In this paper, we establish some new Hermite-Hadamard type inequalities for differential exponential type convex functions and discuss several special cases. Moreover, in order to give the efficient of our main results, some applications for special means and error estimations are obtain.
Citation: Jian Wang, Saad Ihsan But, Artion Kashuri, Muhammad Tariq. New integral inequalities using exponential type convex functions with applications[J]. AIMS Mathematics, 2021, 6(7): 7684-7703. doi: 10.3934/math.2021446
[1] | Shuang-Shuang Zhou, Saima Rashid, Muhammad Aslam Noor, Khalida Inayat Noor, Farhat Safdar, Yu-Ming Chu . New Hermite-Hadamard type inequalities for exponentially convex functions and applications. AIMS Mathematics, 2020, 5(6): 6874-6901. doi: 10.3934/math.2020441 |
[2] | Attazar Bakht, Matloob Anwar . Ostrowski and Hermite-Hadamard type inequalities via $ (\alpha-s) $ exponential type convex functions with applications. AIMS Mathematics, 2024, 9(10): 28130-28149. doi: 10.3934/math.20241364 |
[3] | Muhammad Imran Asjad, Waqas Ali Faridi, Mohammed M. Al-Shomrani, Abdullahi Yusuf . The generalization of Hermite-Hadamard type Inequality with exp-convexity involving non-singular fractional operator. AIMS Mathematics, 2022, 7(4): 7040-7055. doi: 10.3934/math.2022392 |
[4] | Hu Ge-JiLe, Saima Rashid, Muhammad Aslam Noor, Arshiya Suhail, Yu-Ming Chu . Some unified bounds for exponentially $tgs$-convex functions governed by conformable fractional operators. AIMS Mathematics, 2020, 5(6): 6108-6123. doi: 10.3934/math.2020392 |
[5] | Jamshed Nasir, Shahid Qaisar, Saad Ihsan Butt, Hassen Aydi, Manuel De la Sen . Hermite-Hadamard like inequalities for fractional integral operator via convexity and quasi-convexity with their applications. AIMS Mathematics, 2022, 7(3): 3418-3439. doi: 10.3934/math.2022190 |
[6] | Muhammad Samraiz, Kanwal Saeed, Saima Naheed, Gauhar Rahman, Kamsing Nonlaopon . On inequalities of Hermite-Hadamard type via $ n $-polynomial exponential type $ s $-convex functions. AIMS Mathematics, 2022, 7(8): 14282-14298. doi: 10.3934/math.2022787 |
[7] | Attazar Bakht, Matloob Anwar . Hermite-Hadamard and Ostrowski type inequalities via $ \alpha $-exponential type convex functions with applications. AIMS Mathematics, 2024, 9(4): 9519-9535. doi: 10.3934/math.2024465 |
[8] | Sevda Sezer, Zeynep Eken . The Hermite-Hadamard type inequalities for quasi $ p $-convex functions. AIMS Mathematics, 2023, 8(5): 10435-10452. doi: 10.3934/math.2023529 |
[9] | Tekin Toplu, Mahir Kadakal, İmdat İşcan . On n-Polynomial convexity and some related inequalities. AIMS Mathematics, 2020, 5(2): 1304-1318. doi: 10.3934/math.2020089 |
[10] | Thongchai Botmart, Soubhagya Kumar Sahoo, Bibhakar Kodamasingh, Muhammad Amer Latif, Fahd Jarad, Artion Kashuri . Certain midpoint-type Fejér and Hermite-Hadamard inclusions involving fractional integrals with an exponential function in kernel. AIMS Mathematics, 2023, 8(3): 5616-5638. doi: 10.3934/math.2023283 |
In this paper, we establish some new Hermite-Hadamard type inequalities for differential exponential type convex functions and discuss several special cases. Moreover, in order to give the efficient of our main results, some applications for special means and error estimations are obtain.
Let ψ:I→ℜ be a real valued function. A function ψ is said to be convex, if
ψ(χμ1+(1−χ)μ2)≤χψ(μ1)+(1−χ)ψ(μ2) | (1.1) |
holds for all μ1,μ2∈I and χ∈[0,1].
Theory of convexity has a lot of applications in pure and applied mathematics and plays an important and fundamental role in the development of various branches of engineering, financial mathematics, economics and optimization. In recent years, the concept of convex functions and their variant forms have been extended and generalized using innovative techniques to study complicated problems. It is well known that convexity is closely related to inequality theory. Many generalizations, variants and extensions for the convexity have attracted the attention of many researchers, see [1,2,3,4].
The following remarkable Hermite-Hadamard inequality states that, if ψ:I→ℜ is a convex function for all μ1,μ2∈I, then
ψ(μ1+μ22)≤1μ2−μ1∫μ2μ1ψ(x)dx≤ψ(μ1)+ψ(μ2)2. | (1.2) |
For interested readers, see the references [5,6,7,8,9,10,11,12,13,14,15,16,17,18]. In 1929, the notion of exponential convexity was 1st time defined and investigated by Bernstein [19]. After Bernstein, Widder [20] investigated these functions as a subclass of convex functions in a given interval (a, b). The sizeable and worthwhile research on big data analysis and extensive learning has recently increased the attentiveness in information theory involving exponentially convex functions. So especially in the last few decades, different mathematicians namely Antczak (2001), Pecaric (2013), Dragomir (2015), Pal (2017), Alirezaei (2018), Awan (2018), Saima (2019), Noor (2019), Kadakal (2020), worked on the concept of exponential type convexity in different directions and contributed in the field of analysis. Due to aforesaid worked, these functions have proceeded as a remarkable and crucial new class of convex functions, which have noteworthy benefits in technology, data science, information sciences, data mining, statistics, stochastic optimization, statistical learning and sequential prediction. Some notable results and wonderful literature on the term inequalities can be found for the exponential convexity, see [21,22,23,24,25].
In [26], Kadakal and İşcan introduced the following class of convex functions.
Definition 1.1. A nonnegative function ψ:I→ℜ, is said to be exponential type convex, if
ψ(χμ1+(1−χ)μ2)≤(eχ−1)ψ(μ1)+(e1−χ−1)ψ(μ2) | (1.3) |
holds for all μ1,μ2∈I and χ∈[0,1].
Moreover, authors in [26], proved the following Proposition 1 that will be used in Section 4.
Proposition 1. Every nonnegative convex function is exponential type convex function.
Functions, like ψ1(x)=xs where s>1; ψ2(x)=ex and ψ3(x)=1x for all x>0, are exponential type convex.
The article consists of five sections. In Section 2 we recall two lemmas for deriving our main results. In Section 3 several new Hermite-Hadamard type integral inequalities for differential exponential type convex functions will be established and some special cases will be given as well. In Section 4, by using the main results, we will obtain some applications for special means and error estimations as well. Section 5 concludes the article finally.
The following notations will be used in the sequel.
Let denote I∘ the interior of I and L[μ1,μ2] the set of all integrable functions on [μ1,μ2]. In order to prove our main results regarding some Hermite-Hadamard type inequalities for differential exponential type convex function, we need the following lemmas.
Lemma 2.1. ([27]) Let ψ:I⊆ℜ→ℜ be differentiable on I∘ and let ρ,σ∈ℜ,μ1,μ2∈I with μ1<μ2. Assume that ψ′∈L[μ1,μ2] and 0<ϵ<μ2−μ1. Then
ϵρψ(μ1)+(μ2−μ1−ϵ)σψ(μ2)+[ϵ(1−ρ)+(μ2−μ1−ϵ)(1−σ)]ψ(μ1+ϵ)−∫μ2μ1ψ(x)dx=∫10[ϵ2(1−ρ−χ)ψ′(χμ1+(1−χ)(μ1+ϵ))+(μ2−μ1−ϵ)2(σ−χ)ψ′(χ(μ1+ϵ)+(1−χ)μ2)]dχ. |
Lemma 2.2. ([14]) Let m>0 and 0≤s≤1. Then
∫10|s−χ|mdχ=sm+1+(1−s)m+1m+1,∫10χ|s−χ|mdχ=sm+2+(m+1+s)(1−s)m+1(m+1)(m+2). |
Using Lemma 2.1 and Lemma 2.2, we have the following new results.
Theorem 3.1. Let ψ:I⊆ℜ→ℜ be differentiable on I∘ and let ρ,σ∈[0,1],μ1,μ2∈I with μ1<μ2. Assume that ψ′∈L[μ1,μ2] and 0<ϵ<μ2−μ1. If |ψ′|q is exponential type convex on [μ1,μ2] with q≥1, then
|ϵρψ(μ1)+(μ2−μ1−ϵ)σψ(μ2)+[ϵ(1−ρ)+(μ2−μ1−ϵ)(1−σ)]ψ(μ1+ϵ)−∫μ2μ1ψ(x)dx|≤ϵ2((1−ρ)2+ρ22)1−1q{12(2C1(ρ,ϵ)e1−ϵμ2−μ1−2ρ2+2ρ−1)|ψ′(μ1)|q+12(2C2(ρ,ϵ)eϵμ2−μ1−2ρ2+2ρ−1)|ψ′(μ2)|q}1q+(μ2−μ1−ϵ)2(σ2+(1−σ)22)1−1q×{12(2C3(σ,ϵ)−2σ2+2σ−1)|ψ′(μ1)|q+12(2C4(σ,ϵ)−2σ2+2σ−1)|ψ′(μ2)|q}1q, | (3.1) |
where
C1(ρ,ϵ):=∫10|1−ρ−χ|eϵχμ2−μ1dχ, |
C2(ρ,ϵ):=∫10|1−ρ−χ|e−ϵχμ2−μ1dχ, |
C3(σ,ϵ):=∫10|σ−χ|eχ−ϵχμ2−μ1dχ, |
and
C4(σ,ϵ):=∫10|σ−χ|e1−(χ−ϵχμ2−μ1)dχ. |
Proof. Consider that |ψ′|q is exponential type convex on [μ1,μ2] with q≥1. Using Lemma 2.1 and property of the modulus, we have
|ϵρψ(μ1)+(μ2−μ1−ϵ)σψ(μ2)+[ϵ(1−ρ)+(μ2−μ1−ϵ)(1−μ)]ψ(μ1+ϵ)−∫μ2μ1ψ(x)dx|≤ϵ2∫10|1−ρ−χ||ψ′(χμ1+(1−χ)(μ1+ϵ))|dχ+(μ2−μ1−ϵ)2∫10|σ−χ||ψ′(χ(μ1+ϵ)+(1−χ)μ2)|dχ. |
Case (q=1). This first case doesn't need Hölder's inequality. Using exponential type convexity of |ψ′| and Lemma 2.2, we get
∫10|1−ρ−χ||ψ′(χμ1+(1−χ)(μ1+ϵ))|dχ=∫10|1−ρ−χ||ψ′((1−ϵ(1−χ)μ2−μ1)μ1+ϵ(1−χ)μ2−μ1μ2)|dχ≤∫10|1−ρ−χ|[(e1−ϵ(1−χ)μ2−μ1−1)|ψ′(μ1)|+(eϵ(1−χ)μ2−μ1−1)|ψ′(μ2)|]dχ=∫10|1−ρ−χ|e1−ϵ(1−χ)μ2−μ1|ψ′(μ1)|dχ+∫10|1−ρ−χ|eϵ(1−χ)b−μ1|ψ′(μ2)|dχ−∫10|1−ρ−χ|(|ψ′(μ1)|+|ψ′(μ2)|)dχ=e1−ϵμ2−μ1|ψ′(μ1)|∫10|1−ρ−χ|eϵχμ2−μ1dχ+eϵμ2−μ1|ψ′(μ2)|∫10|1−ρ−χ|e−ϵχμ2−μ1dχ−∫10|1−ρ−χ|(|ψ′(μ1)|+|ψ′(μ2)|)dχ=C1(ρ,ϵ)e1−ϵμ2−μ1|ψ′(μ1)|+C2(ρ,ϵ)eϵμ2−μ1|ψ′(μ2)|−(1−ρ)2+ρ22(|ψ′(μ1)|+|ψ′(μ2)|)=12(2C1(ρ,ϵ)e1−ϵμ2−μ1−2ρ2+2ρ−1)|ψ′(μ1)|+12(2C2(ρ,ϵ)eϵμ2−μ1−2ρ2+2ρ−1)|ψ′(μ2)|. |
Similarly,
∫10|σ−χ||ψ′(χ(μ1+ϵ)+(1−χ)μ2)|dχ=∫10|σ−χ||ψ′((χ−ϵχμ2−μ1)μ1+(1−(χ−ϵχμ2−μ1))μ2)|dχ≤∫10|σ−χ|{(eχ−ϵχμ2−μ1−1)|ψ′(μ1)|+(e1−(χ−ϵχμ2−μ1)−1)|ψ′(μ2)|}dχ=∫10|σ−χ|(eχ−ϵχμ2−μ1|ψ′(μ1)|dχ+∫10|σ−χ|(e1−(χ−ϵχμ2−μ1)|ψ′(μ2)|dχ−∫10|σ−χ|(|ψ′(μ1)|+|ψ′(μ2)|)dχ=C3(σ,ϵ)|ψ′(μ1)|+C4(σ,ϵ)|ψ′(μ2)|−σ2+(1−σ)22(|ψ′(μ1)|+|ψ′(μ2)|)=12(2C3(σ,ϵ)−2σ2+2σ−1)|ψ′(μ1)|+12(2C4(σ,ϵ)−2σ2+2σ−1)|ψ′(μ2)|. |
Thus
|ϵρψ(μ1)+(μ2−μ1−ϵ)σψ(μ2)+[ϵ(1−ρ)+(μ2−μ1−ϵ)(1−μ)]ψ(μ1+ϵ)−∫μ2μ1ψ(x)dx|≤ϵ22{(2C1(ρ,ϵ)e1−ϵμ2−μ1−2ρ2+2ρ−1)|ψ′(μ1)|+(2C2(ρ,ϵ)eϵμ2−μ1−2ρ2+2ρ−1)|ψ′(μ2)|}+(μ2−μ1−ϵ)22{(2C3(σ,ϵ)−2σ2+2σ−1)|ψ′(μ1)|+(2C4(σ,ϵ)−2σ2+2σ−1)|ψ′(μ2)|}. |
Case (q>1). By Hölder's inequality and Lemma 2.2, we obtain
|ϵρψ(μ1)+(μ2−μ1−ϵ)σψ(μ2)+[ϵ(1−ρ)+(μ2−μ1−ϵ)(1−σ)]ψ(μ1+ϵ)−∫μ2μ1ψ(x)dx|≤ϵ2(∫10|1−ρ−χ|dχ)1−1q(∫10|1−ρ−χ||ψ′(χμ1+(1−χ)(μ1+ϵ))|qdχ)1q+(μ2−μ1−ϵ)2(∫10|σ−χ|dχ)1−1q(∫10|σ−χ||ψ′(χ(μ1+ϵ)+(1−χ)μ2)|qdχ)1q=ϵ2((1−ρ)2+ρ22)1−1q(∫10|1−ρ−χ||ψ′(χμ1+(1−χ)(μ1+ϵ))|qdχ)1q+(μ2−μ1−ϵ)2(σ2+(1−σ)22)1−1q(∫10|σ−χ||ψ′(χ(μ1+ϵ)+(1−χ)μ2)|qdχ)1q. |
Applying exponential type convexity of |ψ′|q and Lemma 2.2, we have
∫10|1−ρ−χ||ψ′(χμ1+(1−χ)(μ1+ϵ))|qdχ=∫10|1−ρ−χ||ψ′((1−ϵ(1−χ)μ2−μ1)μ1+ϵ(1−χ)μ2−μ1μ2)|qdχ≤∫10|1−ρ−χ|[(e1−ϵ(1−χ)μ2−μ1−1)|ψ′(μ1)|q+(eϵ(1−χ)μ2−μ1−1)|ψ′(μ2)|q]dχ=∫10|1−ρ−χ|e1−ϵ(1−χ)μ2−μ1|ψ′(μ1)|qdχ+∫10|1−ρ−χ|eϵ(1−χ)μ2−μ1|ψ′(μ2)|qdχ−∫10|1−ρ−χ|(|ψ′(μ1)|q+|ψ′(μ2)|q)dχ=e1−ϵμ2−μ1|ψ′(μ1)|q∫10|1−ρ−χ|eϵχμ2−μ1dχ+eϵμ2−μ1|ψ′(μ2)|q∫10|1−ρ−χ|e−ϵχμ2−μ1dχ−∫10|1−ρ−χ|(|ψ′(μ1)|q+|ψ′(μ2)|q)dχ=C1(ρ,ϵ)e1−ϵμ2−μ1|ψ′(μ1)|q+C2(ρ,ϵ)eϵμ2−μ1|ψ′(μ2)|q−(1−ρ)2+ρ22(|ψ′(μ1)|q+|ψ′(μ2)|q)=12(2C1(ρ,ϵ)e1−ϵμ2−μ1−2ρ2+2ρ−1)|ψ′(μ1)|q+12(2C2(ρ,ϵ)eϵμ2−μ1−2ρ2+2ρ−1)|ψ′(μ2)|q. |
Similarly,
∫10|σ−χ||ψ′(χ(μ1+ϵ)+(1−χ)μ2)|qdχ=∫10|σ−χ||ψ′((χ−ϵχμ2−μ1)μ1+(1−(χ−ϵχμ2−μ1))μ2)|qdχ≤∫10|σ−χ|[(eχ−ϵχμ2−μ1−1)|ψ′(μ1)|q+(e1−(χ−ϵχμ2−μ1)−1)|ψ′(μ2)|q]dχ=∫10|σ−χ|(eχ−ϵχμ2−μ1|ψ′(μ1)|qdχ+∫10|σ−χ|(e1−(χ−ϵχμ2−μ1)|ψ′(μ2)|qdχ−∫10|σ−χ|(|ψ′(μ1)|q+|ψ′(μ2)|q)dχ=C3(σ,ϵ)|ψ′(μ1)|q+C4(σ,ϵ)|ψ′(μ2)|q−σ2+(1−σ)22(|ψ′(μ1)|q+|ψ′(μ2)|q)=12(2C3(σ,ϵ)−2σ2+2σ−1)|ψ′(μ1)|q+12(2C4(σ,ϵ)−2σ2+2σ−1)|ψ′(μ2)|q. |
Thus
|ϵρψ(μ1)+(μ2−μ1−ϵ)σψ(μ2)+[ϵ(1−ρ)+(μ2−μ1−ϵ)(1−σ)]ψ(μ1+ϵ)−∫μ2μ1ψ(x)dx|≤ϵ2((1−ρ)2+ρ22)1−1q×{12(2C1(ρ,ϵ)e1−ϵμ2−μ1−2ρ2+2ρ−1)|ψ′(μ1)|q+12(2C2(ρ,ϵ)eϵμ2−μ1−2ρ2+2ρ−1)|ψ′(μ2)|q}1q+(μ2−μ1−ϵ)2(σ2+(1−σ)22)1−1q×{12(2C3(σ,ϵ)−2σ2+2σ−1)|ψ′(μ1)|q+12(2C4(σ,ϵ)−2σ2+2σ−1)|ψ′(μ2)|q}1q, |
which completes the proof.
Remark 1. We have also calculated all the coefficients C1(ρ,ϵ),C2(ρ,ϵ),C3(σ,ϵ) and C4(σ,ϵ) of Theorem 3.1 using software Maple 18. They are given as:
C1(ρ,ϵ):=∫10|1−ρ−χ|eϵχμ2−μ1dχ |
=−eϵμ2−μ1[μ1ρϵeϵμ1−μ2−μ2ρϵeϵμ1−μ2+μ21eϵμ1−μ2−2μ1μ2eϵμ1−μ2−μ1ϵeϵμ1−μ2+μ22eϵμ1−μ2+μ2ϵeϵμ1−μ2ϵ2 |
−−2μ21eϵρμ1−μ2+4μ1μ2eϵρμ1−μ2−2μ22eϵρμ1−μ2+μ1ϵρ−μ2ϵρ+(μ2−μ1)2]ϵ2; |
C2(ρ,ϵ):=∫10|1−ρ−χ|e−ϵχμ2−μ1dχ |
=eϵρμ2−μ1[2μ1μ2eϵ(ρ+1)μ1−μ2+μ1ϵρeϵ(ρ+1)μ1−μ2−μ2ϵρeϵ(ρ+1)μ1−μ2−μ1ϵeϵρμ1−μ2+μ2ϵeϵρμ1−μ2−μ21eϵ(ρ+1)μ1−μ2−μ22eϵ(ρ+1)μ1−μ2ϵ2 |
++μ1ϵρeϵρμ1−μ2−μ2ϵρeϵρμ1−μ2−μ21eϵρμ1−μ2−μ22eϵρμ1−μ2+2μ1μ2eϵρμ1−μ2+2μ21eϵμ1−μ2+2μ22eϵμ1−μ2−4μ1μ2eϵμ1−μ2]ϵ2; |
C3(σ,ϵ):=∫10|σ−χ|eχ−ϵχμ2−μ1dχ |
=−eσμ2μ2−μ1[μ21σeσμ2μ1−μ2−2μ1μ2σeσμ2μ1−μ2+μ1σϵeσμ2μ1−μ2+μ22σeσμ2μ1−μ2−μ2σϵeσμ2μ1−μ2+μ21σeσμ2+μ1−μ2+ϵμ1−μ2μ21−2μ1μ2+2μ1ϵ+μ22−2μ2ϵ+ϵ2 |
+−2μ1μ2σeσμ2+μ1−μ2+ϵμ1−μ2+μ1σϵeσμ2+μ1−μ2+ϵμ1−μ2+μ22σeσμ2+μ1−μ2+ϵμ1−μ2−μ2σϵeσμ2+μ1−μ2+ϵμ1−μ2+μ21eσμ2μ1−μ2μ21−2μ1μ2+2μ1ϵ+μ22−2μ2ϵ+ϵ2 |
+−2μ1μ2eσμ2μ1−μ2+μ22eσμ2μ1−μ2−2μ21eσ(μ1+ϵ)μ1−μ2+4μ1μ2eσ(μ1+ϵ)μ1−μ2−2μ22eσ(μ1+ϵ)μ1−μ2+(μ2−μ1)ϵeσμ2+μ1−μ2+ϵμ1−μ2]μ21−2μ1μ2+2μ1ϵ+μ22−2μ2ϵ+ϵ2 |
and
C4(σ,ϵ):=∫10|σ−χ|e1−(χ−ϵχμ2−μ1)dχ |
=eσμ1+ϵσ+μ2μ2−μ1[−4μ1μ2σeσμ2+μ1μ1−μ2+2μ1μ2eσμ1+ϵσ+μ1μ1−μ2+4μ1μ2eσμ1+ϵσ+μ2−ϵμ2−μ1+μ1ϵσeσμ1+ϵσ+μ1μ1−μ2μ21−2μ1μ2+2μ1ϵ+μ22−2μ2ϵ+ϵ2 |
+−μ2ϵσeσμ1+ϵσ+μ1μ1−μ2+μ1ϵσeσμ1+ϵσ+μ2−ϵμ1−μ2−μ2ϵσeσμ1+ϵσ+μ2−ϵμ1−μ2−2(μ21+μ22)eσμ1+ϵσ+μ2−ϵμ1−μ2μ21−2μ1μ2+2μ1ϵ+μ22−2μ2ϵ+ϵ2 |
+−(μ21+μ22−μ21σ−μ22σ)eσμ1+ϵσ+μ1μ1−μ2+(μ21σ+μ22σ−μ1ϵ+μ2ϵ)eσμ1+ϵσ+μ2−ϵμ1−μ2μ21−2μ1μ2+2μ1ϵ+μ22−2μ2ϵ+ϵ2 |
+−2μ1μ2σeσμ1+ϵσ+μ1μ1−μ2−2μ1μ2σeσμ1+ϵσ+μ2−ϵμ1−μ2+2(μ21+μ22)eσμ2+μ1μ1−μ2]μ21−2μ1μ2+2μ1ϵ+μ22−2μ2ϵ+ϵ2. |
Let us derive from Theorem 3.1 some new trapezium and midpoint type inequalities using special values of ρ,σ and suitable choices of ϵ.
Corollary 1. Taking ρ=σ=0 in Theorem 3.1, then
21−1q(μ2−μ1)|ψ(μ1+ϵ)−1μ2−μ1∫μ2μ1ψ(x)dx|≤ϵ2{12(2C1(0,ϵ)e1−ϵμ2−μ1−1)|ψ′(μ1)|q+12(2C2(0,ϵ)eϵμ2−μ1−1)|ψ′(μ2)|q}1q+(μ2−μ1−ϵ)2{12(2C3(0,ϵ)−1)|ψ′(μ1)|q+12(2C4(0,ϵ)−1)|ψ′(μ2)|q}1q. |
Corollary 2. Taking ρ=σ=12 in Theorem 3.1, then
41−1q|ϵψ(μ1)+(μ2−μ1−ϵ)ψ(μ2)+(μ2−μ1)ψ(μ1+ϵ)2−∫μ2μ1ψ(x)dx|≤ϵ2{12(2C1(12,ϵ)e1−ϵμ2−μ1−12)|ψ′(μ1)|q+12(2C2(12,ϵ)eϵμ2−μ1−12)|ψ′(μ2)|q}1q+(μ2−μ1−ϵ)2{12(2C3(12,ϵ)−12)|ψ′(μ1)|q+12(2C4(12,ϵ)−12)|ψ′(μ2)|q}1q. |
Corollary 3. Taking ρ=σ=1 in Theorem 3.1, then
21−1q|ϵψ(μ1)+(μ2−μ1−ϵ)ψ(μ2)−∫μ2μ1ψ(x)dx|≤ϵ2{12(2C1(1,ϵ)e1−ϵμ2−μ1−1)|ψ′(μ1)|q+12(2C2(1,ϵ)eϵμ2−a−1)|ψ′(μ2)|q}1q+(μ2−μ1−ϵ)2{12(2C3(1,ϵ)−1)|ψ′(μ1)|q+12(2C4(1,ϵ)−1)|ψ′(μ2)|q}1q. |
Corollary 4. Taking ϵ=μ2−μ12 in Theorem 3.1, then
|ρψ(μ1)+σψ(μ2)2+2−ρ−σ2ψ(μ1+μ22)−1μ2−μ1∫μ2μ1ψ(x)dx|≤(μ2−μ1)28((1−ρ)2+ρ2)1−1q×{(2C1(ρ,μ2−μ12)e12−2ρ2+2ρ−1)|ψ′(μ1)|q+(2C2(ρ,μ2−μ12)e12−2ρ2+2ρ−1)|ψ′(μ2)|q}1q+(μ2−μ1)28(σ2+(1−σ)2)1−1q×{(2C3(σ,μ2−μ12)−2σ2+2σ−1))|ψ′(μ1)|q+(2C4(σ,μ2−μ12)−2σ2+2σ−1))|ψ′(μ2)|q}1q. |
Corollary 5. Taking ϵ=μ2−μ13 in Theorem 3.1, then
|ρψ(μ1)+2σψ(μ2)3+(1−ρ3−2σ3)ψ(2μ1+μ23)−1μ2−μ1∫μ2μ1ψ(x)dx|≤(μ2−μ1)218((1−ρ)2+ρ2)1−1q×{(2C1(ρ,μ2−μ13)e23−2λ2+2λ−1)|ψ′(μ1)|q+(2C2(ρ,μ2−μ13)e23−2ρ2+2ρ−1)|ψ′(μ2)|q}1q+2(μ2−μ1)29(σ2+(1−σ)2)1−1q×{(2C3(σ,μ2−μ13)−2σ2+2σ−1))|ψ′(μ1)|q+(2C4(σ,μ2−μ13)−2σ2+2σ−1))|ψ′(μ2)|q}1q. |
Corollary 6. Taking ϵ=2(μ2−μ1)3 in Theorem 3.1, then
|2ρψ(μ1)+σψ(μ2)3+(1−2ρ3−σ3)ψ(μ1+2μ23)−1μ2−μ1∫μ2μ1ψ(x)dx|≤2(μ2−μ1)29((1−ρ)2+ρ2)1−1q×{(2C1(ρ,2(μ2−μ1)3)e13−2ρ2+2ρ−1)|ψ′(μ1)|q+(2C2(ρ,2(μ2−μ1)3)e13−2ρ2+2ρ−1)|ψ′(μ2)|q}1q+(μ2−μ1)218(σ2+(1−σ)2)1−1q×{(2C3(σ,2(μ2−μ1)3)−2σ2+2σ−1))|ψ′(μ1)|q+(2C4(σ,2(μ2−μ1)3)−2σ2+2σ−1))|ψ′(μ2)|q}1q. |
Theorem 3.2. Let ψ:I⊆ℜ→ℜ be differentiable on I∘ and let ρ,σ∈[0,1],μ1,μ2∈I with μ1<μ2. Assume that ψ′∈L[μ1,μ2] and 0<ϵ<μ2−μ1. If |ψ′|q is exponential type convex on [μ1,μ2] with q≥1, then
|ϵρψ(μ1)+(μ2−μ1−ϵ)σψ(μ2)+[ϵ(1−ρ)+(μ2−μ1−ϵ)(1−σ)]ψ(μ1+ϵ)−∫μ2μ1ψ(x)dx|≤ϵ2{(G5(q;ρ,ϵ)e1−ϵμ2−μ1−(1−ρ)q+1+ρq+1q+1)|ψ′(μ1)|q+(G6(q;ρ,ϵ)eϵμ2−μ1−(1−ρ)q+1+ρq+1q+1)|ψ′(μ2)|q}1q+(μ2−μ1−ϵ)2{(G7(q;σ,ϵ)−σq+1+(1−σ)q+1q+1)|ψ′(μ1)|q+(G8(q;σ,ϵ)−σq+1+(1−σ)q+1q+1)|ψ′(μ2)|q}1q, | (3.2) |
where
G5(q;ρ,ϵ):=∫10|1−ρ−χ|qeϵχμ2−μ1dχ,G6(q;ρ,ϵ):=∫10|1−ρ−χ|qe−ϵχμ2−μ1dχ, |
G7(q;σ,ϵ):=∫10|σ−χ|qeχ−ϵχμ2−μ1dχ,G8(q;σ,ϵ):=∫10|σ−χ|qe1−(χ−ϵχμ2−μ1)dχ. |
Proof. Consider that |ψ′|q is exponential type convex on [μ1,μ2] with q≥1. If q=1, then using Theorem 3.1, we have
|ϵρψ(μ1)+(μ2−μ1−ϵ)σψ(μ2)+[ϵ(1−ρ)+(μ2−μ1−ϵ)(1−σ)]ψ(μ1+ϵ)−∫μ2μ1ψ(x)dx|≤ϵ22[(2C1(ρ,ϵ)e1−ϵμ2−μ1−2ρ2+2ρ−1)|ψ′(μ1)|+(2C2(ρ,ϵ)eϵμ2−μ1−2ρ2+2ρ−1)|ψ′(μ2)|]+(μ2−μ1−ϵ)22×[(2C3(σ,ϵ)−2σ2+2σ−1)|ψ′(μ1)|+(2C4(σ,ϵ)−2σ2+2σ−1)|ψ′(μ2)|]=ϵ2[(C1(ρ,ϵ)e1−ϵμ2−μ1−(1−ρ)2+ρ22)|ψ′(μ1)|+(C2(ρ,ϵ)eϵμ2−μ1−(1−ρ)2+ρ22)|ψ′(μ2)|]+(μ2−μ1−ϵ)2×[(C3(σ,ϵ)−σ2+(1−σ)22)|ψ′(μ1)|+(C4(σ,ϵ)−σ2+(1−σ)22)|ψ′(μ2)|]. |
Next, we consider that q>1. Using Lemma 2.2 and the well-known power mean inequality, we get
|ϵρψ(μ1)+(μ2−μ1−ϵ)σψ(μ2)+[ϵ(1−ρ)+(μ2−μ1−ϵ)(1−σ)]ψ(μ1+ϵ)−∫μ2μ1ψ(x)dx|≤ϵ2∫10|1−ρ−χ||ψ′(χμ1+(1−χ)(μ1+ϵ))|dχ+(μ2−μ1−ϵ)2∫10|σ−χ||ψ′(χ(μ1+ϵ)+(1−χ)μ2)|dχ≤ϵ2(∫10dχ)1−1q(∫10|1−ρ−χ|q|ψ′(χμ1+(1−χ)(μ1+ϵ))|qdχ)1q+(μ2−μ1−ϵ)2(∫10dχ)1−1q(∫10|σ−χ|q|ψ′(χ(μ1+ϵ)+(1−χ)μ2)|qdχ)1q. |
Using exponential type convexity of |ψ′|q and Lemma 2.2, we obtain
∫10|1−ρ−χ|q|ψ′(χμ1+(1−χ)(μ1+ϵ))|qdχ=∫10|1−ρ−χ|q|ψ′((1−ϵ(1−χ)μ2−μ1)μ1+ϵ(1−χ)μ2−μ1μ2)|qdχ≤∫10|1−ρ−χ|q[(e1−ϵ(1−χ)μ2−μ1−1)|ψ′(μ1)|q+(eϵ(1−χ)μ2−μ1−1)|ψ′(μ2)|q]dχ=∫10|1−ρ−χ|qe1−ϵ(1−χ)μ2−μ1|ψ′(μ1)|qdχ+∫10|1−ρ−χ|qeϵ(1−χ)μ2−μ1|ψ′(μ2)|qdχ−∫10|1−ρ−χ|q(|ψ′(μ1)|q+|ψ′(μ2)|q)dχ=e1−ϵμ2−μ1|ψ′(μ1)|q∫10|1−ρ−χ|qeϵχμ2−μ1dχ+eϵμ2−μ1|ψ′(μ2)|q∫10|1−ρ−χ|qe−ϵχμ2−μ1dχ−∫10|1−ρ−χ|q(|ψ′(μ1)|q+|ψ′(μ2)|q)dχ=(G5(q;ρ,ϵ)e1−ϵμ2−μ1−(1−ρ)q+1+ρq+1q+1)|ψ′(μ1)|q+(G6(q;ρ,ϵ)eϵμ2−μ1−(1−ρ)q+1+ρq+1q+1)|ψ′(μ2)|q. |
Similarly,
∫10|σ−χ|q|ψ′(χ(μ1+ϵ)+(1−χ)μ2)|qdχ=∫10|σ−χ|q|ψ′((χ−ϵχμ2−μ1)μ1+(1−(χ−ϵχμ2−μ1))μ2)|qdχ≤∫10|σ−χ|q{(eχ−ϵχμ2−μ1−1)|ψ′(μ1)|q+(e1−(χ−ϵχμ2−μ1)−1)|ψ′(μ2)|q}dχ=∫10|σ−χ|q(eχ−ϵχμ2−μ1|ψ′(μ1)|qdχ+∫10|σ−χ|q(e1−(χ−ϵχμ2−μ1)|ψ′(μ2)|qdχ−∫10|σ−χ|q(|ψ′(μ1)|q+|ψ′(μ2)|q)dχ=G7(q;σ,ϵ)|ψ′(μ1)|q+G8(q;σ,ϵ)|ψ′(μ2)|q−σq+1+(1−σ)q+1q+1(|ψ′(μ1)|q+|ψ′(μ2)|q)=(G7(q;σ,ϵ)−σq+1+(1−σ)q+1q+1)|ψ′(μ1)|q+(G8(q;σ,ϵ)−σq+1+(1−σ)q+1q+1)|ψ′(μ2)|q. |
Thus
|ϵρψ(μ1)+(μ2−μ1−ϵ)σψ(μ2)+[ϵ(1−ρ)+(μ2−μ1−ϵ)(1−σ)]ψ(μ1+ϵ)−∫μ2μ1ψ(x)dx|≤ϵ2{(G5(q;ρ,ϵ)e1−ϵμ2−μ1−(1−ρ)q+1+ρq+1q+1)|ψ′(μ1)|q+(G6(q;ρ,ϵ)eϵμ2−μ1−(1−ρ)q+1+ρq+1q+1)|ψ′(μ2)|q}1q+(μ2−μ1−ϵ)2{(G7(q;σ,ϵ)−σq+1+(1−σ)q+1q+1)|ψ′(μ1)|q+(G8(q;σ,ϵ)−σq+1+(1−σ)q+1q+1)|ψ′(μ2)|q}1q, |
which completes the proof.
Let us establish from Theorem 3.2 some new trapezium and midpoint type inequalities using special values of ρ,σ and suitable choices of ϵ.
Corollary 7. Taking ρ=σ=0 in Theorem 3.2, then
|(μ2−μ1)ψ(μ1+ϵ)−∫μ2μ1ψ(x)dx|≤ϵ2{(G5(q;0,ϵ)e1−ϵμ2−μ1−1q+1)|ψ′(μ1)|q+(G6(q;0,ϵ)eϵμ2−μ1−1q+1)|ψ′(μ2)|q}1q+(μ2−μ1−ϵ)2{(G7(q;0,ϵ)−1q+1)|ψ′(μ1)|q+(G8(q;0,ϵ)−1q+1)|ψ′(μ2)|q}1q. |
Corollary 8. Taking ρ=σ=12 in Theorem 3.2, then
|ϵψ(μ1)+(μ2−μ1−ϵ)ψ(μ2)+(μ2−μ1)ψ(μ1+ϵ)2−∫μ2μ1ψ(x)dx|≤ϵ2{(G5(q;12,ϵ)e1−ϵμ2−μ1−2(12)q+1q+1)|ψ′(μ1)|q+(G6(q;12,ϵ)eϵμ2−μ1−2(12)q+1q+1)|ψ′(μ2)|q}1q+(μ2−μ1−ϵ)2{(G7(q;12,ϵ)−2(12)q+1q+1)|ψ′(μ1)|q+(G8(q;12,ϵ)−2(12)q+1q+1)|ψ′(μ2)|q}1q. |
Corollary 9. Taking ρ=σ=1 in Theorem 3.2, then
|ϵψ(μ1)+(μ2−μ1−ϵ)ψ(μ2)−∫μ2μ1ψ(x)dx|≤ϵ2{(G5(q;1,ϵ)e1−ϵμ2−μ1−1q+1)|ψ′(μ1)|q+(G6(q;1,ϵ)eϵμ2−μ1−1q+1)|ψ′(μ2)|q}1q+(μ2−μ1−ϵ)2{(G7(q;1,ϵ)−1q+1)|ψ′(μ1)|q+(G8(q;1,ϵ)−1q+1)|ψ′(μ2)|q}1q. |
Corollary 10. Taking ϵ=μ2−μ12 in Theorem 3.2, then
|ρψ(μ1)+σψ(μ2)2+2−ρ−σ2ψ(μ1+μ22)−1μ2−μ1∫μ2μ1ψ(x)dx|≤(μ2−μ1)24×{(G5(q;ρ,μ2−μ12)e12−(1−ρ)q+1+ρq+1q+1)|ψ′(μ1)|q+(G6(q;ρ,μ2−μ12)e12−(1−ρ)q+1+ρq+1q+1)|ψ′(μ2)|q+(G7(q;σ,μ2−μ12)−σq+1+(1−σ)q+1q+1)|ψ′(μ1)|q+(G8(q;σ,μ2−μ12)−σq+1+(1−σ)q+1q+1)|ψ′(μ2)|q}1q. |
Corollary 11. Taking ϵ=μ2−μ13 in Theorem 3.2, then
|ρψ(μ1)+2σψ(μ2)3+(1−ρ3−2σ3)ψ(2μ1+μ23)−1μ2−μ1∫μ2μ1ψ(x)dx|≤(μ2−μ1)29{(G5(q;ρ,μ2−μ13)e23−(1−ρ)q+1+ρq+1q+1)|ψ′(μ1)|q+(G6(q;ρ,μ2−μ13)e23−(1−ρ)q+1+ρq+1q+1)|ψ′(μ2)|q}1q+4(μ2−μ1)29{(G7(q;σ,μ2−μ13)−σq+1+(1−σ)q+1q+1)|ψ′(μ1)|q+(G8(q;σ,μ2−μ13)−σq+1+(1−σ)q+1q+1)|ψ′(μ2)|q}1q. |
Corollary 12. Taking ϵ=2(μ2−μ1)3 in Theorem 3.2, then
|2ρψ(μ1)+σψ(μ2)3+(1−2ρ3−σ3)ψ(μ1+2μ23)−1μ2−μ1∫μ2μ1ψ(x)dx|≤4(μ2−μ1)29{(G5(q;ρ,2(μ2−μ1)3)e13−(1−ρ)q+1+ρq+1q+1)|ψ′(μ1)|q+(G6(q;ρ,2(μ2−μ1)3)e13−(1−ρ)q+1+ρq+1q+1)|ψ′(μ2)|q}1q+(μ2−μ1)29{(G7(q;σ,2(μ2−μ1)3)−σq+1+(1−μ)q+1q+1)|ψ′(μ1)|q+(G8(q;σ,2(μ2−μ1)3)−μq+1+(1−σ)q+1q+1)|ψ′(μ2)|q}1q. |
In this section, we suppose that {μ1,μ2,wμ1,wμ2}⊆(0,∞) with μ1<μ2 and 0<ϵ<μ2−μ1. The following special means will be used in the sequel:
The weighted arithmetic mean of {μ1,μ2} with weight {wμ1,wμ2} is given by
A(μ1,μ2;wμ1,wμ2)=wμ1μ1+wμ2μ2wμ1+wμ2. |
The weighted geometric mean of {μ1,μ2} with weight {wμ1,wμ2} is defined as
G(μ1,μ1;wμ1,wμ1)=μwμ1wμ1+wμ21μwμ2wμ1+wμ22. |
The generalized logarithmic mean of {μ1,μ2} is given by
Ls(μ1,μ2)=(μs+12−μs+11(s+1)(μ2−μ1))1s,s≠0,s≠−1. |
The identric mean of {μ1,μ2} is defined as
I(μ1,μ2)=1e(μμ22μμ11)1μ2−μ1. |
Before giving our next results using above special means let investigate the following functions: ϕ1(x)=qs+qxsq+1 for s>1,q≥1 and ϕ2(x)=lnx for all x>0. |ϕ′1(x)|q=xs is nonnegative convex function for s>1,x>0 and from Proposition 1 it's exponential type convex. Similarly, |ϕ′2(x)|q=x−q is nonnegative convex function for q≥1,x>0 and from Proposition 1 it's exponential type convex as well.
Proposition 2. Suppose that s>1,q≥1 with 0<μ1<μ2 and 0<ϵ<μ2−μ1. Then
21−1qq(μ2−μ1)s+q|2sq+1Asq+1(μ1,ϵ;1,1)−Lsq+1sq+1(μ1,μ2)|≤ϵ2{12(2C1(0,ϵ)e1−ϵμ2−μ1−1)μs1+12(2C2(0,ϵ)eϵμ2−μ1−1)μs2}1q+(μ2−μ1−ϵ)2{12(2C3(0,ϵ)−1)μs1+12(2C4(0,ϵ)−1)μs2}1q. | (4.1) |
Proof. Taking ψ(x)=qs+qxsq+1 for x>0 and applying Corollary 1, then inequality (4.1) is easily captured.
Proposition 3. Suppose that q≥1 with 0<μ1<μ2 and 0<ϵ<μ2−μ1. Then
21−1q(μ2−μ1)|ln(A(μ1,μ2;μ2−μ1−ϵ,ϵ)I(μ1,μ2))|≤ϵ2{C1(0,ϵ)μ−q1e1−ϵμ2−μ1+C2(0,ϵ)μ−q2eϵμ2−μ1−μ−q1+μ−q22}1q+(μ2−μ1−ϵ)2{C3(0,ϵ)μ−q1+C4(0,ϵ)μ−q2−μ−q1+μ−q22}1q. | (4.2) |
Proof. Choosing ψ(x)=lnx for x>0 and applying Corollary 1, then inequality (4.2) is obtained.
Proposition 4. Suppose that s>1,q≥1 with 0<μ1<μ2 and 0<ϵ<μ2−μ1. Then
21−1qq(μ2−μ1)s+q|A(μsq+11,μsq+12;ϵ,μ2−μ1−ϵ)−Lsq+1sq+1(μ1,μ2)|≤ϵ2{12(2C1(1,ϵ)e1−ϵμ2−μ1−1)μs1+12(2C2(1,ϵ)eϵμ2−a−1)μs2}1q+(μ2−μ1−ϵ)2{12(2C3(1,ϵ)−1)μs1+12(2C4(1,ϵ)−1)μs2}1q. | (4.3) |
Proof. Taking ψ(x)=qs+qxsq+1 for x>0 and applying Corollary 3, then inequality (4.3) is derived.
Proposition 5. Suppose that q≥1 with 0<μ1<μ2 and 0<ϵ<μ2−μ1. Then
21−1q(μ2−μ1)|ln(A(μ1,μ2;ϵ,μ2−μ1−ϵ)I(μ1,μ2))|≤ϵ2{C1(1,ϵ)μ−q1e1−ϵμ2−μ1+C2(1,ϵ)μ−q2eϵμ2−μ1−μ−q1+μ−q22}1q+(μ2−μ1−ϵ)2{C3(1,ϵ)μ−q1+C4(1,ϵ)μ−q2−μ−q1+μ−q22}1q. | (4.4) |
Proof. Choosing ψ(x)=lnx for x>0 and applying Corollary 3, then inequality (4.4) is captured.
Proposition 6. Suppose that s>1,q≥1 with 0<μ1<μ2 and 0<ϵ<μ2−μ1. Then
q(μ2−μ1)s+q|2sq+1Asq+1(μ1,ϵ;1,1)−Lsq+1sq+1(μ1,μ2)|≤ϵ2{(G5(q;0,ϵ)e1−ϵμ2−μ1−1q+1)μs1+(G6(q;0,ϵ)eϵμ2−μ1−1q+1)μs2}1q+(μ2−μ1−ϵ)2{(G7(q;0,ϵ)−1q+1)μs1+(G8(q;0,ϵ)−1q+1)μs2}1q. | (4.5) |
Proof. Taking ψ(x)=qs+qxsq+1 for x>0 and applying Corollary 7, then inequality (4.5) is obtained.
Proposition 7. Suppose that q≥1 with 0<μ1<μ2 and 0<ϵ<μ2−μ1. Then
(μ2−μ1)|ln(G(μ1,μ2;μ2−μ1−ϵ,ϵ)I(μ1,μ2)|≤ϵ2{G5(q;0,ϵ)μ−q1e1−ϵμ2−μ1+G6(q;0,ϵ)μ−q2eϵμ2−μ1−μ−q1+μ−q2q+1}1q+(μ2−μ1−ϵ)2{G7(q;0,ϵ)μ−q1+G8(q;0,ϵ)μ−q2−μ−q1+μ−q2q+1}1q. | (4.6) |
Proof. Choosing ψ(x)=lnx for x>0 and applying Corollary 7, then inequality (4.6) is derived.
Proposition 8. Suppose that s>1,q≥1 with 0<μ1<μ2 and 0<ϵ<μ2−μ1. Then
q(μ2−μ1)s+q|A(μsq+11,μsq+12;ϵ,μ2−μ1−ϵ)−Lsq+1sq+1(μ1,μ2)|≤ϵ2{(G5(q;1,ϵ)e1−ϵμ2−μ1−1q+1)μs1+(G6(q;1,ϵ)eϵμ2−μ1−1q+1)μs2}1q+(μ2−μ1−ϵ)2{(G7(q;1,ϵ)−1q+1)μs1+(G8(q;1,ϵ)−1q+1)μs2}1q. | (4.7) |
Proof. Taking ψ(x)=qs+qxsq+1 for x>0 and applying Corollary 9, then inequality (4.7) is captured.
Proposition 9. Suppose that q≥1 with 0<μ1<μ2 and 0<ϵ<μ2−μ1. Then
(μ2−μ1)|ln(G(μ1,μ2;ϵ,μ2−μ1−ϵ)I(μ1,μ2)|≤ϵ2{G5(q;1,ϵ)μ−q1e1−ϵμ2−μ1+G6(q;1,ϵ)μ−q2eϵμ2−μ1−μ−q1+μ−q2q+1}1q+(μ2−μ1−ϵ)2{G7(q;1,ϵ)μ−q1+G8(q;1,ϵ)μ−q2−μ−q1+μ−q2q+1}1q. | (4.8) |
Proof. Choosing ψ(x)=lnx for x>0 and applying Corollary 9, then inequality (4.8) is obtained.
Remark 2. For other suitable exponential convex functions interested reader can find several new interesting inequalities using special means from our results. We omit here their proofs.
At the end, from integral inequalities obtained above we will find some new bounds regarding error estimation for quadrature formula. For 0<ϵ<μ2−μ1 and ρ,σ∈[0,1], let P:μ1=x0<x1<⋯<xn−1<xn=μ2 {be} a partition of [μ1,μ2]. We denote
T(P,ψ):=n−1∑i=0{ϵiρψ(xi)+(hi−ϵi)σψ(xi+1)+[ϵi(1−ρ)+(hi−ϵi)(1−σ)]ψ(xi+ϵi)},∫μ2μ1ψ(x)dx=T(P,ψ)+R(P,ψ), | (4.9) |
where R(P,ψ) is the remainder term and hi=xi+1−xi for i=0,1,2,…,n−1. Using above notations, we are in position to prove the following error estimations.
Proposition 10. Let ψ:I⊆ℜ→ℜ be differentiable on I∘ and let ρ,σ∈[0,1],μ1,μ2∈I with μ1<μ2. Assume that ψ′∈L[μ1,μ2] and 0<ϵ<μ2−μ1. If |ψ′|q is exponential type convex on [μ1,μ2] with q≥1, then
|R(P,ψ)|≤n−1∑i=0ϵ2i((1−ρ)2+ρ22)1−1q{12(2C1,i(ρ,ϵi)e1−ϵihi−2ρ2+2ρ−1)|ψ′(xi)|q+12(2C2,i(ρ,ϵi)eϵihi−2ρ2+2ρ−1)|ψ′(xi+1)|q}1q+n−1∑i=0(hi−ϵi)2(σ2+(1−σ)22)1−1q×{12(2C3,i(σ,ϵi)−2σ2+2σ−1)|ψ′(xi)|q+12(2C4,i(σ,ϵi)−2σ2+2σ−1)|ψ′(xi+1)|q}1q, | (4.10) |
where 0<ϵi<hi for all i=0,1,2,…,n−1, and
C1,i(ρ,ϵi):=∫10|1−ρ−χ|eϵiχhidχ,C2,i(ρ,ϵi):=∫10|1−ρ−χ|e−ϵiχhidχ, |
C3,i(σ,ϵi):=∫10|σ−χ|eχ−ϵiχhidχ,C4,i(σ,ϵi):=∫10|σ−χ|e1−(χ−ϵiχhi)dχ. |
Proof. By applying Theorem 3.1 on the subintervals [xi,xi+1](i=0,1,2,…,n−1) of the partition P and summing the obtain inequality over i from 0 to n−1, we have the desired result.
Proposition 11. Let ψ:I⊆ℜ→ℜ be differentiable on I∘ and let ρ,σ∈[0,1],μ1,μ2∈I with μ1<μ2. Assume that ψ′∈L[μ1,μ2] and 0<ϵ<μ2−μ1. If |ψ′|q is exponential type convex on [μ1,μ2] with q≥1, then
|R(P,ψ)|≤n−1∑i=0ϵ2i{(G5,i(q;ρ,ϵi)e1−ϵihi−(1−ρ)q+1+ρq+1q+1)|ψ′(xi)|q+(G6,i(q;ρ,ϵi)eϵihi−(1−ρ)q+1+ρq+1q+1)|ψ′(xi+1)|q}1q+n−1∑i=0(hi−ϵi)2{(G7,i(q;σ,ϵi)−σq+1+(1−σ)q+1q+1)|ψ′(xi)|q+(G8,i(q;σ,ϵi)−σq+1+(1−σ)q+1q+1)|ψ′(xi+1)|q}1q, | (4.11) |
where 0<ϵi<hi for all i=0,1,2,…,n−1, and
G5,i(q;ρ,ϵi):=∫10|1−ρ−χ|qeϵiχhidχ,G6,i(q;ρ,ϵi):=∫10|1−ρ−χ|qe−ϵiχhidχ, |
G7,i(q;σ,ϵi):=∫10|σ−χ|qeχ−ϵiχhidχ,G8,i(q;σ,ϵi):=∫10|σ−χ|qe1−(χ−ϵiχhi)dχ. |
Proof. By applying Theorem 3.2 on the subintervals [xi,xi+1](i=0,1,2,…,n−1) of the partition P and summing the obtain inequality over i from 0 to n−1, we get the desired result.
Remark 3. For suitable choices of ρ,σ and ϵi in Propositions 10 and 11, like that ρ,σ:=0,12,1 and ϵi:=hi2,hi3,2hi3, where hi=xi+1−xi(i=0,1,2,…,n−1), we can obtain new bounds regarding error estimation of quadrature formula given above. We omit their proofs and the details are left to the interested reader.
In this article, we have obtained some new version of Hermite-Hadamard type inequalities for differential exponential type convex functions. Moreover, several special cases are given in details. Finally, we have derived as applications from our main results several interesting inequalities using special means and some error estimations as well. This shown the efficient of our results. We believe that our results will have a very deep research in this field of inequalities and also in pure and applied sciences.
All authors contribute equally in this paper.
This work was sponsored by The First Batch of Teaching Reform Projects of "The Fifteen" Higher Education in Zhejiang Province (jg20180730).
All data required for this paper is included within this paper.
Authors do not have any competing interests.
[1] | I. A. Baloch, Y. M. Chu, Petrovíc-type inequalities for harmonic h-convex functions, J. Funct. Spaces, 2020 (2020), 3075390. |
[2] |
X. Qiang, G. Farid, J. Pečarič, S. B. Akbar, Generalized fractional integrals inequalities for exponentially (s,m)-convex functions, J. Inequal. Appl., 2020 (2020), 70. doi: 10.1186/s13660-020-02335-7
![]() |
[3] | Y. Khurshid, M. A. Khan, Y. M. Chu, Conformable integral inequalities of the Hermite-Hadamard type in terms of GG- and GA-convexities, J. Funct. Spaces, 2019 (2019), 6926107. |
[4] |
T. Toplu, M. Kadakal, Í. Íşcan, On n-polynomial convexity and some related inequalities, AIMS Math., 5 (2020), 1304-1318. doi: 10.3934/math.2020089
![]() |
[5] |
N. Mehreen, M. Anwar, Some integral inequalities for co-ordinated harmonically convex functions via fractional integrals, Eng. Appl. Sci. Lett., 3 (2020), 60-74. doi: 10.30538/psrp-easl2020.0052
![]() |
[6] | S. S. Dragomir, R. P. Agarwal, Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula, Appl. Math. Lett., 11 (1998), 91-95. |
[7] |
J. Han, P. O. Mohammed, H. Zeng, Generalized fractional integral inequalities of Hermite-Hadamard-type for a convex function, Open Math., 18 (2020), 794-806. doi: 10.1515/math-2020-0038
![]() |
[8] | A. Kashuri, R. Liko, Some new Hermite-Hadamard type inequalities and their applications, Stud. Sci. Mathematicarum Hung., 56 (2019), 103-142. |
[9] | A. Kashuri, S. Iqbal, S. I. Butt, J. Nasir, K. S. Nisar, T. Abdeljawad, Trapezium-type inequalities for k-fractional integral via new exponential-type convexity and their applications, J. Math., 2020 (2020), 8672710. |
[10] |
G. Farid, K. Mahreen, Y. M. Chu, Study of inequalities for unified integral operators of generalized convex functions, Open J. Math. Sci., 5 (2021), 80-93. doi: 10.30538/oms2021.0147
![]() |
[11] |
P. O. Mohammed, T. Abdeljawad, S. Zeng, A. Kashuri, Fractional Hermite-Hadamard integral inequalities for a new class of convex functions, Symmetry, 12 (2020), 1485. doi: 10.3390/sym12091485
![]() |
[12] |
G. Farid, A. Ur Rehman, S. Bibi, Y. M. Chu, Refinements of two fractional versions of Hadamard inequalities for Caputo fractional derivatives and related results, Open J. Math. Sci., 5 (2021), 1-10. doi: 10.30538/oms2021.0139
![]() |
[13] |
S. Mehmood, G. Farid, Fractional integrals inequalities for exponentially m-convex functions, Open J. Math. Sci., 4 (2020), 78-85. doi: 10.30538/oms2020.0097
![]() |
[14] |
T. A. Aljaaidi, D. B. Pachpatte, Reverse Hermite-Hadamards inequalities using ψ-fractional integral, Eng. Appl. Sci. Lett., 3 (2020), 75-84. doi: 10.30538/psrp-easl2020.0053
![]() |
[15] |
A. Kashuri, B. Meftah, P. O. Mohammed, Some weighted Simpson type inequalities for differentiable s-convex functions and their applications, J. Fractional Calculus Nonlinear Syst., 1 (2021), 75-94. doi: 10.48185/jfcns.v1i1.150
![]() |
[16] |
D. Baleanu, A. Kashuri, P. O. Mohammed, B. Meftah, General Raina fractional integral inequalities on coordinates of convex functions, Adv. Differ. Equations, 2021 (2021), 82. doi: 10.1186/s13662-021-03241-y
![]() |
[17] |
P. O. Mohammed, T. Abdeljawad, M. A. Alqudah, F. Jarad, New discrete inequalities of Hermite-Hadamard type for convex functions, Adv. Differ. Equations, 2021 (2021), 122. doi: 10.1186/s13662-021-03290-3
![]() |
[18] |
N. Mehreen, M. Anwar, Hermite-Hadamard-Fejér type inequalities for co-ordinated harmonically convex functions via Katugampola fractional integrals, Eng. Appl. Sci. Lett., 4 (2021), 12-28. doi: 10.30538/psrp-easl2021.0067
![]() |
[19] |
S. N. Bernstein, Sur les fonctions absolument monotons, Acta Math., 52 (1929), 1-66. doi: 10.1007/BF02592679
![]() |
[20] | D. V. Widder, Necessary and sufficient conditions for the representation of a function by a doubly infinite Laplace integral, Trans. Am. Math. Soc., 40 (1934), 321-326. |
[21] |
S. I. Butt, A. Kashuri, M. Tariq, J. Nasir, A. Aslam, W. Geo, Hermite-Hadamard-type inequalities via n-polynomial exponential-type convexity and their applications, Adv. Differ. Equations, 2020 (2020), 508. doi: 10.1186/s13662-020-02967-5
![]() |
[22] |
S. I. Butt, J. Pečarič, A. U. Rehman, Exponential convexity of Petrovíc and related functions, J. Inequal. Appl., 2011 (2011), 89. doi: 10.1186/1029-242X-2011-89
![]() |
[23] | S. I. Butt, R. Jaksic, L. Kvesic, J. Pečarič, n-Exponential convexity of weighted Hermite-Hadamard's Inequality, J. Math. Inequal., 8 (2014), 299-311. |
[24] | S. I. Butt, M. Nadeem, G. Farid, On Caputo fractional derivatives via exponential (s, m)-convex functions, Eng. Appl. Sci. Lett., 3 (2020), 32-39. |
[25] | S. Mehmood, G. Farid, K. A. Khan, M. Yussouf, New fractional Hadamard and Fejér-Hadamard inequalities associated with exponentially (h,m)-convex functions, Eng. Appl. Sci. Lett., 3 (2020), 9-18. |
[26] |
M. Kadakal, İ. İşcan, Exponential type convexity and some related inequalities, J. Inequal. Appl., 2020 (2020), 1-9. doi: 10.1186/s13660-019-2265-6
![]() |
[27] | B. Sroysang, Generalizations on some Hermite-Hadamard type inequalities for differential convex function with applications to weighted means, Sci. World J., 2014 (2014), 717164. |
1. | Muhammad Tariq, Soubhagya Kumar Sahoo, Jamshed Nasir, Hassen Aydi, Habes Alsamir, Some Ostrowski type inequalities via $ n $-polynomial exponentially $ s $-convex functions and their applications, 2021, 6, 2473-6988, 13272, 10.3934/math.2021768 | |
2. | Muhammad Tariq, Sotiris K. Ntouyas, Asif Ali Shaikh, A Comprehensive Review on the Fejér-Type Inequality Pertaining to Fractional Integral Operators, 2023, 12, 2075-1680, 719, 10.3390/axioms12070719 | |
3. | Muhammad Samraiz, Maria Malik, Saima Naheed, Gauhar Rahman, Kamsing Nonlaopon, Hermite–Hadamard-type inequalities via different convexities with applications, 2023, 2023, 1029-242X, 10.1186/s13660-023-02957-7 | |
4. | Attazar Bakht, Matloob Anwar, Hermite-Hadamard and Ostrowski type inequalities via $ \alpha $-exponential type convex functions with applications, 2024, 9, 2473-6988, 9519, 10.3934/math.2024465 |