))μ2)|qdχ10|σχ|q{(eχϵχμ2μ11)|ψ(μ1)|q+(e1(χϵχμ2μ1)1)|ψ(μ2)|q}dχ=10|σχ|q(eχϵχμ2μ1|ψ(μ1)|qdχ+10|σχ|q(e1(χϵχμ2μ1)|ψ(μ2)|qdχ10|σχ|q(|ψ(μ1)|q+|ψ(μ2)|q)dχ=G7(q;σ,ϵ)|ψ(μ1)|q+G8(q;σ,ϵ)|ψ(μ2)|qσq+1+(1σ)q+1q+1(|ψ(μ1)|q+|ψ(μ2)|q)=(G7(q;σ,ϵ)σq+1+(1σ)q+1q+1)|ψ(μ1)|q+(G8(q;σ,ϵ)σq+1+(1σ)q+1q+1)|ψ(μ2)|q.

    Thus

    |ϵρψ(μ1)+(μ2μ1ϵ)σψ(μ2)+[ϵ(1ρ)+(μ2μ1ϵ)(1σ)]ψ(μ1+ϵ)μ2μ1ψ(x)dx|ϵ2{(G5(q;ρ,ϵ)e1ϵμ2μ1(1ρ)q+1+ρq+1q+1)|ψ(μ1)|q+(G6(q;ρ,ϵ)eϵμ2μ1(1ρ)q+1+ρq+1q+1)|ψ(μ2)|q}1q+(μ2μ1ϵ)2{(G7(q;σ,ϵ)σq+1+(1σ)q+1q+1)|ψ(μ1)|q+(G8(q;σ,ϵ)σq+1+(1σ)q+1q+1)|ψ(μ2)|q}1q,

    which completes the proof.

    Let us establish from Theorem 3.2 some new trapezium and midpoint type inequalities using special values of ρ,σ and suitable choices of ϵ.

    Corollary 7. Taking ρ=σ=0 in Theorem 3.2, then

    |(μ2μ1)ψ(μ1+ϵ)μ2μ1ψ(x)dx|ϵ2{(G5(q;0,ϵ)e1ϵμ2μ11q+1)|ψ(μ1)|q+(G6(q;0,ϵ)eϵμ2μ11q+1)|ψ(μ2)|q}1q+(μ2μ1ϵ)2{(G7(q;0,ϵ)1q+1)|ψ(μ1)|q+(G8(q;0,ϵ)1q+1)|ψ(μ2)|q}1q.

    Corollary 8. Taking ρ=σ=12 in Theorem 3.2, then

    |ϵψ(μ1)+(μ2μ1ϵ)ψ(μ2)+(μ2μ1)ψ(μ1+ϵ)2μ2μ1ψ(x)dx|ϵ2{(G5(q;12,ϵ)e1ϵμ2μ12(12)q+1q+1)|ψ(μ1)|q+(G6(q;12,ϵ)eϵμ2μ12(12)q+1q+1)|ψ(μ2)|q}1q+(μ2μ1ϵ)2{(G7(q;12,ϵ)2(12)q+1q+1)|ψ(μ1)|q+(G8(q;12,ϵ)2(12)q+1q+1)|ψ(μ2)|q}1q.

    Corollary 9. Taking ρ=σ=1 in Theorem 3.2, then

    |ϵψ(μ1)+(μ2μ1ϵ)ψ(μ2)μ2μ1ψ(x)dx|ϵ2{(G5(q;1,ϵ)e1ϵμ2μ11q+1)|ψ(μ1)|q+(G6(q;1,ϵ)eϵμ2μ11q+1)|ψ(μ2)|q}1q+(μ2μ1ϵ)2{(G7(q;1,ϵ)1q+1)|ψ(μ1)|q+(G8(q;1,ϵ)1q+1)|ψ(μ2)|q}1q.

    Corollary 10. Taking ϵ=μ2μ12 in Theorem 3.2, then

    |ρψ(μ1)+σψ(μ2)2+2ρσ2ψ(μ1+μ22)1μ2μ1μ2μ1ψ(x)dx|(μ2μ1)24×{(G5(q;ρ,μ2μ12)e12(1ρ)q+1+ρq+1q+1)|ψ(μ1)|q+(G6(q;ρ,μ2μ12)e12(1ρ)q+1+ρq+1q+1)|ψ(μ2)|q+(G7(q;σ,μ2μ12)σq+1+(1σ)q+1q+1)|ψ(μ1)|q+(G8(q;σ,μ2μ12)σq+1+(1σ)q+1q+1)|ψ(μ2)|q}1q.

    Corollary 11. Taking ϵ=μ2μ13 in Theorem 3.2, then

    |ρψ(μ1)+2σψ(μ2)3+(1ρ32σ3)ψ(2μ1+μ23)1μ2μ1μ2μ1ψ(x)dx|(μ2μ1)29{(G5(q;ρ,μ2μ13)e23(1ρ)q+1+ρq+1q+1)|ψ(μ1)|q+(G6(q;ρ,μ2μ13)e23(1ρ)q+1+ρq+1q+1)|ψ(μ2)|q}1q+4(μ2μ1)29{(G7(q;σ,μ2μ13)σq+1+(1σ)q+1q+1)|ψ(μ1)|q+(G8(q;σ,μ2μ13)σq+1+(1σ)q+1q+1)|ψ(μ2)|q}1q.

    Corollary 12. Taking ϵ=2(μ2μ1)3 in Theorem 3.2, then

    |2ρψ(μ1)+σψ(μ2)3+(12ρ3σ3)ψ(μ1+2μ23)1μ2μ1μ2μ1ψ(x)dx|4(μ2μ1)29{(G5(q;ρ,2(μ2μ1)3)e13(1ρ)q+1+ρq+1q+1)|ψ(μ1)|q+(G6(q;ρ,2(μ2μ1)3)e13(1ρ)q+1+ρq+1q+1)|ψ(μ2)|q}1q+(μ2μ1)29{(G7(q;σ,2(μ2μ1)3)σq+1+(1μ)q+1q+1)|ψ(μ1)|q+(G8(q;σ,2(μ2μ1)3)μq+1+(1σ)q+1q+1)|ψ(μ2)|q}1q.

    In this section, we suppose that {μ1,μ2,wμ1,wμ2}(0,) with μ1<μ2 and 0<ϵ<μ2μ1. The following special means will be used in the sequel:

    The weighted arithmetic mean of {μ1,μ2} with weight {wμ1,wμ2} is given by

    A(μ1,μ2;wμ1,wμ2)=wμ1μ1+wμ2μ2wμ1+wμ2.

    The weighted geometric mean of {μ1,μ2} with weight {wμ1,wμ2} is defined as

    G(μ1,μ1;wμ1,wμ1)=μwμ1wμ1+wμ21μwμ2wμ1+wμ22.

    The generalized logarithmic mean of {μ1,μ2} is given by

    Ls(μ1,μ2)=(μs+12μs+11(s+1)(μ2μ1))1s,s0,s1.

    The identric mean of {μ1,μ2} is defined as

    I(μ1,μ2)=1e(μμ22μμ11)1μ2μ1.

    Before giving our next results using above special means let investigate the following functions: ϕ1(x)=qs+qxsq+1 for s>1,q1 and ϕ2(x)=lnx for all x>0. |ϕ1(x)|q=xs is nonnegative convex function for s>1,x>0 and from Proposition 1 it's exponential type convex. Similarly, |ϕ2(x)|q=xq is nonnegative convex function for q1,x>0 and from Proposition 1 it's exponential type convex as well.

    Proposition 2. Suppose that s>1,q1 with 0<μ1<μ2 and 0<ϵ<μ2μ1. Then

    211qq(μ2μ1)s+q|2sq+1Asq+1(μ1,ϵ;1,1)Lsq+1sq+1(μ1,μ2)|ϵ2{12(2C1(0,ϵ)e1ϵμ2μ11)μs1+12(2C2(0,ϵ)eϵμ2μ11)μs2}1q+(μ2μ1ϵ)2{12(2C3(0,ϵ)1)μs1+12(2C4(0,ϵ)1)μs2}1q. (4.1)

    Proof. Taking ψ(x)=qs+qxsq+1 for x>0 and applying Corollary 1, then inequality (4.1) is easily captured.

    Proposition 3. Suppose that q1 with 0<μ1<μ2 and 0<ϵ<μ2μ1. Then

    211q(μ2μ1)|ln(A(μ1,μ2;μ2μ1ϵ,ϵ)I(μ1,μ2))|ϵ2{C1(0,ϵ)μq1e1ϵμ2μ1+C2(0,ϵ)μq2eϵμ2μ1μq1+μq22}1q+(μ2μ1ϵ)2{C3(0,ϵ)μq1+C4(0,ϵ)μq2μq1+μq22}1q. (4.2)

    Proof. Choosing ψ(x)=lnx for x>0 and applying Corollary 1, then inequality (4.2) is obtained.

    Proposition 4. Suppose that s>1,q1 with 0<μ1<μ2 and 0<ϵ<μ2μ1. Then

    211qq(μ2μ1)s+q|A(μsq+11,μsq+12;ϵ,μ2μ1ϵ)Lsq+1sq+1(μ1,μ2)|ϵ2{12(2C1(1,ϵ)e1ϵμ2μ11)μs1+12(2C2(1,ϵ)eϵμ2a1)μs2}1q+(μ2μ1ϵ)2{12(2C3(1,ϵ)1)μs1+12(2C4(1,ϵ)1)μs2}1q. (4.3)

    Proof. Taking ψ(x)=qs+qxsq+1 for x>0 and applying Corollary 3, then inequality (4.3) is derived.

    Proposition 5. Suppose that q1 with 0<μ1<μ2 and 0<ϵ<μ2μ1. Then

    211q(μ2μ1)|ln(A(μ1,μ2;ϵ,μ2μ1ϵ)I(μ1,μ2))|ϵ2{C1(1,ϵ)μq1e1ϵμ2μ1+C2(1,ϵ)μq2eϵμ2μ1μq1+μq22}1q+(μ2μ1ϵ)2{C3(1,ϵ)μq1+C4(1,ϵ)μq2μq1+μq22}1q. (4.4)

    Proof. Choosing ψ(x)=lnx for x>0 and applying Corollary 3, then inequality (4.4) is captured.

    Proposition 6. Suppose that s>1,q1 with 0<μ1<μ2 and 0<ϵ<μ2μ1. Then

    q(μ2μ1)s+q|2sq+1Asq+1(μ1,ϵ;1,1)Lsq+1sq+1(μ1,μ2)|ϵ2{(G5(q;0,ϵ)e1ϵμ2μ11q+1)μs1+(G6(q;0,ϵ)eϵμ2μ11q+1)μs2}1q+(μ2μ1ϵ)2{(G7(q;0,ϵ)1q+1)μs1+(G8(q;0,ϵ)1q+1)μs2}1q. (4.5)

    Proof. Taking ψ(x)=qs+qxsq+1 for x>0 and applying Corollary 7, then inequality (4.5) is obtained.

    Proposition 7. Suppose that q1 with 0<μ1<μ2 and 0<ϵ<μ2μ1. Then

    (μ2μ1)|ln(G(μ1,μ2;μ2μ1ϵ,ϵ)I(μ1,μ2)|ϵ2{G5(q;0,ϵ)μq1e1ϵμ2μ1+G6(q;0,ϵ)μq2eϵμ2μ1μq1+μq2q+1}1q+(μ2μ1ϵ)2{G7(q;0,ϵ)μq1+G8(q;0,ϵ)μq2μq1+μq2q+1}1q. (4.6)

    Proof. Choosing ψ(x)=lnx for x>0 and applying Corollary 7, then inequality (4.6) is derived.

    Proposition 8. Suppose that s>1,q1 with 0<μ1<μ2 and 0<ϵ<μ2μ1. Then

    q(μ2μ1)s+q|A(μsq+11,μsq+12;ϵ,μ2μ1ϵ)Lsq+1sq+1(μ1,μ2)|ϵ2{(G5(q;1,ϵ)e1ϵμ2μ11q+1)μs1+(G6(q;1,ϵ)eϵμ2μ11q+1)μs2}1q+(μ2μ1ϵ)2{(G7(q;1,ϵ)1q+1)μs1+(G8(q;1,ϵ)1q+1)μs2}1q. (4.7)

    Proof. Taking ψ(x)=qs+qxsq+1 for x>0 and applying Corollary 9, then inequality (4.7) is captured.

    Proposition 9. Suppose that q1 with 0<μ1<μ2 and 0<ϵ<μ2μ1. Then

    (μ2μ1)|ln(G(μ1,μ2;ϵ,μ2μ1ϵ)I(μ1,μ2)|ϵ2{G5(q;1,ϵ)μq1e1ϵμ2μ1+G6(q;1,ϵ)μq2eϵμ2μ1μq1+μq2q+1}1q+(μ2μ1ϵ)2{G7(q;1,ϵ)μq1+G8(q;1,ϵ)μq2μq1+μq2q+1}1q. (4.8)

    Proof. Choosing ψ(x)=lnx for x>0 and applying Corollary 9, then inequality (4.8) is obtained.

    Remark 2. For other suitable exponential convex functions interested reader can find several new interesting inequalities using special means from our results. We omit here their proofs.

    At the end, from integral inequalities obtained above we will find some new bounds regarding error estimation for quadrature formula. For 0<ϵ<μ2μ1 and ρ,σ[0,1], let P:μ1=x0<x1<<xn1<xn=μ2 {be} a partition of [μ1,μ2]. We denote

    T(P,ψ):=n1i=0{ϵiρψ(xi)+(hiϵi)σψ(xi+1)+[ϵi(1ρ)+(hiϵi)(1σ)]ψ(xi+ϵi)},μ2μ1ψ(x)dx=T(P,ψ)+R(P,ψ), (4.9)

    where R(P,ψ) is the remainder term and hi=xi+1xi for i=0,1,2,,n1. Using above notations, we are in position to prove the following error estimations.

    Proposition 10. Let ψ:I be differentiable on I and let ρ,σ[0,1],μ1,μ2I with μ1<μ2. Assume that ψL[μ1,μ2] and 0<ϵ<μ2μ1. If |ψ|q is exponential type convex on [μ1,μ2] with q1, then

    |R(P,ψ)|n1i=0ϵ2i((1ρ)2+ρ22)11q{12(2C1,i(ρ,ϵi)e1ϵihi2ρ2+2ρ1)|ψ(xi)|q+12(2C2,i(ρ,ϵi)eϵihi2ρ2+2ρ1)|ψ(xi+1)|q}1q+n1i=0(hiϵi)2(σ2+(1σ)22)11q×{12(2C3,i(σ,ϵi)2σ2+2σ1)|ψ(xi)|q+12(2C4,i(σ,ϵi)2σ2+2σ1)|ψ(xi+1)|q}1q, (4.10)

    where 0<ϵi<hi for all i=0,1,2,,n1, and

    C1,i(ρ,ϵi):=10|1ρχ|eϵiχhidχ,C2,i(ρ,ϵi):=10|1ρχ|eϵiχhidχ,
    C3,i(σ,ϵi):=10|σχ|eχϵiχhidχ,C4,i(σ,ϵi):=10|σχ|e1(χϵiχhi)dχ.

    Proof. By applying Theorem 3.1 on the subintervals [xi,xi+1](i=0,1,2,,n1) of the partition P and summing the obtain inequality over i from 0 to n1, we have the desired result.

    Proposition 11. Let ψ:I be differentiable on I and let ρ,σ[0,1],μ1,μ2I with μ1<μ2. Assume that ψL[μ1,μ2] and 0<ϵ<μ2μ1. If |ψ|q is exponential type convex on [μ1,μ2] with q1, then

    |R(P,ψ)|n1i=0ϵ2i{(G5,i(q;ρ,ϵi)e1ϵihi(1ρ)q+1+ρq+1q+1)|ψ(xi)|q+(G6,i(q;ρ,ϵi)eϵihi(1ρ)q+1+ρq+1q+1)|ψ(xi+1)|q}1q+n1i=0(hiϵi)2{(G7,i(q;σ,ϵi)σq+1+(1σ)q+1q+1)|ψ(xi)|q+(G8,i(q;σ,ϵi)σq+1+(1σ)q+1q+1)|ψ(xi+1)|q}1q, (4.11)

    where 0<ϵi<hi for all i=0,1,2,,n1, and

    G5,i(q;ρ,ϵi):=10|1ρχ|qeϵiχhidχ,G6,i(q;ρ,ϵi):=10|1ρχ|qeϵiχhidχ,
    G7,i(q;σ,ϵi):=10|σχ|qeχϵiχhidχ,G8,i(q;σ,ϵi):=10|σχ|qe1(χϵiχhi)dχ.

    Proof. By applying Theorem 3.2 on the subintervals [xi,xi+1](i=0,1,2,,n1) of the partition P and summing the obtain inequality over i from 0 to n1, we get the desired result.

    Remark 3. For suitable choices of ρ,σ and ϵi in Propositions 10 and 11, like that ρ,σ:=0,12,1 and ϵi:=hi2,hi3,2hi3, where hi=xi+1xi(i=0,1,2,,n1), we can obtain new bounds regarding error estimation of quadrature formula given above. We omit their proofs and the details are left to the interested reader.

    In this article, we have obtained some new version of Hermite-Hadamard type inequalities for differential exponential type convex functions. Moreover, several special cases are given in details. Finally, we have derived as applications from our main results several interesting inequalities using special means and some error estimations as well. This shown the efficient of our results. We believe that our results will have a very deep research in this field of inequalities and also in pure and applied sciences.

    All authors contribute equally in this paper.

    This work was sponsored by The First Batch of Teaching Reform Projects of "The Fifteen" Higher Education in Zhejiang Province (jg20180730).

    All data required for this paper is included within this paper.

    Authors do not have any competing interests.



    [1] I. A. Baloch, Y. M. Chu, Petrovíc-type inequalities for harmonic h-convex functions, J. Funct. Spaces, 2020 (2020), 3075390.
    [2] X. Qiang, G. Farid, J. Pečarič, S. B. Akbar, Generalized fractional integrals inequalities for exponentially (s,m)-convex functions, J. Inequal. Appl., 2020 (2020), 70. doi: 10.1186/s13660-020-02335-7
    [3] Y. Khurshid, M. A. Khan, Y. M. Chu, Conformable integral inequalities of the Hermite-Hadamard type in terms of GG- and GA-convexities, J. Funct. Spaces, 2019 (2019), 6926107.
    [4] T. Toplu, M. Kadakal, Í. Íşcan, On n-polynomial convexity and some related inequalities, AIMS Math., 5 (2020), 1304-1318. doi: 10.3934/math.2020089
    [5] N. Mehreen, M. Anwar, Some integral inequalities for co-ordinated harmonically convex functions via fractional integrals, Eng. Appl. Sci. Lett., 3 (2020), 60-74. doi: 10.30538/psrp-easl2020.0052
    [6] S. S. Dragomir, R. P. Agarwal, Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula, Appl. Math. Lett., 11 (1998), 91-95.
    [7] J. Han, P. O. Mohammed, H. Zeng, Generalized fractional integral inequalities of Hermite-Hadamard-type for a convex function, Open Math., 18 (2020), 794-806. doi: 10.1515/math-2020-0038
    [8] A. Kashuri, R. Liko, Some new Hermite-Hadamard type inequalities and their applications, Stud. Sci. Mathematicarum Hung., 56 (2019), 103-142.
    [9] A. Kashuri, S. Iqbal, S. I. Butt, J. Nasir, K. S. Nisar, T. Abdeljawad, Trapezium-type inequalities for k-fractional integral via new exponential-type convexity and their applications, J. Math., 2020 (2020), 8672710.
    [10] G. Farid, K. Mahreen, Y. M. Chu, Study of inequalities for unified integral operators of generalized convex functions, Open J. Math. Sci., 5 (2021), 80-93. doi: 10.30538/oms2021.0147
    [11] P. O. Mohammed, T. Abdeljawad, S. Zeng, A. Kashuri, Fractional Hermite-Hadamard integral inequalities for a new class of convex functions, Symmetry, 12 (2020), 1485. doi: 10.3390/sym12091485
    [12] G. Farid, A. Ur Rehman, S. Bibi, Y. M. Chu, Refinements of two fractional versions of Hadamard inequalities for Caputo fractional derivatives and related results, Open J. Math. Sci., 5 (2021), 1-10. doi: 10.30538/oms2021.0139
    [13] S. Mehmood, G. Farid, Fractional integrals inequalities for exponentially m-convex functions, Open J. Math. Sci., 4 (2020), 78-85. doi: 10.30538/oms2020.0097
    [14] T. A. Aljaaidi, D. B. Pachpatte, Reverse Hermite-Hadamards inequalities using ψ-fractional integral, Eng. Appl. Sci. Lett., 3 (2020), 75-84. doi: 10.30538/psrp-easl2020.0053
    [15] A. Kashuri, B. Meftah, P. O. Mohammed, Some weighted Simpson type inequalities for differentiable s-convex functions and their applications, J. Fractional Calculus Nonlinear Syst., 1 (2021), 75-94. doi: 10.48185/jfcns.v1i1.150
    [16] D. Baleanu, A. Kashuri, P. O. Mohammed, B. Meftah, General Raina fractional integral inequalities on coordinates of convex functions, Adv. Differ. Equations, 2021 (2021), 82. doi: 10.1186/s13662-021-03241-y
    [17] P. O. Mohammed, T. Abdeljawad, M. A. Alqudah, F. Jarad, New discrete inequalities of Hermite-Hadamard type for convex functions, Adv. Differ. Equations, 2021 (2021), 122. doi: 10.1186/s13662-021-03290-3
    [18] N. Mehreen, M. Anwar, Hermite-Hadamard-Fejér type inequalities for co-ordinated harmonically convex functions via Katugampola fractional integrals, Eng. Appl. Sci. Lett., 4 (2021), 12-28. doi: 10.30538/psrp-easl2021.0067
    [19] S. N. Bernstein, Sur les fonctions absolument monotons, Acta Math., 52 (1929), 1-66. doi: 10.1007/BF02592679
    [20] D. V. Widder, Necessary and sufficient conditions for the representation of a function by a doubly infinite Laplace integral, Trans. Am. Math. Soc., 40 (1934), 321-326.
    [21] S. I. Butt, A. Kashuri, M. Tariq, J. Nasir, A. Aslam, W. Geo, Hermite-Hadamard-type inequalities via n-polynomial exponential-type convexity and their applications, Adv. Differ. Equations, 2020 (2020), 508. doi: 10.1186/s13662-020-02967-5
    [22] S. I. Butt, J. Pečarič, A. U. Rehman, Exponential convexity of Petrovíc and related functions, J. Inequal. Appl., 2011 (2011), 89. doi: 10.1186/1029-242X-2011-89
    [23] S. I. Butt, R. Jaksic, L. Kvesic, J. Pečarič, n-Exponential convexity of weighted Hermite-Hadamard's Inequality, J. Math. Inequal., 8 (2014), 299-311.
    [24] S. I. Butt, M. Nadeem, G. Farid, On Caputo fractional derivatives via exponential (s, m)-convex functions, Eng. Appl. Sci. Lett., 3 (2020), 32-39.
    [25] S. Mehmood, G. Farid, K. A. Khan, M. Yussouf, New fractional Hadamard and Fejér-Hadamard inequalities associated with exponentially (h,m)-convex functions, Eng. Appl. Sci. Lett., 3 (2020), 9-18.
    [26] M. Kadakal, İ. İşcan, Exponential type convexity and some related inequalities, J. Inequal. Appl., 2020 (2020), 1-9. doi: 10.1186/s13660-019-2265-6
    [27] B. Sroysang, Generalizations on some Hermite-Hadamard type inequalities for differential convex function with applications to weighted means, Sci. World J., 2014 (2014), 717164.
  • This article has been cited by:

    1. Muhammad Tariq, Soubhagya Kumar Sahoo, Jamshed Nasir, Hassen Aydi, Habes Alsamir, Some Ostrowski type inequalities via $ n $-polynomial exponentially $ s $-convex functions and their applications, 2021, 6, 2473-6988, 13272, 10.3934/math.2021768
    2. Muhammad Tariq, Sotiris K. Ntouyas, Asif Ali Shaikh, A Comprehensive Review on the Fejér-Type Inequality Pertaining to Fractional Integral Operators, 2023, 12, 2075-1680, 719, 10.3390/axioms12070719
    3. Muhammad Samraiz, Maria Malik, Saima Naheed, Gauhar Rahman, Kamsing Nonlaopon, Hermite–Hadamard-type inequalities via different convexities with applications, 2023, 2023, 1029-242X, 10.1186/s13660-023-02957-7
    4. Attazar Bakht, Matloob Anwar, Hermite-Hadamard and Ostrowski type inequalities via $ \alpha $-exponential type convex functions with applications, 2024, 9, 2473-6988, 9519, 10.3934/math.2024465
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3191) PDF downloads(209) Cited by(4)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog