
The B-spline curves have been grasped tremendous achievements inside the widely identified field of Computer Aided Geometric Design (CAGD). In CAGD, spline functions have been used for the designing of various objects. In this paper, new Quadratic Trigonometric B-spline (QTBS) functions with two shape parameters are introduced. The proposed QTBS functions inherit the basic properties of classical B-spline and have been proved in this paper. The proposed scheme associated with two shape parameters where the classical B-spline functions do not have. The QTBS has been used for designing of different parts of airplane like winglet, airfoil, turbo-machinery blades and vertical stabilizer. The designed part can be controlled or changed using free parameters. The effect of shape parameters is also expressed.
Citation: Abdul Majeed, Muhammad Abbas, Amna Abdul Sittar, Md Yushalify Misro, Mohsin Kamran. Airplane designing using Quadratic Trigonometric B-spline with shape parameters[J]. AIMS Mathematics, 2021, 6(7): 7669-7683. doi: 10.3934/math.2021445
[1] | Qi Xie, Yiting Huang . A class of generalized quadratic B-splines with local controlling functions. AIMS Mathematics, 2023, 8(10): 23472-23499. doi: 10.3934/math.20231193 |
[2] | Kai Wang, Guicang Zhang . Curve construction based on quartic Bernstein-like basis. AIMS Mathematics, 2020, 5(5): 5344-5363. doi: 10.3934/math.2020343 |
[3] | Mei Li, Wanqiang Shen . Integral method from even to odd order for trigonometric B-spline basis. AIMS Mathematics, 2024, 9(12): 36470-36492. doi: 10.3934/math.20241729 |
[4] | Noor Adilla Harim, Samsul Ariffin Abdul Karim, Mahmod Othman, Azizan Saaban, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Dumitru Baleanu . Positivity preserving interpolation by using rational quartic spline. AIMS Mathematics, 2020, 5(4): 3762-3782. doi: 10.3934/math.2020244 |
[5] | Yan Wu, Chun-Gang Zhu . Generating bicubic B-spline surfaces by a sixth order PDE. AIMS Mathematics, 2021, 6(2): 1677-1694. doi: 10.3934/math.2021099 |
[6] | Wan Anis Farhah Wan Amir, Md Yushalify Misro, Mohd Hafiz Mohd . Flexible functional data smoothing and optimization using beta spline. AIMS Mathematics, 2024, 9(9): 23158-23181. doi: 10.3934/math.20241126 |
[7] | Salwa Syazwani Mahzir, Md Yushalify Misro, Kenjiro T. Miura . Preserving monotone or convex data using quintic trigonometric Bézier curves. AIMS Mathematics, 2024, 9(3): 5971-5994. doi: 10.3934/math.2024292 |
[8] | Jin Xie, Xiaoyan Liu, Lei Zhu, Yuqing Ma, Ke Zhang . The C3 parametric eighth-degree interpolation spline function. AIMS Mathematics, 2023, 8(6): 14623-14632. doi: 10.3934/math.2023748 |
[9] | Muhsin Incesu . LS (3)-equivalence conditions of control points and application to spatial Bézier curves and surfaces. AIMS Mathematics, 2020, 5(2): 1216-1246. doi: 10.3934/math.2020084 |
[10] | Rabia Noureen, Muhammad Nawaz Naeem, Dumitru Baleanu, Pshtiwan Othman Mohammed, Musawa Yahya Almusawa . Application of trigonometric B-spline functions for solving Caputo time fractional gas dynamics equation. AIMS Mathematics, 2023, 8(11): 25343-25370. doi: 10.3934/math.20231293 |
The B-spline curves have been grasped tremendous achievements inside the widely identified field of Computer Aided Geometric Design (CAGD). In CAGD, spline functions have been used for the designing of various objects. In this paper, new Quadratic Trigonometric B-spline (QTBS) functions with two shape parameters are introduced. The proposed QTBS functions inherit the basic properties of classical B-spline and have been proved in this paper. The proposed scheme associated with two shape parameters where the classical B-spline functions do not have. The QTBS has been used for designing of different parts of airplane like winglet, airfoil, turbo-machinery blades and vertical stabilizer. The designed part can be controlled or changed using free parameters. The effect of shape parameters is also expressed.
It has been a fascinating task/exercise for the designers, researcher, as well as for the air craft manufacturers to advance the geometrical techniques of airplane designing. Different splines have been used in the designing of airplane models and the purpose behind this designing is to generate flexible and realistic shapes. Splines are used for airplane modeling due to numerically stability, accuracy and consistency. It also attracted the aircraft designers because of easy control and editing the shape of geometrical models [1]. Different optimization techniques are brought into practice to develop designing problems in order to improve the geometry of the required designing and to reduce the time and cost [2]. In curve modeling, we deal with trigonometric Bez'ier-like [3,4,5,6,7], Q-Bez'ier [8], H-Bez'ier [9], Ball Bez'ier-like [10], S-λ Bezier-like [11], classical Bez'ier, B-spline and NURBS curves etc.
Recently, Kulfan [12] introduced an algorithm for surface fitting using splines that fulfils some specific boundary conditions in which knots are generated automatically but one shape parameter is compulsory which provides the closeness and smoothness to fit a curve. The assignment to improve the geometry of the curves motivated to the many researchers. Reconstruction of curves and images is a compelling area in geometrical modeling [13]. The scheme of image reconstruction is employed in the field of medical. It is an amazing acquirement of fractured parts [14]. An effort has been brought by Henderson [15] to describe the effect of canard on the aerodynamic characteristics of a designed model. Winglet yield an airplane fuel efficiency and cruising range. It decreases the aerodynamic drag. This quality reduces the consumption of fuel and drag efficiency [16]. Various technologies [17] came into practice to improve performance and geometry of structure of airplane. An attempt is introduced to decrease induced drag. The process timing if winglet has been reduced with the association of CAD. It focused on decreasing design time while designing is at initial process see [18]. A scheme has been proposed using B-spline collocation method based on cubic B-spline functions [19]. A new type of cubic B-spline functions with one shape parameter has been presented [20] and this work is extended to rational cubic B-spline curves for geometrical modeling of the curves [21].The QT curves have been designed using one free parameters and this work is extended to cubic curves see for more details [22,23].
Lin and Reutskiy [24] used cubic B-spline for the numerical solution of 3D-steady state convection-diffusion reaction problems. Non-linear generalized telegraph equation in irregular domain has been solved numerically using B-spline by [25]. The novel B-spline method has proposed by [26] for the modeling of transport problems in anisotropic inhomogeneous media. Hu et al. [27] proposed a novel model based on Bezier for surface modeling. Hu et al. [28] proposed generalized quartic H-Bezier curve for the construction of developable surfaces. Shape adjustable generalized Bezier surface is proposed by [29].
This paper presents a distinct QTBS basis functions with two shape parameters. The proposed QTBS functions in addition of two shape parameters have all the characteristics of simple B-spline like convex hull, positivity, local support, continuity and partition of unity and proved in section 2.
The proposed QTBS curves yield tight envelop in the geometrical modeling which is a demanding feature in shape designing. It generates more suitable and elastic curves for shape designing. The presence of shape parameters enables the designer to control the shape of the curve easily. The proposed scheme approximates the curves in a batter way as it saves cost and time.
For test purpose open and close curves have been designed and the effect of shape parameters has also been checked. Different components of jet transport like airfoil, winglet, turbo machinery blade and vertical blades have been designed using proposed scheme.
Suppose a0<a1<a2<a3<...<an+3 be the knots, the shape parameters vi, ai∈R, and Δai=ai+1−a1, βi=aiai+1ai, the QTBS polynomial basis functions are defined by
Ci(a)={ gi(ui(a)), a∈[ai,ai+1), 1− fi+1(ui+1(a))−gi+1(ui+1(a)) a∈[ai+1,ai+2)fi+2(ui+2(a)), a∈[ai+2,ai+3)0, Otherwise | (2.1) |
where,
fi(u)=γi(1−(1+νi−1)sinu+νi−1sin2u)−βi−1cos2u,
gi(u)=ωi(1−(1+νi)cosu+νicos2u)+βisin2u,
γi=ΔaiΔai−1+Δai,
wi=ΔaiΔai+Δai+1,
u(a)= π2a−aiΔai,
Remark 2.1. If we use νi=νi+1=βi =βi+1=0, then the basis function Ci(a) will convert into linear trigonometric basis functions. Figure 1 shows the graphical behavior of the QTBS basis function.
In this section, some geometric properties of the proposed basis functions are discussed.
If−1<νi,νi+1≤1, βi≥−min{γi+2,12ωi(1−νi) and βi+1≤min{12γi+2(1−νi+1),ωi}, then Ci(a)>0, for all ai<a<ai+3.
Proof. See Appendix 1.
Ci(a)=0, for a0<a<ai+3, ai+3<a<an+3.
The QTBS are the piecewise polynomial functions as defined in section 2.
∑ki=1Ci(u)=1, a∈[a2,an+1)
Proof. See Appendix 2.
The basis functions satisfy the continuity property at knot points. The QTBS Ci(a) has C1 continuity.
Proof. See Appendix 3.
Remark 3.1. It is important that we can only discuss the continuity of the basis function at knot points, continuity cannot be discussed at first and last point as it is obvious.
For the points pi (i = 0, 1, 2, ..., n) in R2 or R3 and A = (u0, u1, u2, ..., un+3). The
S(u)=n∑i=0Ci(u)pi | (4.1) |
is known as QTBS polynomial curve with shape parameters.
If ui≠ui+1(2 ≤ i ≤ n), the representation of the curve segment S(u) can be written as:
S(u)=Ci−2(u)pi−2+Ci−1(u)pi−1+Ci(u)pi | (4.2) |
Moreover,
{S(ui) = (γi− βi−1)pi−2 + (ωi−1+ βi−1)pi−1S′ (ui) = π(1−vi−1)2(ui−1+ui) (pi−1− pi−2) | (4.3) |
Proposed scheme has been used to construct different curve segments in this section which can be depicted in Figure 2. After constructing the different curve segments using proposed scheme. It has been used to construct the open curve as shown in Figure 3. Figure 4 represents the effect of shape parameters. The curve changes its behavior as we change the shape parameters. To check the applicability of proposed scheme we have also constructed the closed curve as shown Figure 5.
The curve designing can be controlled in two ways i.e
1.Using more control points
2.By shape parameters
In this section, the QTBS curve has been designed by different control points like in Figure 6(a) we used 4 control points. By adding the number of control points the curve changed its behavior as shown in Figure 6(b).
Curve can also be controlled by shape parameters. Different values of shape parameters {\rm{ \mathsf{ ν} }} and {\rm{ \mathsf{ β} }} are tabulated in Table 1 have been used for the construction of Quadratic trigonometric B-spline curve as shown in the Figures 7 and 8. It is observed that by assigning different vales of shape parameters both open and closed curves change its behavior.
Sr. no. | value of {\rm{ \mathsf{ ν} }} | value of {\rm{ \mathsf{ β} }} |
1 | 0.1 | 0.225 |
2 | 0.2 | 0.200 |
3 | 0.3 | 0.175 |
4 | 0.4 | 0.150 |
5 | 0.5 | 0.125 |
6 | 0.6 | 0.100 |
7 | 0.7 | 0.075 |
8 | 0.8 | 0.050 |
9 | 0.9 | 0.025 |
To test the proposed scheme we have constructed the different models like flowers and vase as shown in Figure 9. When the curve S(a) is generated in the interval [a_2, \ a_{n+1}] , we are free from the choice of first and last two knot. These can be adjusted to the given boundary behavior of the curve. The choice of knot vector for open trigonometric curve is A = \mathrm{(}{\mathrm{a}}_0\mathrm{\ }\mathrm{\ }\mathrm{ = }{\mathrm{a}}_{\mathrm{1}}\mathrm{\ }\mathrm{\ }\mathrm{\ }\mathrm{ = }\mathrm{\ }{\mathrm{a}}_{\mathrm{2}}\mathrm{\ }, \ {\mathrm{a}}_{\mathrm{n}}\, {\mathrm{a}}_{\mathrm{n+1}}\ \mathrm{\ }\mathrm{ = }\mathrm{\ }{\mathrm{a}}_{\mathrm{n+2}}\mathrm{ = }{\mathrm{a}}_{\mathrm{n+3}}\mathrm{\ }\mathrm{)} .
In this section, we have constructed different parts of an airplane i.e. airfoil, winglet and vertical stabilizer.
In aircraft industry winglets have become one of the distinguish fuel saving technology and their use keep increasing. Winglets also increase the operating efficiency of airplane.
Here the winglet of an airplane has been designed see Figure 10. In the designing of the winglet different values of shape parameters which they have been tabulated in Table 2, makes the designing more appropriate and smooth.
Sr. no | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
\nu | 0.01 | 0.02 | 0.03 | 0.04 | 0.05 | 0.06 | 0.07 | 0.08 |
\beta | 0.2425 | 0.245 | 0.2425 | 0.24 | 0.2375 | 0.235 | 0.2325 | 0.23 |
Sr. no | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
\nu | 0.09 | 0.1 | 0.11 | 0.12 | 0.13 | 0.14 | 0.15 | 0.16 |
\beta | 0.2275 | 0.225 | 0.2225 | 0.22 | 0.2175 | 0.215 | 0.2125 | 0.21 |
They are used for the description of cross sectional structure of airplane when passed through a fluid such as aerodynamic force. Airfoils are employed on planes wings to provide elevate. Here, an airfoil has been constructed using QTBS applying various valued of two shape parameter {\rm{ \mathsf{ ν} }} and {\rm{ \mathsf{ β} }} as shown in Table 2. The 2D designing is shown in Figure 11(a) where in Figure 11(b) presents the 3D image of airfoil.
Turbomachinery blade has been designed using QTBS curves as shown in Figure 12.
The most important function of vertical blade/stabilizer is to maintain the aircraft in straight position and to balance level flight of aircraft. It also keeps the stability of airplane about its vertical axis. Here, the designing of a vertical stabilizer has been constructed using QTBS curves with the association of two shape parameters {\rm{ \mathsf{ ν} }} and {\rm{ \mathsf{ β} }} as shown in Figure 13. The 2D and 3D designed vertical blades are shown in Figure 13(a) and 13(b), respectively.
For a \mathrm{\in } [a {}_{i} , a {}_{i} {}_{+1} ], and u = \frac{\pi }{2}\frac{{a-a}_i}{\mathit{\Delta}a_i} , the QTBS can be rewrite as:
\begin{equation} S_i\left(u\right) = P_{i-1}+\left(f_i\left(u\right)+g_i\left(u\right)\right)\left(\frac{\ \ \ \ {f_i\ (u)P}_{i-2}+{g_i\ (u)P}_i}{{f_i\left(u\right)+g}_i(u)}-P_{i-1}\right). \end{equation} | (9.1) |
According to this, the NURBS curve can be approximated as:
\begin{equation} T_i\left(v\right) = P_{i-1}+\left(b_{i0}\left(v\right)\mathrm{+\ }b_{i2}\left(v\right)\right)\left(\frac{\ \ {b_{i0}\ \left(v\right)P}_{i-2}+{b_{i2}\ \left(v\right)p}_i}{{b_{i0}\left(v\right)+b}_{i2}\left(v\right)}-P_{i-1}\right), \end{equation} | (9.2) |
where, b {}_{i0} (v) = \alpha {}_{i2} \gamma {}_{i} (1 \mathrm{-} v) {}^{2} / \alpha (v), b {}_{i0} (v) = \alpha {}_{i} \omega {}_{i} (v) {}^{2} / \alpha (v), \alpha (v) = \alpha {}_{i} {}_{\mathrm{-}} {}_{2} \gamma {}_{i} (1 \mathrm{-} v) {}^{2} + \alpha {}_{i} \omega {}_{i} (v) {}^{2\ } + \alpha {}_{i} {}_{\mathrm{-}} {}_{1} (1 \mathrm{-} \gamma {}_{i} )(1 \mathrm{-} v) {}^{2} + 2(1 \mathrm{-} v)v + (1 \mathrm{-} \omega {}_{i} )v {}^{2} , and \alpha {}_{i} {}_{\mathrm{-}} {}_{1} , \alpha {}_{i} {}_{\mathrm{-}} {}_{2} , \alpha \mathrm{-} i are weight numbers. The boundaries of the curve are:
\begin{equation} \left\{ \begin{array}{c} T_i\left(0\right) = \left(\frac{{a_{i-2}{\gamma }_i\ P}_{i-2}+{{\alpha }_{i-1}{\omega }_{i-1}\ P}_{i-1}}{{\alpha }_{i-1}{\gamma }_{i+1}+{\alpha }_i{\omega }_i}\right), \\ T_i\left(1\right) = \left(\frac{{a_{i-1}{\gamma }_i+\ P}_{i-1}+{{\alpha }_i{\omega }_i\ P}_i}{{\alpha }_{i-1}{\gamma }_{i+1}+{\alpha }_i{\omega }_i}\right). \end{array} \right. \end{equation} | (9.3) |
In this paper, we have constructed QTBS with two shape parameters. Our proposed scheme satisfies all the basic properties and has been proved. The proposed quadratic trigonometric B-spline is more suitable for designing due to the presence of shape parameters than ordinary quadratic B-spline. With the use of shape parameters we obtain more flexible curve which is according to a designing technology. It is an important feature in the construction of curves that it should be controlled easily and within the convex hull. The proposed QTBS can control the modeling of the geometric curves in a decorous manner because it can construct more appropriate and flexible curves. It is numerically stable. It is also useful from economical point of view as it reduces computational cost as compare to inserting more control points. Different parts of an airplane have been designed using proposed technique.
This research is supported by the Ministry of Higher Education Malaysia through Fundamental Research Grant Scheme (FRGS/1/2020/STG06/USM/03/1) and School of Mathematical Sciences, Universiti Sains Malaysia. The authors are very grateful to the anonymous referees for their valuable suggestions.
The authors declare that they have no conflicts of interest to report regarding the present study.
Proof. For a\in \left(a_i, a_{i+1}\right), u = \frac{a-a_i}{2\Delta a_i}\in \left(0, \frac{\pi }{2}\right), \ c_1\left(a\right) = g_i\left(u\right), we have {\omega }_i+{\beta }_i-{\omega }_i\left(1-{\nu }_i\cos u\right)+\left({\omega }_i{\nu }_i-{\beta }_i\right) > 0 and {\omega }_i+{\beta }_i-{\omega }_i\left(1-{\nu }_i\cos u\right)+{\cos}^2u\left({\omega }_i{\nu }_i-{\beta }_i\right) > 0, for a\in \left(a_{i+1}, a_{i+2}\right), u = \frac{a-a_i}{2\Delta a_{i+1}}\in \left(0, \frac{\pi }{2}\right), \ c_i\left(a\right) = 1-f_{i+1}\left(u\right)-g_{i+1}\left(u\right).
when u = 0 ,
c_i\left(a\right) = 1-y_{i+1}+{\beta }_i |
\ \ \ \ \ \ \ \ \ = {\omega }_i+{\beta }_i > 0 |
when a\in (a_i, a_{i+1}) , let, {\xi }_{i+1} = {\mathrm{max} \left\{{\gamma }_{i+1}+{\omega }_{i+1}\right\}\ } ,
f_{i+1}\left(u\right)+g_{i+1}\left(u\right) < {\xi }_{i+1}[\left\{1-\left(1-{\nu }_i\right)\sin u+{\nu }_i{\sin}^2u\right\}+\{1-(1-{\nu }_{i+1})\cos u+{\nu }_i{\cos}^2u\} |
= {\xi }_{i+1}-{\beta }_i{\cos}^2u+{\beta }_i{\sin}^2u |
= {\xi }_{i+1}-{\beta }_i+({\beta }_i+{\beta }_i+1){\sin}^2u. |
Since {\beta }_i\ge -{\mathrm{min} \left\{{\gamma }_{i+2}, {\omega }_i\right\}\ }, {\beta }_{i+1}\le \mathrm{min}\mathrm{}\{{\gamma }_{i+2}, {\omega }_i \mathrm{\}} , we have y_{i+1}-{\beta }_i\le 1, \ y_{i+1}\le 1 .
Thus, f_{i+1}\left(u\right)+g_{i+1}\left(u\right) < 1 and C_i\left(a\right) > 0 . For a\in \left(a_{i+2}, a_{i+3}\right), u = \frac{a-a_i}{2\Delta a_{i+2}}\in \left(0, \frac{\pi }{2}\right), \ c_1\left(a\right) = f_{i+2}(u) and
f_{i+2}\left(u\right) < {\gamma }_{i+2}\left\{1-\left(1-{\nu }_{i+1}\right)\sin u+{\nu }_{i+1}{\\sin}^2u\right\}-{\beta }_{i+1}{\\cos}^2 u, |
{\beta }_{i+2}\le {\gamma }_{i+2}\left(1-{\nu }_{i+1}\right)c < {\gamma }_{i+1}, |
{\gamma }_{i+2}-{\beta }_{i+1}-\left({\gamma }_{i+2}+{\gamma }_{i+2}{\nu }_{i+1}\right)\sin u+({\gamma }_{i+2}{\nu }_{i+1}+{\beta }_{i+1}{)\sin}^2u > 0. |
Thus, we can say -1 < {\nu }_i\le 1, \ \ i = 0, 1, \dots, n+1 ,
{\beta }_i\ge -{\mathrm{min} \left\{{\gamma }_{i+1}, \frac{1}{2}{\omega }_i\left(1-{\nu }_i\right)\right\}\ }, \ i = 0, 1, 2, \dots , n |
{\beta }_i\ge -{\mathrm{min} \left\{\frac{1}{2}{\gamma }_{i+1}\left(1-{\nu }_i\right), {\ \omega }_{i+1}\right\}\ }, i = 0, 1, 2, \dots , n+1 |
Hence, for all {\ c}_i\mathrm{(}u\mathrm{)\ } > \ 0 , for a\in \left(a_{i+2}, a_{i+3}\right), \ i = 0, 1, 2, \dots, n
Proof. The QTBS basis functions (2.1) can also be written as:
\left\{ \begin{array}{c} C_{i-2}\left(a\right) = \ f(u_i\left(a\right)), \mathrm{\ } \\ C_{i-1}\left(a\right) = 1-\ f\left(u_i\left(a\right)\right)-g\left(u_i\left(a\right)\right) \\ C_i\left(a\right) = g\left(u_i\left(a\right)\right) \end{array} \right. |
Let C_k\left(a\right) = 0, k\neq i-2, \ i-1, \ i
Thus, \sum^n_{i = 0}{C_i\left(a\right) = }C_{i-2}\left(a\right)+C_{i-1}\left(a\right)+C_i\left(a\right) .
Hence, \sum^n_{i = 0}{C\left(a\right) = 1}
Continuity at first knot
Proof.
\left\{ \begin{array}{c} C_i{(a}^-_{ \rm{?}+1}) = {\omega }_i+{\beta }_i, \\ C_i{(a}^-_{ \rm{?}+1}) = {1+\lambda }_i. \end{array} \right. |
L.H.S continuity, consider \ C_i\left(a\right) = g\left(u_i\left(a\right)\right). Putting values, we have
g\left(u_i\left(a\right)\right) = \left\{ \begin{array}{c} {\omega }_i\left(1-\left(1+v\right){\mathrm{cos} \left(u\right)\ }+v{cos}^2\left(u\right)\right)+{\beta }_i{sin}^2u \\ {\omega }_i(1-\left(1+v\right)cos\left(\frac{\mathrm{{\rm{ \mathsf{ π} }} }}{2}\frac{a-a_i}{\mathit{\Delta}a_i}\right)+v{cos}^2\left(\frac{\mathrm{{\rm{ \mathsf{ π} }} }}{2}\frac{a-a_i}{\mathit{\Delta}a_i}\right))+{\beta }_i{sin}^2\left(\frac{\mathrm{{\rm{ \mathsf{ π} }} }}{2}\frac{a-a_i}{\mathit{\Delta}a_i}\right) \end{array} \right. |
Replacing a by a {}_{i} {}_{+1} , we have
\begin{eqnarray*} C_i\left(a^-_{ \rm{i}+1}\right)& = &\omega i\mathrm{\ \ 1\ -}\left(\mathrm{1\ +\ }\nu \right){\mathrm{cos} \left(\frac{\mathrm{{\rm{ \mathsf{ π} }} }}{2}\frac{a_i+1-a_i}{\mathit{\Delta}a_i}\right)\ }\mathrm{+\ }\nu \mathrm{\ cos}\mathrm{2}\mathrm{\ }\left(\frac{\mathrm{{\rm{ \mathsf{ π} }} }}{2}\frac{a-a_i}{\mathit{\Delta}a_i}\right)\mathrm{\ +\ }\beta isin2\mathrm{\ }\left(\frac{\mathrm{{\rm{ \mathsf{ π} }} }}{2}\frac{a-a_i}{\mathit{\Delta}a_i}\right)\\ & = &\omega i\mathrm{\ 1\ -}\left(\mathrm{1\ +\ }\nu \right){\mathrm{cos} \left(\frac{\mathrm{{\rm{ \mathsf{ π} }} }}{2}\frac{\mathit{\Delta}a_i}{\mathit{\Delta}a_i}\right)\ }\mathrm{\ +\ }\nu \mathrm{\ cos}\mathrm{2}\mathrm{\ }\left(\frac{\mathrm{{\rm{ \mathsf{ π} }} }}{2}\frac{\mathit{\Delta}a_i}{\mathit{\Delta}a_i}\right)\mathrm{+\ }\beta i\mathrm{\ sin}\mathrm{2}\mathrm{\ }\left(\frac{\mathrm{{\rm{ \mathsf{ π} }} }}{2}\frac{\mathit{\Delta}a_i}{\mathit{\Delta}a_i}\right)\\ & = &\omega i\mathrm{\ 1\ -}\left(\mathrm{1\ +\ }\nu \right){\mathrm{cos} \left(\frac{\mathrm{{\rm{ \mathsf{ π} }} }}{2}\frac{\mathit{\Delta}a_i}{\mathit{\Delta}a_i}\right)\ }\mathrm{\ +\ }\nu \mathrm{\ cos}\mathrm{2}\mathrm{\ }\left(\frac{\mathrm{{\rm{ \mathsf{ π} }} }}{2}\frac{\mathit{\Delta}a_i}{\mathit{\Delta}a_i}\right)\mathrm{+\ }\beta i\mathrm{\ sin}\mathrm{2}\mathrm{\ }\left(\frac{\mathrm{{\rm{ \mathsf{ π} }} }}{2}\frac{\mathit{\Delta}a_i}{\mathit{\Delta}a_i}\right)\\ & = &\omega i\mathrm{\ +\ }\beta i \end{eqnarray*} |
Hence, proved.
R.H.S continuity, consider C {}_{i} ( a^+_{ \rm{i}+1} ) = 1 \mathrm{-} \gamma {}_{i} , let 1 \mathrm{-} f(u {}_{i} {}_{+1} (a)) \mathrm{-} g(u {}_{i} {}_{+1} (a)), putting value of u {}_{i} {}_{+1} , we have
\begin{array}{l} 1-f\left(u_{i+1}(a)\right)-g\left(u_{i+1}(a)\right)=1-\left\{\gamma_{i+1}\left\{1-(1-v) sin \left(\frac{\pi}{2} \frac{a-a_{i+1}}{\Delta a_{i+1}}\right)+v sin ^{2}\left(\frac{\pi}{2} \frac{a-a_{i+1}}{\Delta a_{i+1}}\right)\right\}-\beta_{i} \cos ^{2}\left(\frac{\pi}{2} \frac{a-a_{i+1}}{\Delta a_{i+1}}\right)\right\}\\ -\left\{\omega_{i+1}\left\{1-(1-v) cos \left(\frac{\pi}{2} \frac{a-a_{i+1}}{\Delta a_{i+1}}\right) v cos ^{2}\left(\frac{\pi}{2} \frac{a-a_{i+1}}{\Delta a_{i+1}}\right)\right\}+\beta_{i+1} sin \left(\frac{\pi}{2} \frac{a-a_{i+1}}{\Delta a_{i+1}}\right)\right\} . \text { Replacing } a \text { by } a_{i+1}, \text { we obtain }\\ 1-\mathrm{f}\left(u_{i+1}(a)\right)-g\left(u_{i+1}(a)\right)=1-\left\{\gamma _ { i + 1 } \left\{1-(1-v) sin \left(\frac{\pi}{2} \frac{a_{i+1}-a_{i+1}}{\Delta a_{i+1}}\right)+v sin ^{2}\left(\frac{\pi}{2} \frac{a_{i+1}-a_{i+1}}{\Delta a_{i+1}}\right)-\beta_{i}\right.\right.\\ \left.\left.\cos ^{2}\left(\frac{\pi}{2} \frac{a_{i+1}-a_{i+1}}{\Delta a_{i+1}}\right)\right\}-\left\{\omega_{i+1} 1-(1-v) cos \left(\frac{\pi}{2} \frac{a_{i+1}-a_{i+1}}{\Delta a_{i+1}}\right)+v cos ^{2}\left(\frac{\pi}{2} \frac{\pi_{i+1}-a_{i+1}}{\Delta a_{i+1}}\right)\right\}+\beta_{i+1} sin \left(\frac{\pi}{2} \frac{a_{i+1}-a_{i+1}}{\Delta a_{i+1}}\right)\right\} \end{array} |
After some simplification,
\begin{array}{l} 1-f\left(u_{i+1}(a)\right)-g\left(u_{i+1}(a)\right)=1-\left\{\gamma_{i+1}\left\{1-(1-v) sin (0)+v sin ^{2}(0)\right\}-\beta_{i} cos ^{2}(0)\right\} \\ \quad-\left\{\omega_{i+1}\left\{1-(1-v) cos (0)+v cos ^{2}(0)\right\}-\beta_{i+1} sin ^{2}(0)\right\} \\ \quad=1-\left\{\gamma_{i+1}\{1+0+0\}-\beta_{i}\right\}-\left\{\omega_{i+1}\{1-1+v-v\}-0\right\} \end{array} |
Thus,
{\rm{ }}Ci{\rm{ }}\left( {a_{{\rm{i}} + 1}^ + } \right) = 1 - {\gamma _{i + 1}} + {\beta _i} |
Similarly,
\left\{ \begin{array}{c} c_i\mathrm{\ (}a^-_{ \rm{i}+2}\mathrm{)\ = \ 1\ -\ }{\omega }_{i\mathrm{+1}}\mathrm{\ -\ }{\beta }_{i\mathrm{+1}}, \\ c_i\mathrm{\ (}a^+_{ \rm{i}+2}\mathrm{)\ = \ }{\gamma }_{i\mathrm{+2}}\mathrm{\ -\ }{\beta }_{i\mathrm{+1}}, \end{array} \right. |
and
\left\{ \begin{array}{c} c^\prime_i\mathrm{\ }\left(a^-_{ \rm{i}+1}\right)\mathrm{ = \ }\frac{\pi }{2}\frac{\left(1+v\right)}{\mathit{\Delta}a_i}{\omega }_i\mathrm{, \ \ \ \ }c^\prime_i\mathrm{\ }\left(a^+_{ \rm{i}+1}\right)\mathrm{\ = \ }\frac{\pi }{2}\frac{\left(1+v\right)}{\mathit{\Delta}a_i}{\gamma }_{i+1}, \\ c^\prime_i\mathrm{\ }\left(a^-_{ \rm{i}+2}\right)\mathrm{\ = \ }\frac{\pi }{2}\frac{\left(1+v\right)}{\mathit{\Delta}a_{i+1}}{\omega }_{i+1}\mathrm{, \ \ \ \ }c^\prime_i\mathrm{\ }\left(a^+_{ \rm{i}+2}\right)\mathrm{\ = \ }\frac{\pi }{2}\frac{\left(1+v\right)}{\mathit{\Delta}a_{i+2}}{\gamma }_{i+2}, \\ {\gamma }_{j\mathrm{+1}}\mathrm{\ = \ 1\ -}{\omega }_{j\mathrm{+1}}\mathrm{\ , }{\gamma }_{j\mathrm{+1}}\mathrm{/}\mathrm{\Delta }a_{j\mathrm{+1}}\mathrm{\ = \ }{\omega }_i\mathrm{/}\mathrm{\Delta }a_i\mathrm{\ , \ 0\ }\mathrm{\le }\mathrm{\ }i\mathrm{\ }\mathrm{\le }\mathrm{\ }n\mathrm{\ +\ 1.} \end{array} \right. |
Thus, we obtain the following results
\left\{ \begin{array}{c} c^{(k)}_i\mathrm{\ }\left(a^-_{ \rm{i}+1}\right)\mathrm{ = }{\ c}^{\left(k\right)}_i\mathrm{\ }\left(a^+_{ \rm{i}+1}\right), \\ c^{(k)}_i\mathrm{\ }\mathrm{\ }\left(a^-_{ \rm{i}+2}\right)\mathrm{ = }{\ c}^{\left(k\right)}_i\mathrm{\ }\left(a^+_{ \rm{i}+2}\right), \end{array} \right. for \ k = 0, 1
If \nu = 0, then our QTBS basis functions will become the linear trigonometric basis functions.
[1] | B. Kulfan, J. Bussoletti, Fundamental parameteric geometry representations for aircraft component shapes, 11th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, The modeling and simulation frontier for multidisciplinary design optimization, Portsmouth, Virginia, 2006. |
[2] | J. J. Maisonneuve, D. P. Hills, P. Morelle, C. Fleury, A. J. G. Schoofs, A shape optimisation tool for multi-disciplinary industrial design, In: Computational methods in applied sciences 96: proceedings of the 2nd ECCOMAS conference, Paris, France, 1996,516-522. |
[3] |
U. Bashir, M. Abbas, M. N. H. Awang, J. M. Ali, A class of quasi-quintic trigonometric Bézier curve with two shape parameters, Science Asia, 39S (2013), 11-15. doi: 10.2306/scienceasia1513-1874.2013.39S.011
![]() |
[4] | U. Bashir, M. Abbas, J. M. Ali, The G2 and C2 rational quadratic trigonometric Bezier curve with two shape parameters with applications, Appl. Math. Comput., 219 (2013), 10183-10197. |
[5] |
S. BiBi, M. Abbas, M. Y. Misro, G. Hu, A novel approach of hybrid trigonometric Bézier curve to the modeling of symmetric revolutionary curves and symmetric rotation surfaces, IEEE Access, 7 (2019), 165779-165792. doi: 10.1109/ACCESS.2019.2953496
![]() |
[6] | S. Maqsood, M. Abbas, G. Hu, A. L. A. Ramli, K. T. Miura, A novel generalization of trigono-metric Bézier curve and surface with shape parameters and its applications, Math. Probl. Eng., 2020 (2020), 4036434. |
[7] | M. Usman, M. Abbas, K. T. Miura, Some engineering applications of new trigonometric cubic Bézier-like curves to free-form complex curve modeling, J. Adv. Mech. Des. Syst., 14 (2020), 1-15. |
[8] |
X. Z. Hu, G. Hu, M. Abbas, M. Y. Misro, Approximate multi-degree reduction of Q-Bézier curves via generalized Bernstein polynomial functions, Adv. Differ. Equ., 2020 (2020), 413. doi: 10.1186/s13662-020-02871-y
![]() |
[9] |
F. H. Li, G. Hu, M. Abbas, K. T. Miura, The generalized H-Bézier model: Geometric continuity conditions and applications to curve and surface modeling, Mathematics, 8 (2020), 924. doi: 10.3390/math8060924
![]() |
[10] |
A. Majeed, M. Abbas, K. T. Miura, M. Kamran, T. Nazir, Surface modeling from 2D contours with an application to craniofacial fracture construction, Mathematics, 8 (2020), 1246. doi: 10.3390/math8101793
![]() |
[11] |
G. Hu, H. N. Li, M. Abbas, K. T. Miura, G. L. Wei, Explicit continuity conditions for G1 connection of S-\lambda curves and surfaces, Mathematics, 8 (2020), 1359. doi: 10.3390/math8081359
![]() |
[12] |
B. M. Kulfan, Universal parametric geometry representation method, J. Aircraft, 45 (2008), 142-158. doi: 10.2514/1.29958
![]() |
[13] | A. Majeed, A. R. M. Piah, Image reconstruction using rational Ball interpolant and genetic algorithm, Appl. Math. Sci., 8 (2014), 3683-3692. |
[14] | A. Majeed, A. R. M. Piah, Reconstruction of craniofacial image using rational cubic Ball interpolant and soft computing technique, In: AIP Conference Proceedings, 1682 (2015), 030001. |
[15] | W. P. Henderson, The effect of canard and vertical tails on the aerodynamic characteristics of a model with a 59 deg sweptback wing at a Mach number of 0.30, 1974. |
[16] | M. Maughmer, The design of winglets for low-speed aircraft, Technical Soaring, 30 (2016), 6173. |
[17] | J. M. Grasmeyer, Multidisciplinary design optimization of a strut-braced wing aircraft, Ph.D. dissertation, Virginia Polytechnic Institute and State University, Blacksburg, USA, 1998. |
[18] | S. Rajendran, Design of Parametric Winglets and Wing tip devices: A conceptual design approach, Ph.D. dissertation, Linkoping University, SE-58183 Linkoping, Sweden, 2012. |
[19] |
A. Majeed, M. Kamran, M. K. Iqbal, D. Baleanu, Solving time fractional Burgers and Fishers equations using cubic B-spline approximation method, Adv. Differ. Equ., 2020 (2020), 175. doi: 10.1186/s13662-020-02619-8
![]() |
[20] |
A. Majeed, M. Abbas, F. Qayyum, K. T. Miura, M. Y. Misro, T. Nazir, Geometric modeling using new Cubic trigonometric B-Spline functions with shape parameter, Mathematics, 8 (2020), 2102. doi: 10.3390/math8101793
![]() |
[21] |
A. Majeed, F. Qayyum, New rational cubic trigonometric B-spline curves with two shape parameters, Comput. Appl. Math., 39 (2020), 1-24. doi: 10.1007/s40314-019-0964-8
![]() |
[22] |
X. L. Han, Quadratic trigonometric polynomial curves with a shape parameter, Comput. Aided Geom. D., 21 (2004), 535-548. doi: 10.1016/j.cagd.2004.03.001
![]() |
[23] |
X. L. Han, Piecewise quadratic trigonometric polynomial curves, Math. Comput., 72 (2003), 1369-1377. doi: 10.1090/S0025-5718-03-01530-8
![]() |
[24] | J. Lin, S. Reutskiy, A cubic B-spline semi-analytical algorithm for simulation of 3D steady-state convection- diffusion-reaction problems. Appl. Math. Comput., 371 (2020), 124944. |
[25] |
S. Reutskiy, Y. H. Zhang, J. Lin, H. G. Sun, Novel numerical method based on cubic B-splines for a class of nonlinear generalized telegraph equations in irregular domains, Alex. Eng. J., 59 (2020), 77-90. doi: 10.1016/j.aej.2019.12.009
![]() |
[26] |
S. Reutskiy, J. Lin, B. Zheng, J. Y. Tong, A novel B-Spline method for modeling transport problems in anisotropic inhomogeneous Media, Adv. Appl. Math. Mech., 13 (2021), 590-618. doi: 10.4208/aamm.OA-2020-0052
![]() |
[27] |
G. Hu, J. L. Wu, X. Q. Qin, A novel extension of the Bezier model and its applications to surface modeling, Adv. Eng. Softw., 125 (2018), 27-54. doi: 10.1016/j.advengsoft.2018.09.002
![]() |
[28] |
G. Hu, J. L. Wu, Generalized quartic H-Bezier curves: Construction and application to developable surfaces, Adv. Eng. Softw., 138 (2019), 102723. doi: 10.1016/j.advengsoft.2019.102723
![]() |
[29] | G. Hu, C. C. Bo, G. Wei, X. Q. Qin, Shape-adjustable generalized Bezier surfaces: Construction and it is geometric continuity conditions, Appl. Math. Comput., 378 (2020), 125215. |
1. | Yanjiao Wang, Shihua Tang, Muqing Deng, Modeling nonlinear systems using the tensor network B‐spline and the multi‐innovation identification theory, 2022, 32, 1049-8923, 7304, 10.1002/rnc.6221 | |
2. | Gang Hu, Min Li, Jingyu Zhong, Combined cubic generalized ball surfaces: Construction and shape optimization using an enhanced JS algorithm, 2023, 176, 09659978, 103404, 10.1016/j.advengsoft.2022.103404 | |
3. | Mohsin Kamran, Muhammad Abbas, Abdul Majeed, Homan Emadifar, Tahir Nazir, Alexander Meskhi, Numerical Simulation of Time Fractional BBM-Burger Equation Using Cubic B-Spline Functions, 2022, 2022, 2314-8888, 1, 10.1155/2022/2119416 | |
4. | Wang Zhenwei, Zhang Ziyu, Nakajima Shuro, Chen Hong, An equivalent parameter geometric shape representation using independent coordinates of cubic Bézier control points, 2022, 35, 0951-7715, 4085, 10.1088/1361-6544/ac7704 | |
5. | Xiaoling Meng, Xijing Zhu, Autonomous Obstacle Avoidance Path Planning for Grasping Manipulator Based on Elite Smoothing Ant Colony Algorithm, 2022, 14, 2073-8994, 1843, 10.3390/sym14091843 | |
6. | Guoxing Zhang, Xinlu Xia, Yulei Hou, Jinwei Guo, Jianliang He, Chong Li, Optimal design and trajectory tracking experiment of a novel 3-DOF parallel antenna mechanism, 2022, 12, 2158-3226, 025321, 10.1063/5.0079915 | |
7. | Mei Li, Wanqiang Shen, Integral method from even to odd order for trigonometric B-spline basis, 2024, 9, 2473-6988, 36470, 10.3934/math.20241729 | |
8. | Jiabin Dong, Ning Yang, Yi Jin, Ying Wu, Dandan Liu, Junling Zheng, Jingyan Zhao, A novel construction approach for the pore structure model principally focuses on the controllable roundness of rock particles, 2025, 2097-0668, 10.1002/dug2.12151 |
Sr. no. | value of {\rm{ \mathsf{ ν} }} | value of {\rm{ \mathsf{ β} }} |
1 | 0.1 | 0.225 |
2 | 0.2 | 0.200 |
3 | 0.3 | 0.175 |
4 | 0.4 | 0.150 |
5 | 0.5 | 0.125 |
6 | 0.6 | 0.100 |
7 | 0.7 | 0.075 |
8 | 0.8 | 0.050 |
9 | 0.9 | 0.025 |
Sr. no | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
\nu | 0.01 | 0.02 | 0.03 | 0.04 | 0.05 | 0.06 | 0.07 | 0.08 |
\beta | 0.2425 | 0.245 | 0.2425 | 0.24 | 0.2375 | 0.235 | 0.2325 | 0.23 |
Sr. no | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
\nu | 0.09 | 0.1 | 0.11 | 0.12 | 0.13 | 0.14 | 0.15 | 0.16 |
\beta | 0.2275 | 0.225 | 0.2225 | 0.22 | 0.2175 | 0.215 | 0.2125 | 0.21 |
Sr. no. | value of {\rm{ \mathsf{ ν} }} | value of {\rm{ \mathsf{ β} }} |
1 | 0.1 | 0.225 |
2 | 0.2 | 0.200 |
3 | 0.3 | 0.175 |
4 | 0.4 | 0.150 |
5 | 0.5 | 0.125 |
6 | 0.6 | 0.100 |
7 | 0.7 | 0.075 |
8 | 0.8 | 0.050 |
9 | 0.9 | 0.025 |
Sr. no | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
\nu | 0.01 | 0.02 | 0.03 | 0.04 | 0.05 | 0.06 | 0.07 | 0.08 |
\beta | 0.2425 | 0.245 | 0.2425 | 0.24 | 0.2375 | 0.235 | 0.2325 | 0.23 |
Sr. no | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
\nu | 0.09 | 0.1 | 0.11 | 0.12 | 0.13 | 0.14 | 0.15 | 0.16 |
\beta | 0.2275 | 0.225 | 0.2225 | 0.22 | 0.2175 | 0.215 | 0.2125 | 0.21 |