Processing math: 100%
Research article

Blow up of solutions for a system of two singular nonlocal viscoelastic equations with damping, general source terms and a wide class of relaxation functions

  • Received: 24 December 2020 Accepted: 18 February 2021 Published: 24 February 2021
  • MSC : 35L20, 35L35

  • This work studies the blow up result of the solution of a coupled nonlocal singular viscoelastic equation with damping and general source terms under some suitable conditions.

    Citation: Salah Boulaaras, Abdelbaki Choucha, Bahri Cherif, Asma Alharbi, Mohamed Abdalla. Blow up of solutions for a system of two singular nonlocal viscoelastic equations with damping, general source terms and a wide class of relaxation functions[J]. AIMS Mathematics, 2021, 6(5): 4664-4676. doi: 10.3934/math.2021274

    Related Papers:

    [1] Xiaoming Peng, Xiaoxiao Zheng, Yadong Shang . Lower bounds for the blow-up time to a nonlinear viscoelastic wave equation with strong damping. AIMS Mathematics, 2018, 3(4): 514-523. doi: 10.3934/Math.2018.4.514
    [2] Hatice Taskesen . Qualitative results for a relativistic wave equation with multiplicative noise and damping terms. AIMS Mathematics, 2023, 8(7): 15232-15254. doi: 10.3934/math.2023778
    [3] Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Maher Nour, Mostafa Zahri . Stabilization of a viscoelastic wave equation with boundary damping and variable exponents: Theoretical and numerical study. AIMS Mathematics, 2022, 7(8): 15370-15401. doi: 10.3934/math.2022842
    [4] Sen Ming, Xiaodong Wang, Xiongmei Fan, Xiao Wu . Blow-up of solutions for coupled wave equations with damping terms and derivative nonlinearities. AIMS Mathematics, 2024, 9(10): 26854-26876. doi: 10.3934/math.20241307
    [5] Zayd Hajjej, Sun-Hye Park . Asymptotic stability of a quasi-linear viscoelastic Kirchhoff plate equation with logarithmic source and time delay. AIMS Mathematics, 2023, 8(10): 24087-24115. doi: 10.3934/math.20231228
    [6] Zayd Hajjej . A suspension bridges with a fractional time delay: Asymptotic behavior and Blow-up in finite time. AIMS Mathematics, 2024, 9(8): 22022-22040. doi: 10.3934/math.20241070
    [7] Aihui Sun, Hui Xu . Decay estimate and blow-up for fractional Kirchhoff wave equations involving a logarithmic source. AIMS Mathematics, 2025, 10(6): 14032-14054. doi: 10.3934/math.2025631
    [8] Salim A. Messaoudi, Mohammad M. Al-Gharabli, Adel M. Al-Mahdi, Mohammed A. Al-Osta . A coupled system of Laplacian and bi-Laplacian equations with nonlinear dampings and source terms of variable-exponents nonlinearities: Existence, uniqueness, blow-up and a large-time asymptotic behavior. AIMS Mathematics, 2023, 8(4): 7933-7966. doi: 10.3934/math.2023400
    [9] Ahmed Himadan . Well defined extinction time of solutions for a class of weak-viscoelastic parabolic equation with positive initial energy. AIMS Mathematics, 2021, 6(5): 4331-4344. doi: 10.3934/math.2021257
    [10] Jincheng Shi, Jianye Xia, Wenjing Zhi . Blow-up of energy solutions for the semilinear generalized Tricomi equation with nonlinear memory term. AIMS Mathematics, 2021, 6(10): 10907-10919. doi: 10.3934/math.2021634
  • This work studies the blow up result of the solution of a coupled nonlocal singular viscoelastic equation with damping and general source terms under some suitable conditions.



    Mixed non local problems for hyperbolic and parabolic PDEs, have been studied intensively in recent decades. Such equations or systems with constraints modelize many time-dependant physical phenomena. These constraints can be a data measured directly on the boundary or giving integral boundary conditions (se for example [5,6,7,8,9,10,11,12,13,14,15,16,17,18,19]).

    The aim of this work, is to show the blow up of solutions of the viscoelastic one-dimensional system

    {utt(xux)xx+t01xg1(ts)(xux(x,s))xds+μ1ut(x,t)=f1(u,v), in DT,vtt(xvx)xx+t01xg2(ts)(xvx(x,s))xds+μ2vt(x,t)=f2(u,v), in DT,v(x,0)=v0(x), vt(x,0)=v1(x), x(0,L),u(x,0)=u0(x), ut(x,0)=u1(x), x(0,L),L0xu(x,t)dx=L0xv(x,t)dx=0,  u(L,t)=v(L,t)=0. (1.1)

    f1(.,.), f2(.,.):R2R are given by

    {f1(u,v)=a1|u+v|2(r+1)(u+v)+b1|u|r.u.|v|r+2,f2(u,v)=a1|u+v|2(r+1)(u+v)+b1|v|r.v.|u|r+2, (1.2)

    with r1, a1,b1R.

    DT=(0,L)×(0,T),L,T,μ1 and μ2 are positive constants, g1,g2:R+R+ are functions to be specified later.

    This work is motivated by [11], where S. Mesloub studied a problem modelizing the movement of a two-dimensional viscoelastic object on a disc :

    {ut1x(xux)x1x(xux)xt=f(x,t,u,ux), in DT,u(x,0)=u0(x),ux(l,t)=0,  (u0)x(l)=0,l0xu(x,t)dx=0,  l0xu0(x)dx=0, (1.3)

    where DT={(x,t)R2, 0<x<l, 0<t<T}, and the source term f verifies some Lipschitz conditions.

    Using an iterative process, he proved the existence and uniqueness of the solution of the nonlinear problem (1.3).

    Later in [14], S.A. Messaoudi showed the existence of solutions with positive initial energy that blow up in finite time of the following nonlinear viscoelastic hyperbolic problem

    {uttΔu+t0g(ts)Δu(s)ds+ut|ut|m2=|u|p2u,  in Ω×(0,+),u(x,t)=0,  xΩ, t0,u(x,0)=u0(x), ut(x,0)=u1(x), xΩ.

    Ω is a bounded domain of Rn, (n1) with a smooth boundary Ω, p>2, m1.

    More work followed up on similar nonlocal singular viscoelastic equations and systems in [4,7,8,15,20,21].

    Recently in [3], we prove global existence and decay for system 1.1, by constructing a Lyapunov function combined with a perturbed energy.

    In [1] with absence of the damping term (μ1=μ2=0), the authors established a general decay result to the system 1.1.

    In this work, we continue our study on system 1.1. We start by giving the fundamental definitions and theorems on function spaces that we need, then we state the local existence theorem. Finally, we state and prove with suitable conditions the blow up in finite time of solutions for system 1.1.

    We start by defining the weighted Banach space Lpx=Lpx((0,L)) equipped with the norm

    uLpx=(L0x|u|pdx)1/p. (2.1)

    For p=2, we obtain the Hilbert space H=L2x((0,L)) equipped the finite norm

    uH=(L0xu2dx)1/2. (2.2)

    Consider also the Hilbert space V:=V1x((0,L))  with finite norm

    uV=(ux2H+u2H)1/2, (2.3)

    and

    V0={uV,  u(L)=0}. (2.4)

    As in Sobolev spaces, one can prove the following lemma

    Lemma 1. There exists C>0 such that

    L0xv2(x)dxCL0x(vx(x))2dx, for allvinV0. (2.5)

    Remark 1. Observe that in V0, uV is equivalent to uxH.

    Theorem 1. ([2]) There exists constant Cp>0 depending only on L and p, such that for 2<p<4, and any v in V0 we have

    L0x|v(x)|pdxCpvxpH. (2.6)

    Before stating the local existence of solutions result, we consider the following assumptions

    (A1) g1,g2:R+R+ are two differentiable and decreasing functions with

    g1(t)0,l1:=10g1(s)ds>0,g2(t)0,l2:=10g2(s)ds>0. (2.7)

    (A2)There exist non-increasing differentiable functions ϑ1,ϑ2:[0,+)(0,+) and C1 functions Φ1,Φ2:[0,+)[0,+) which are linear or strictly increasing and strictly convex C2 functions on (0,ε],εgi(0), with Φi(0)=Φi(0)=0 such that

    g1(t)ϑ1(t)Φ1(g1(t)),t0,g2(t)ϑ2(t)Φ2(g2(t)),t0. (2.8)

    (A3) r>1.

    First we have to introduce the definition of a weak solution to (1.1).

    Definition 1. We say that dualism (u,v) is a weak solution to the system (1.1) on [0,T] if

    u,vC([0,T];V0(0,L)L2(r+2)x(0,L)),ut,vtC([0,T];H).

    In addition, (u,v) satisfies

    L0xu(t)ϕdxL0xu1(t)ϕdx+μ1L0xu(t)ϕdxμ1L0xu0(t)ϕdx+t0L0xuxϕxdxdτ+t0L0τ0g1(τs)xux(x,s)ϕxdsdxdτ=t0L0xf1(u(τ),v(τ))ϕdxdτ,L0xv(t)φdxL0xv1(t)φdx+μ2L0xv(t)φdxμ2L0xv0(t)φdx+t0L0xvxφxdxdτ+t0L0τ0g2(τs)xvx(x,s)φxdsdxdτ=t0L0xf2(u(τ),v(τ))φdxdτ,

    for all test function ϕ,φV0(0,L), and for a.e. t[0,T]

    Theorem 2. Assume (A1)–(A3) hold.

    Then, there exists a small enough positive number T such that system (1.1) admits a unique local solution (u,v)[C((0,T);V0)C1((0,T);H)]2,

    (u0,v0)V20,  (u1,v1)H2.

    Remark 2. The proof of this theorem can be established exactly as in [22], and [3] where we also proved a global existence result for problem (1.1).

    Lemma 2. Let F(u,v) be a function defined as follows

    F(u,v)=12(r+2)[a1|u+v|2(r+2)+2b1|uv|r+2]0.

    Then

    12(r+2)[uf1(u,v)+vf2(u,v)]=F(u,v)

    and

    Fu=f1(u,v),Fv=f2(u,v).

    Take a1=b1=1 for convenience.

    Lemma 3. [17] There exist c1, c2 positive constants such that

    c12(r+2)(|u|2(r+2)+|v|2(r+2))F(u,v)c22(r+2)(|u|2(r+2)+|v|2(r+2)) (2.9)

    Lemma 4. Assume (A1), (A2) and (A3) hold, and (u,v) be a solution of (1.1), then the energy functional

    E(t):=12ut2H+12vt2H+12l1ux2H+12l2vx2H+12(g1oux)+12(g2ovx)L0xF(u,v)dx, (2.10)

    is non-increasing and it satisfies

    E(t)=μ1ut2Hμ2vt2H+12g1ux+12g2vxux2Ht0g1(s)dsvx2Ht0g2(s)ds0, (2.11)

    where

    (gux)(t)=L0t0xg(ts)|ux(x,t)ux(x,s)|2dsdx, (2.12)

    and

    L0xF(u,v)dx=12(r+2)(u+v2(r+2)L2(r+2)x+2uv(r+2)L(r+2)x). (2.13)

    Proof. By integration by parts, we obtain

    L0xuttutdx=12ddt[L0xu2tdx], (2.14)
    L0xvttvtdx=12ddt[L0xv2tdx], (2.15)
    L0(xux)xutdx=12ddt[L0xu2xdx], (2.16)
    L0(xvx)xvtdx=12ddt[L0xv2xdx], (2.17)
    L0t0g1(ts)(xux(s))xdsut(t)dx=12ddt[(g1ux)(t)t0g1(s)dsL0xu2xdx]
    12(g1ux)(t)+12g1(t)L0xu2xdx, (2.18)
    L0t0g2(ts)(xvx(s))xdsvt(t)dx=12ddt[(g2vx)(t)t0g2(t)dsL0xv2xdx]
    12(g2vx)(t)+12g2(t)L0xv2xdx. (2.19)

    By multiplying the first and second equations of system (1.1) by xut,xvt respectively, and integrating over (0,L), then using (2.14)–(2.19), we get

    ddt{12ut2H+12vt2H+12l1ux2H+12l2vx2H+12(g1ux)+12(g2vx)L0xF(u,v)dx}=μ1ut2Hμ2vt2H+12g1ux+12g2vxux2Ht0g1(s)dsvx2Ht0g2(s)ds. (2.20)

    From (2.7), (2.8) and (2.20), we obtain (2.11).

    Lemma 5. [16] There exist positive constants d and t0 such that, for any t[0,t0], we have

    gi(t)dgi(t),i=1,2. (2.21)

    Lemma 6. If (2.7) hold. Then, for any ϕV0, 0<α<1 and i=1,2, we have

    L0x(t0gi(ts)(ϕ(t)ϕ(s))ds)2dxCα,i(hiϕ)(t),i=1,2 (2.22)

    where Cα,i:=0g2i(s)αgi(s)gi(s)ds and hi:=αgigi.

    Now, we give the main result of this paper

    Theorem 3. Assume (A1)–(A3) hold, and E(0)<0. Then the solution of problem (1.1) blows up in finite time.

    Proof. Let us define the functional I by

    I(t)=E(t)=12ut2H12vt2H12l1ux2H12l2vx2H12(g1oux)12(g2ovx)+12(r+2)[u+v2(r+2)L2(r+2)x+2uvr+2Lr+2x]. (3.1)

    From (2.11) and the assumption E(0)<0, we get

    E(t)<0, (3.2)

    and

    I(t)0. (3.3)

    By (2.13), (2.9) and (3.3) we have

    0I(0)I(t)12(r+2)[u+v2(r+2)L2(r+2)x+2uvr+2L(r+2)x]c22(r+2)[u2(r+2)L2(r+2)x+v2(r+2)L2(r+2)x]. (3.4)

    Set

    J(t)=I1δ+εL0x(uut+vvt)dx+ε2(μ1u2H+μ2v2H), (3.5)

    with

    0<δ<2r+24(r+2)<1. (3.6)

    By multiplying the first and the second equations of system (1.1) by xu,xv, we can verify that the derivative of (3.5) is given by

    J(t)=(1δ)Iδ(t)I(t)+ε(ut2H+vt2H)ε(ux2H+vx2H)+εL0uxt0g1(ts)xux(s)dsdx+εL0vxt0g2(ts)xvx(s)dsdx+ε[u+v2(r+2)L2(r+2)x+2uvr+2L(r+2)x]. (3.7)

    we have

    εt0g1(ts)dsL0ux.xux(s)dxds=εt0g1(ts)dsL0ux.(xux(s)xux(t))dxds+ε(t0g1(s)ds)ux2Hε(12t0g1(s)ds)ux2Hε2Cα,1(h1ux), (3.8)

    and

    εt0g2(ts)dsL0vx.xvx(s)dxds=εt0g2(ts)dsL0vx.(xvx(s)xvx(t))dxds+ε(t0g2(s)ds)vx2Hε(12t0g2(s)ds)vx2Hε2Cα,2(h2ux). (3.9)

    So, by (3.7)

    J(t)(1δ)Iδ(t)I(t)+ε(ut2H+vt2H)ε{(112t0g1(s)ds)ux2H+(112t0g2(s)ds)vx2H}ε2Cα,1(h1ux)ε2Cα,2(h2vx)+ε[u+v2(r+2)L2(r+2)x+2uvr+2L(r+2)x]. (3.10)

    For 0<λ<1, from (3.1)

    ε[u+v2(r+2)L2(r+2)x+2uvr+2L(r+2)x]=  ελ[u+v2(r+2)L2(r+2)x+2uvr+2L(r+2)x]+2ε(r+2)(1λ)I(t)+ε(r+2)(1λ)(ut2H+vt2H)+ε(r+2)(1λ)(g1ux)+ε(r+2)(1λ)(g2vx)+ε(r+2)(1λ)l1ux2H+ε(p+2)(1λ)l2vx2H. (3.11)

    \label{sys2.23} We obtain by substituting in (3.10)

    J(t)(1δ)Iδ(t)I(t)+ε[(r+2)(1λ)+1](ut2H+vt2H)+ε[(r+2)(1λ)(1t0g1(s)ds)(112t0g2(s)ds)]ux2H+ε[(r+2)(1λ)(1t0g2(s)ds)(112t0g2(s)ds)]vx2H+ε[(r+2)(1λ)](g1oux+g2ovx)+2ε(r+2)(1λ)I(t)ε2(Cα,1(h1ux)(t)+Cα,1(h1ux)(t))+ελ[u+v2(r+2)L2(r+2)x+2uvr+2L(r+2)x], (3.12)

    by (2.22), we find

    J(t)(1δ)Iδ(t)I(t)+ε[(r+2)(1λ)+1](ut2H+vt2H)+ε[(r+2)(1λ)(1t0g1(s)ds)(112t0g2(s)ds)]ux2H+ε[(r+2)(1λ)(1t0g2(s)ds)(112t0g2(s)ds)]vx2H+ε[(r+2)(1λ)12αCα](g1oux+g2ovx)+2ε(r+2)(1λ)I(t)+ε2(Cα,1(g1ux)(t)+Cα,2(g2ux)(t))+ελ[u+v2(r+2)L2(r+2)x+2uvr+2L(r+2)x], (3.13)

    where Cα=min{Cα,1,Cα,2}.

    Now, one cause the Lebesgue dominated convergence theorem with the fact that g2i(s)αgi(s)gi(s)<gi(s), for i=1,2, to prove that

    limα0+αCα=0.

    Therefore, there exists α0(0,1) such that if α<α0, then, by letting α=ε(r+2)(1λ)<α0, we get

    αCα<(r+2)(1λ).

    We put λ>0 small enough, we have

    β1=(r+2)(1λ)1>0,

    at this point, we take

    max{0g1(s)ds,0g2(s)ds}<(r+2)(1λ)1((r+2)(1λ)12)=2β12β1+1, (3.14)

    then, we have

    β2=[((r+2)(1λ)1)t0g1(s)ds ((r+2)(1λ)12)]>β12β12β1+1(β1+12)

    i.e β2>0.

    Similarly

    β3=[((r+2)(1λ)1)t0g2(s)ds((r+2)(1λ)12)]>0.

    Choosing ε small enough, thus we have

    I(0)+εL0x(u0u1+v0v1)dx+ε2(μ1u02H+μ2v02H)>0.

    Then, for some γ1,γ2>0, estimate (3.12) becomes

    J(t)γ1{I(t)+ut2H+vt2H+ux2H+vx2H+(g1oux)+(g2ovx)+[u+v2(r+2)L2(r+2)x+2uvr+2L(r+2)x]}+γ2{(g1oux)+(g2ovx)}. (3.15)

    By (2.9) and (2.11), for some γ3>0, we get

    J(t)γ3{I(t)+ut2H+vt2H+ux2H+vx2H+(g1oux)+(g2ovx)+[u2(p+2)L2(r+2)x+u2(r+2)L2(r+2)x]}+2γ2E(t). (3.16)

    We obtain,

    J1(t)γ3{I(t)+ut2H+vt2H+ux2H+vx2H+(g1oux)+(g2ovx)+[u2(r+2)L2(r+2)x+u2(r+2)L2(r+2)x]}, (3.17)

    where J1(t):=J(t)+γ2I(t),

    and

    J1(t)J1(0)>0,t>0. (3.18)

    On the other hand, we have by Holder's and Young's inequalities,

    |L0x(uut+vvt)dx|11δC[uμ1δL2(r+2)x+utν1δH+vμ1δL2(r+2)x+vtν1δH], (3.19)

    where 1ν+1μ=1.

    Taking μ=2(1δ), we get

    ν1δ=212δ2(r+2).

    Then, for s=2(12δ) and from (3.1), we obtain

    u212δL2(r+2)xc(u2(r+2)L2(r+2)x+I(t))v212δL2(r+2)xc(v2(r+2)L2(r+2)x+I(t)),t0.

    So, for some k2>0

    |L0x(uut+vvt)dx|11δk2[u2(r+2)L2(r+2)x+v2(r+2)L2(r+2)x+ut2H+vt2H+I(t)]. (3.20)

    Therefore, there exist k3>0 such that

    J11δ1(t)=(J(t)+γ2I(t))11δ=(I1δ+εL0x(uut+vvt)dx+ε2(μ1u2H+μ2v2H)+γ2I(t))11δk3[I(t)+|L0x(uut+vvt)dx|11δ+(u2H+v2H)11δ+(u2(r+2)L2(r+2)x+v2(r+2)L2(r+2)x)11δ]k3[I(t)+ut2H+vt2H+ux2H+vx2H+(g1oux)+(g2ovx)+u2(r+2)L2(r+2)x+v2(r+2)L2(r+2)x]. (3.21)

    From (3.15) and (3.21), we finally get the required inequality

    J1(t)k4J11δ1(t), (3.22)

    where k4>0 depending only on k1 and k3.

    By integration of (3.22), we find

    Jδ1δ1(t)1Jα1δ1(0)k4δ(1δ)t.

    Hence, J1(t) blows up at most at the finite time

    T=1δk4δJδ/(1δ)1(0).

    Motivated by last recent mentioned papers (see [1,3,4]) and under some sufficient conditions, we have stated and proved the blow up in finite time of solutions for system (1.1). In the next work, we have been extend our recent work to the high dimension. Also some numerical examples have been explained in order to ensure the theory study.

    The fifth author extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through research groups program under grant (R.G.P-2/1/42).

    The first, third and fourth researchers would like to thank the Deanship of Scientific Research, Qassim University for funding publication.

    This work does not have any conflicts of interest.



    [1] M. M. Al-Gharabli, A. M. Al-Mahdi, S. A. Messaoudi, New general decay result for a system of two singular nonlocal viscoelastic equations with general source terms and a wide class of relaxation functions, Boundary Value Probl., 2020 (2020), 1–17. doi: 10.1186/s13661-019-01311-5
    [2] J. Ball, Remarks on blow-up and nonexistence theorems for nonlinear evolutions equation, Q. J. Math., 28 (1977), 473–486. doi: 10.1093/qmath/28.4.473
    [3] S. Boulaaras, R. Guefaifia, N. Mezouar, Global existence and decay for a system of two singular one-dimensional nonlinear viscoelastic equations with general source terms, Appl. Anal., 2020. Available from: https://doi.org/10.1080/00036811.2020.1760250.
    [4] S. Boulaaras, A. Choucha, D. Ouchenane, B. Cherif, Blow up of solutions of two singular nonlinear viscoelastic equations with general source and localized frictional damping terms, Adv. Differ. Equations, 2020 (2020), 310. Available from: https://doi.org/10.1186/s13662-020-02772-0.
    [5] M. M. Cavalcanti, D. Cavalcanti, J. Ferreira, Existence and uniform decay for nonlinear viscoelastic equation with strong damping, Math. Methods Appl. Sci., 24 (2001), 1043–1053. doi: 10.1002/mma.250
    [6] Y. S. Choi, K. Y. Chan, A parabolic equation with nonlocal boundary conditions arising from electrochemistry, Nonlinear Anal.: Theory Methods Appl., 18 (1992), 317–331. doi: 10.1016/0362-546X(92)90148-8
    [7] A. Choucha, D. Ouchenane, S. Boulaaras, Blow-up of a nonlinear viscoelastic wave equation with distributed delay combined with strong damping and source terms, J. Nonlinear Funct. Anal., 2020 (2020), 1–10.
    [8] A. Choucha, S. Boulaaras, D. Ouchenane, A. Allahem, Global existence for two singular one-dimensional nonlinear viscoelastic equations with respect to distributed delay term, J. Funct. Spaces, 2021 (2021), 6683465. Available from: https://doi.org/10.1155/2021/6683465.
    [9] G. Liang, Y. Zhaoqin, L. Guonguang, Blow up and global existence for a nonlinear viscoelastic wave equation with strong damping and nonlinear damping and source terms, Appl. Math., 6 (2015), 806–816. doi: 10.4236/am.2015.65076
    [10] M. R. Li, L. Y. Tsai, Existence and nonexistence of global solutions of some systems of semilinear wave equations, Nonlinear Anal.: Theory Methods Appl., 54 (2003), 1397–1415. doi: 10.1016/S0362-546X(03)00192-5
    [11] S. Mesloub, A nonlinear nonlocal mixed problem for a second order parabolic equation, J. Math. Anal. Appl., 316 (2006), 189–209. doi: 10.1016/j.jmaa.2005.04.072
    [12] S. Mesloub, A. Bouziani, Mixed problem with a weighted integral condition for a parabolic equation with Bessel operator, J. Appl. Math. Stochastic Anal., 15 (2002), 277–286. doi: 10.1155/S1048953302000242
    [13] S. Mesloub, N. Lekrine, On a nonlocal hyperbolic mixed problem, Acta Sci. Math., 70 (2004), 65–75.
    [14] S. A. Messaoudi, Blow up of positive-initial-energy solutions of a nonlinear viscoelastic hyperbolic equation, J. Math. Anal. Appl., 320 (2006), 902–915. doi: 10.1016/j.jmaa.2005.07.022
    [15] S. Mesloub, S. A. Messaoudi, Global existence, decay, and blow up of solutions of a singular nonlocal viscoelastic problem, Acta Appl. Math., 110 (2010), 705–724. doi: 10.1007/s10440-009-9469-6
    [16] M. I. Mustafa, General decay result for nonlinear viscoelastic equations, J. Math. Anal. Appl., 457 (2018), 134–152. doi: 10.1016/j.jmaa.2017.08.019
    [17] D. Ouchenane, Kh. Zennir, M. Bayoud, Global nonexistence of solutions for a system of nonlinear viscoelastic wave equation with degenerate damping and source terms, Ukrainian Math. J., 65 (2013), 1–17. doi: 10.1007/s11253-013-0761-2
    [18] L. S. Pulkina, On solvability in L2 of nonlocal problem with integral conditions for a hyperbolic equation, Differ. Equations, 36 (2000), 316–318. doi: 10.1007/BF02754219
    [19] P. Shi, M. Shillor, On design of contact patterns in one dimensional thermoelasticity, In: D. A. Field, V. Konkov, Theoretical Aspects of Industrial Design, Society for Industrial and Applied Mathematics, Philadelphia, (1992), 76–82.
    [20] H. T. Song, D. S. Xue, Blow up in a nonlinear viscoelastic wave equation with strong damping, Nonlinear Anal.: Theory Methods Appl., 109 (2014), 245–251. doi: 10.1016/j.na.2014.06.012
    [21] H. T. Song, C. K. Zhong, Blow-up of solutions of a nonlinear viscoelastic wave equation, Nonlinear Analysis: Real World Appl., 11 (2010), 3877–3883. doi: 10.1016/j.nonrwa.2010.02.015
    [22] A. Zarai, A. Draifia, S. Boulaaras, Blow up of solutions for a system of nonlocal singular viscoelastic equations, Appl. Anal., 97 (2018), 2231–2245. doi: 10.1080/00036811.2017.1359564
  • This article has been cited by:

    1. Muajebah Hidan, Salah Mahmoud Boulaaras, Bahri-Belkacem Cherif, Mohamed Abdalla, A. M. Nagy, Further Results on the p , k − Analogue of Hypergeometric Functions Associated with Fractional Calculus Operators, 2021, 2021, 1563-5147, 1, 10.1155/2021/5535962
    2. Djamel Ouchenane, Abdelbaki Choucha, Mohamed Abdalla, Salah Mahmoud Boulaaras, Bahri Belkacem Cherif, Ioan Rasa, On the Porous-Elastic System with Thermoelasticity of Type III and Distributed Delay: Well-Posedness and Stability, 2021, 2021, 2314-8888, 1, 10.1155/2021/9948143
    3. Abdelbaki Choucha, Djamel Ouchenane, Salah Mahmoud Boulaaras, Bahri Belkacem Cherif, Mohamed Abdalla, Qifeng Zhang, Well-Posedness and Stability Result of the Nonlinear Thermodiffusion Full von Kármán Beam with Thermal Effect and Time-Varying Delay, 2021, 2021, 2314-8888, 1, 10.1155/2021/9974034
    4. Ahlem Mesloub, Abderrahmane Zara, Fatiha Mesloub, Bahri-Belkacem Cherif, Mohamed Abdalla, Kamyar Hosseini, The Galerkin Method for Fourth-Order Equation of the Moore–Gibson–Thompson Type with Integral Condition, 2021, 2021, 1687-9139, 1, 10.1155/2021/5532691
    5. Mohamed Abdalla, On Hankel transforms of generalized Bessel matrix polynomials, 2021, 6, 2473-6988, 6122, 10.3934/math.2021359
    6. Mohamed Abdalla, Muajebah Hidan, Investigation of the k-Analogue of Gauss Hypergeometric Functions Constructed by the Hadamard Product, 2021, 13, 2073-8994, 714, 10.3390/sym13040714
    7. Djamel Ouchenane, Zineb Khalili, Fares Yazid, Mohamed Abdalla, Bahri Belkacem Cherif, Ibrahim Mekawy, Liliana Guran, A New Result of Stability for Thermoelastic-Bresse System of Second Sound Related with Forcing, Delay, and Past History Terms, 2021, 2021, 2314-8888, 1, 10.1155/2021/9962569
    8. Mohamed Abdalla, Salah Boulaaras, Mohamed Akel, Sahar Ahmed Idris, Shilpi Jain, Certain fractional formulas of the extended k-hypergeometric functions, 2021, 2021, 1687-1847, 10.1186/s13662-021-03612-5
    9. Asma Alharbi, Kamyar Hosseini, Blowing Up for the p -Laplacian Parabolic Equation with Logarithmic Nonlinearity, 2021, 2021, 1687-9139, 1, 10.1155/2021/4275898
    10. TING CUI, PEIJIANG LIU, MODELING THE TRANSMISSION PHENOMENA OF COVID-19 INFECTION WITH THE EFFECT OF VACCINATION VIA NONINTEGER DERIVATIVE UNDER REAL STATISTIC, 2022, 30, 0218-348X, 10.1142/S0218348X22401521
    11. Humaira Yasmin, Effect of vaccination on non-integer dynamics of pneumococcal pneumonia infection, 2022, 158, 09600779, 112049, 10.1016/j.chaos.2022.112049
    12. Zakia Tebba, Hakima Degaichia, Mohamed Abdalla, Bahri Belkacem Cherif, Ibrahim Mekawy, Nawab Hussain, Blow-Up of Solutions for a Class Quasilinear Wave Equation with Nonlinearity Variable Exponents, 2021, 2021, 2314-8888, 1, 10.1155/2021/5546630
    13. Abdelbaki Choucha, Mohammad Shahrouzi, Rashid Jan, Salah Boulaaras, Blow-up of solutions for a system of nonlocal singular viscoelastic equations with sources and distributed delay terms, 2024, 2024, 1687-2770, 10.1186/s13661-024-01888-6
    14. Sandipa Bhattacharya, Biswajit Sarkar, Mitali Sarkar, Arka Mukherjee, Hospitality for prime consumers and others under the retail management, 2024, 80, 09696989, 103849, 10.1016/j.jretconser.2024.103849
    15. Hakima Degaichia, Rashid Jan, Ziad Ur Rehman, Salah Boulaaras, Asif Jan, Fractional-view analysis of the transmission dynamics of a bacterial infection with nonlocal and nonsingular kernel, 2023, 5, 2523-3963, 10.1007/s42452-023-05538-x
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2827) PDF downloads(134) Cited by(15)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog