Research article Special Issues

Positive solutions to a semipositone superlinear elastic beam equation

  • Received: 11 October 2020 Accepted: 04 January 2021 Published: 07 February 2021
  • MSC : 34K10, 37C25

  • A semipositone fourth-order two-point boundary value problem is considered. In mechanics, the problem describes the deflection of an elastic beam rigidly fastened on the left and simply supported on the right. Under some conditions concerning the first eigenvalue corresponding to the relevant linear operator, the existence of nontrivial solutions and positive solutions to this boundary value problem is obtained. The main results are obtained by using the topological method and the fixed point theory of superlinear operators.

    Citation: Haixia Lu, Li Sun. Positive solutions to a semipositone superlinear elastic beam equation[J]. AIMS Mathematics, 2021, 6(5): 4227-4237. doi: 10.3934/math.2021250

    Related Papers:

  • A semipositone fourth-order two-point boundary value problem is considered. In mechanics, the problem describes the deflection of an elastic beam rigidly fastened on the left and simply supported on the right. Under some conditions concerning the first eigenvalue corresponding to the relevant linear operator, the existence of nontrivial solutions and positive solutions to this boundary value problem is obtained. The main results are obtained by using the topological method and the fixed point theory of superlinear operators.



    加载中


    [1] R. P. Agarwal, Y. M. Chow, Iterative method for fourth order boundary value problem, J. Comput. Appl. Math., 10 (1984), 203–217. doi: 10.1016/0377-0427(84)90058-X
    [2] Z. B. Bai, H. Y. Wang, On positive solutions of some nonlinear four-order beam equations, J. Math. Anal. Appl., 270 (2002), 357–368. doi: 10.1016/S0022-247X(02)00071-9
    [3] Z. B. Bai, The upper and lower solution method for some fourth-order boundary value problems, Nonlinear Anal.-Theor.,, 67 (2007), 1704–1709.
    [4] G. Bonanno, B. D. Bella, A boundary value problem for fourth-order elastic beam equations, J. Math. Anal. Appl., 343 (2008), 1166–1176. doi: 10.1016/j.jmaa.2008.01.049
    [5] G. Bonanno, B. D. Bella, D. O'Regan, Non-trivial solutions for nonlinear fourth-order elastic beam equations, Comput. Math. Appl., 62 (2011), 1862–1869. doi: 10.1016/j.camwa.2011.06.029
    [6] R. Graef, B. Yang, Positive solutions of a nonlinear fourth order boundary value problem, Communications on Applied Nonlinear Analysis, 14 (2007), 61–73.
    [7] C. P. Gupta, Existence and uniqueness results for the bending of an elastic beam equation, Appl. Anal., 26 (1988), 289–304. doi: 10.1080/00036818808839715
    [8] P. Korman, Uniqueness and exact multiplicity of solutions for a class of fourth-order semilinear problems, P. Roy. Soc. Edinb. A, 134 (2004), 179–190. doi: 10.1017/S0308210500003140
    [9] B. D. Lou, Positive solutions for nonlinear elastic beam models, International Journal of Mathematics and Mathematical Sciences, 27 (2001), 365–375. doi: 10.1155/S0161171201004203
    [10] R. Y. Ma, L. Xu, Existence of positive solutions of a nonlinear fourth-order boundary value problem, Appl. Math. Lett., 23 (2010), 537–543. doi: 10.1016/j.aml.2010.01.007
    [11] Q. L. Yao, Positive solutions for eigenvalue problems of four-order elastic beam equations, Appl. Math. Lett., 17 (2004), 237–243. doi: 10.1016/S0893-9659(04)90037-7
    [12] Q. L. Yao, Existence of $n$ solutions and/or positive solutions to a semipositone elastic beam equation, Nonlinear Anal.-Theor., 66 (2007), 138–150. doi: 10.1016/j.na.2005.11.016
    [13] Q. L. Yao, positive solutions of nonlinear elastic beam equation rigidly fastened on the left and simply supported on the right, Nonlinear Anal.-Theor., 69 (2008), 1570–1580. doi: 10.1016/j.na.2007.07.002
    [14] C. B. Zhai, R. P. Song, Q. Q. Han, The existence and the uniqueness of symmetric positive solutions for a fourth-order boundary value problem, Comput. Math. Appl., 62 (2011), 2639–2647. doi: 10.1016/j.camwa.2011.08.003
    [15] X. P. Zhang, Existence and iteration of monotone positive solutions for an elastic beam equation with a corner, Nonlinear Anal.-Real, 10 (2009), 2097–2103. doi: 10.1016/j.nonrwa.2008.03.017
    [16] K. Deimling, Nonlinear Functional Analysis, Springer-Verlag, Berlin-Heidelberg-Newyork, 1985.
    [17] D. J. Guo, V. Lakshmikanthan, Nonlinear Problems in Abstract Cones, Academic press, San Diego, 1988.
    [18] D. J. Guo, Nonlinear Functional Analysis, second edn., Shandong Science and Technology Press, Jinan, 2001 (in Chinese).
    [19] H. Amann, Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces, SIAM Rev., 18 (1976), 620–709. doi: 10.1137/1018114
    [20] G. W. Zhang, J. X. Sun, Positive solutions of $m$-point boundary value problems, J. Math. Anal. Appl., 291 (2004), 406–418. doi: 10.1016/j.jmaa.2003.11.034
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2206) PDF downloads(246) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog