Loading [MathJax]/jax/element/mml/optable/SuppMathOperators.js
Research article

Existence and concentration of nontrivial solutions for an elastic beam equation with local nonlinearity

  • Received: 20 June 2021 Accepted: 13 September 2021 Published: 14 October 2021
  • MSC : 34B15, 49J35

  • In this paper, by using the mountain pass lemma and the skill of truncation function, we investigate the existence and concentration phenomenon of nontrivial weak solutions for a class of elastic beam differential equation with two parameters λ and μ when the nonlinear term satisfies some growth conditions only near the origin. In particular, we obtain a concrete lower bound of the parameter λ, and analyze the relationship between λ and μ. In the end, we investigate the concentration phenomenon of solutions when μ0, and obtain a specific lower bound of the parameter λ which is independent of μ.

    Citation: Minggang Xia, Xingyong Zhang, Danyang Kang, Cuiling Liu. Existence and concentration of nontrivial solutions for an elastic beam equation with local nonlinearity[J]. AIMS Mathematics, 2022, 7(1): 579-605. doi: 10.3934/math.2022037

    Related Papers:

    [1] Ebrahem A. Algehyne, Nifeen Hussain Altaweel, Mounirah Areshi, Faizan Ahmad Khan . Relation-theoretic almost ϕ-contractions with an application to elastic beam equations. AIMS Mathematics, 2023, 8(8): 18919-18929. doi: 10.3934/math.2023963
    [2] Haixia Lu, Li Sun . Positive solutions to a semipositone superlinear elastic beam equation. AIMS Mathematics, 2021, 6(5): 4227-4237. doi: 10.3934/math.2021250
    [3] Xiaojie Guo, Zhiqing Han . Existence of solutions to a generalized quasilinear Schrödinger equation with concave-convex nonlinearities and potentials vanishing at infinity. AIMS Mathematics, 2023, 8(11): 27684-27711. doi: 10.3934/math.20231417
    [4] Abdeljabbar Ghanmi, Abdelhakim Sahbani . Existence results for p(x)-biharmonic problems involving a singular and a Hardy type nonlinearities. AIMS Mathematics, 2023, 8(12): 29892-29909. doi: 10.3934/math.20231528
    [5] Liu Gao, Chunfang Chen, Jianhua Chen, Chuanxi Zhu . Existence of nontrivial solutions for Schrödinger-Kirchhoff type equations involving the fractional p-Laplacian and local nonlinearity. AIMS Mathematics, 2021, 6(2): 1332-1347. doi: 10.3934/math.2021083
    [6] Filippo Dell'Oro, Claudio Giorgi, Vittorino Pata . Steady states of elastically-coupled extensible double-beam systems. AIMS Mathematics, 2017, 2(1): 28-69. doi: 10.3934/Math.2017.1.28
    [7] Zehra Yucedag . Variational approach for a Steklov problem involving nonstandard growth conditions. AIMS Mathematics, 2023, 8(3): 5352-5368. doi: 10.3934/math.2023269
    [8] Mhamed Eddahbi, Mogtaba Mohammed, Hammou El-Otmany . Well-posedness of a nonlinear stochastic model for a chemical reaction in porous media and applications. AIMS Mathematics, 2024, 9(9): 24860-24886. doi: 10.3934/math.20241211
    [9] Khaled Kefi, Abdeljabbar Ghanmi, Abdelhakim Sahbani, Mohammed M. Al-Shomrani . Infinitely many solutions for a critical p(x)-Kirchhoff equation with Steklov boundary value. AIMS Mathematics, 2024, 9(10): 28361-28378. doi: 10.3934/math.20241376
    [10] Wei Guo, Jinfu Yang, Jiafeng Zhang . Existence results of nontrivial solutions for a new p(x)-biharmonic problem with weight function. AIMS Mathematics, 2022, 7(5): 8491-8509. doi: 10.3934/math.2022473
  • In this paper, by using the mountain pass lemma and the skill of truncation function, we investigate the existence and concentration phenomenon of nontrivial weak solutions for a class of elastic beam differential equation with two parameters λ and μ when the nonlinear term satisfies some growth conditions only near the origin. In particular, we obtain a concrete lower bound of the parameter λ, and analyze the relationship between λ and μ. In the end, we investigate the concentration phenomenon of solutions when μ0, and obtain a specific lower bound of the parameter λ which is independent of μ.



    In this paper, we focus on the following equation

    {u(4)(x)+2h(x)u(x)+(h2(x)+h(x))u(x)=λf(x,u(x)),x[0,1],u(0)=u(0)=u(1)=u(1)μg(u(1))=0, (1.1)

    where λ>0, μR, f:[0,1]×RR, g:RR is a continuous function, and hC1[0,1] is nonnegative. The problem (1.1) with h=0 describes the static equilibrium of an elastic beam which is fixed at the left end of x=0 and is attached to a bearing device at the right end of x=1, where the corresponding force of the bearing device is given by function g, the nonlinear term f is a continuous load which is attached to elastic beam. Moreover, there are many fourth order differential equations which is similar to problem (1.1) in engineering, material mechanics and so on. In recent years, with the development of science and technology, more and more scholars are devoted to the study on the existence and multiplicity of solutions for these fourth order ordinary differential equations. It is well known that different boundary conditions will lead to different physical meanings of these equations. For example, the boundary conditions that u(0)=0,u(0)=0, u(1)=0 and u(1)=0 describe the static equilibrium of an elastic beam fixed at both ends, see [1] and references therein. In [2], the boundary conditions that u(0)=αu(0)βu(0)=γu(1)+δu(1)=u(1)=0 describe that one end of the elastic beam is fixed and the other is sliding when α=δ=1 and β=γ=0. In [3], the boundary conditions that u(0)=0,u(0)=g(u(0)),u(1)=0, and u(1)=h(u(1)) describe that both ends of the elastic beam are attached to fixed torsional represented by two nonlinear functions.

    For the boundary value problems like problem (1.1), the existence and multiplicity of solutions have been investigated extensively by some methods, for example, fixed point theory and variational method. In particular, in [4], Cabada et al. investigated the problem

    {u(4)(x)=f(x,u(x)),x[0,1],u(0)=u(0)=u(1)=u(1)=0, (1.2)

    where the function f:[0,1]×RR is continuous, f(x,R+)R+ for all x[0,1]. They studied the existence, localization and multiplicity of positive solutions by using the critical point theorems in conical shells, Krasnosel'ski\u{\i}'s compression-expansion theorem, and unilateral Harnack type inequalities. In [5], Bonanno and Tersian investigated the following problem

    {u(4)(x)=λf(x,u(x)),x[0,1],u(0)=u(0)=u(1)=u(1)μg(u(1))=0, (1.3)

    where λ>0, μ>0, f:[0,1]×RR is a L1-Carathéodory function, g:RR is a continuous function. By using the variational methods, they established the existence result of solutions for problem (1.3). We refer readers to [6,7,8,9,10] for more related results of problem (1.3) with μ>0 or μ<0, respectively. The problem with perturbed nonlinear term is also an interesting topic. In [11], Heidarkhani and Gharehgazlouei investigated the problem

    {u(4)(x)=λf(x,u(x))+k(u(x)),x[0,1],u(0)=u(0)=u(1)=u(1)μg(u(1))=0, (1.4)

    where λ>0, μ0, f:[0,1]×RR is a L1-Carathéodory function, g:RR is a nonnegative continuous function, and k:RR is a Lipschitz continuous function with a Lipschitz constant L>0, i.e.,

    |k(ξ1)k(ξ2)|L|ξ1ξ2|, ξ1,ξ2R,

    and k(0)=0. They investigated the existence of solution for problem (1.4) by using variational methods. More results about fourth-order boundary value problems with perturbations can be seen in [12,13,14,15,16] and references therein. Moreover, the multi-point boundary value and integral boundary value problems of fourth order ordinary differential equations have also been studied extensively. We refer readers to [17,18,19,20,21] and references therein.

    In this paper, our work is mainly motivated by [22,23]. In [23], Costa and Wang considered a class of elliptic problems with a parameter

    {Δu=λf(u), in Ω,u(x)=0, on Ω, (1.5)

    where λ>0, Ω is a bounded smooth domain in RN(N3) and fC1(R,R) has superlinear growth only in neighborhood of u=0. They investigated the existence of both signed and sign-changing solutions for problem (1.5) by using truncation function and minimax method and obtained the existence result when λ is large enough. Subsequently, the method was used widely (for example, see [24,25,26,27,28]). However, the concrete values of lower bound of λ were not given in these references. Recently, in [22], by using the idea in [23], the three authors in this paper, Kang, Liu and Zhang, considered a fractional order Kirchhoff-type system with a parameter

    {A(u(t))[tDαTϕp(0Dαtu(t))+V(t)ϕp(u(t))]=λF(t,u(t)),a.e. t[0,T],u(0)=u(T)=0, (1.6)

    where

    A(u(t))=[a+bT0(|0Dαtu(t)|p+V(t)|u(t)|p)dt]p1,

    a,b,λ>0,p>1 and 1/p<α1, u(t)=(u1(t),,uN(t))τRN for a.e. t[0,T] and N is a given positive integer, ()τ denote the transpose of a vector, V(t)C([0,T],R) with mint[0,T]V(t)>0, 0DαT and tDαT are the left and right Riemann-Liouville fractional derivatives, respectively, ϕp(s):=|s|p2s, F:[0,T]×RNR and F(t,x) is the gradient of F with respect to x=(x1,,xN)RN, that is, F(t,x)=(Fx1,,FxN). They investigated the existence of solutions for problem (1.6) by using mountain pass theorem when the nonlinear term satisfied the superquadric condition only near the origin. They obtained problem (1.6) has at least one nontrivial solution if λ>λ0, where λ0 is given in detail.

    Based on the idea in [22,23], in this paper, we investigate the existence of nontrivial weak solutions of problem (1.1) when the nonlinear term f(x,u) with respect to u satisfies the super-quadratic growth condition only near the origin. We obtain a specific lower bound of the parameter λ when μ>0 and μ<0 respectively, and analyze the relationships between λ and μ. Moreover, we also investigate the concentration phenomenon of solutions when μ0. Although the idea origins from [22,23], there are still three differences: (1) the model (1.1) is obviously different from (1.5) and (1.6). In particular, (1.5) and (1.6) have only one parameter λ, while problem (1.1) has two parameters λ and μ. Hence, it is necessary to discuss the relationship between these two parameters; (2) we study the concentration phenomenon of solutions when the parameter μ0; (3) the boundary value condition of (1.1) is not Dirichlet boundary condition. In particular, when μ0, u(1)=μg(u(1))0. In the following theorems, we assume that g satisfies the locally subquadratic condition when μ>0 and locally superquadric condition when μ<0 with respect to u near the origin. Finally, comparing with those results for the fourth order differential equations like (1.2) and (1.3), we only suppose f and g satisfy the local conditions near the origin, and consider more general model (1.1) since it is easy to see that (1.1) reduces to (1.2) and (1.3) if h=0. Here, we refer to some related references for the case h0, (see [29,30,31,32,33]) which focus on the existence and multiplicity of solutions for the second order Hamiltonian system with damped term by variational methods. Moreover, as a comparison, we also refer to a recent reference [34] in which the Klein-Gordon-Maxwell systems was investigated and the nonlinear term was assumed to satisfy super-quadratic conditions near .

    Next, we make some assumptions for F, and then state our main results.

    (H1) there exists a constant δ>0 such that F(x,u) is continuously differentiable in uR with |u|δ for a.e. x[0,1], measurable in x for every uR with |u|δ, and there are aC(R+,R+) and bL1([0,1];R+) such that

    |F(x,u)|,|f(x,u)|a(|u|)b(x),

    for all uR with |u|δ and a.e. x[0,1], where F(x,u)=u0f(x,s)ds;

    (H2) there exist constants q1>2, q2(2,q1), M1>0 and M2>0 such that

    M1|u|q1F(x,u)M2|u|q2,

    for all uR with |u|δ and a.e. x[0,1];

    (H3) there exists a constant β>2 such that

    0βF(x,u)f(x,u)u,

    for all uR with |u|δ and a.e. x[0,1].

    Theorem 1.1. Suppose that (H1)(H3) hold and G satisfies

    (H4) there exist constants 1<p2<p1<2 and N1,N2>0 such that

    N1|u|p1G(u)N2|u|p2,

    for all uR with |u|δ and a.e. x[0,1], where G(u)=u0g(s)ds;

    (H5) there exists a constant γ(0,2) such that

    0<g(u)uγG(u),

    for all uR with |u|δ and a.e. x[0,1].

    If λ>λ+:=max{Λ+1,Λ+2,Λ+3} and 0<μ<μ, then problem (1.1) has at least a nontrivial solution uλ,μ. Moreover,

    uλ,μ2H2θθ2(Cλ1q12+Cμ),limμ0+λ+uλ,μH=0=limμ0+λ+uλ,μ,eH0limμμλ+uλ,μlimμμλ+uλ,μHδ2eH0,eH0limμ0+λλuλ,μlimμ0+λλuλ,μH2θCθ2λ12(q12),

    where

    uH=(10eH(x)|u(x)|2dx)12,  H(x)=x0h(s)ds,Λ+1=max{2eq2H02M2eH1δκq22H,δκ2H+2μN(|δκ(1)|p1+|δκ(1)|p2)2eH0M1δκq12},Λ+2=1,Λ+3=[8θC(θ2)eH0δ28θCμ]q12,C=(12(M1eH0q1)2q12M1eH0(eH0M1q1)q1q12)(κ1Hκ12)2q1q12, (1.7)
    C=eH1N(eH0p12κ1p1H+eH0p22κ1p2H), (1.8)
    N=max{N1,N2},λ=max{max{2eq2H02M2eH1δκq22H,δκ2H2eH0M1δκq12},1,[8θC(θ2)eH0δ2]q12}, (1.9)
    μ=(θ2)eH0δ28θC, (1.10)
    θ=min{q2,β},κisanygivenelementinEandsatisfiesκ1,κ1=δκ,H0=minx[0,1]H(x),H1=maxx[0,1]H(x).

    Remark 1.1. It is easy to see that Λ+3+ if μμ, and then λ+. Hence limμμλ+uλ,μ can be simply written as limμμuλ,μ.

    Theorem 1.2. Suppose that (H1)(H3) hold and G satisfies

    (H6) there exist constants α1>q2, α2(q2,α1), η1>0 and η2>0 such that

    η1|u|α1G(u)η2|u|α2,

    for all uR with |u|δ and a.e. x[0,1];

    (H7) there exists a constant ξ>2 such that

    0ξG(u)g(u)u,

    for all uR with |u|δ and a.e.x[0,1].

    If λ>λ:=max{Λ1,Λ2,Λ3,Λ4} and μ<0, then system (1.1) has at least a nontrivial solution uλ,μ. Moreover,

    uλ,μ2H2ρρ2Dλ1q12, (1.11)
    limλ+uλ,μH=0=limλ+uλ,μ, (1.12)
    eH0limμ0λΛuλ,μlimμ0λΛuλ,μH2ρDρ2Λ12(q12), (1.13)

    where

    Λ1=max{2eq2H02M2eH1δϕq22H+8μη2eH(1)M2eH1,δϕ2H2M1eH0δϕq12},Λ2=1,Λ3=[8ρD(ρ2)δ2eH0]q12,Λ4=2eq2H02M2eH1,D=(12(M1eH0q1)2q12M1eH0(eH0M1q1)q1q12)(ϕ1Hϕ12)2q1q12, (1.14)
    Λ=max{2eq2H02M2eH1δϕq22H,δϕ2H2eH0M1δϕq12,2eq2H02M2eH1,1,[8θC(θ2)eH0δ2]q12}, (1.15)
    ϕ is any given element in E and satisfies ϕ1,ϕ1=δϕ,ρ=min{θ,α2,ξ}.

    In Theorem 1.1 and Theorem 1.2, we investigate problem (1.1) with μ>0 and μ<0, respectively. It is natural to ask what happens when μ0. Next, in Theorem 1.3, we show the concentration phenomenon of {uλ,μ} as μ0, which means that uλ,μuλ as μ0 for some uλE (E defined by (2.1)) and uλ is a nontrivial solution of the following equation

    {u(4)(x)+2h(x)u(x)+(h2(x)+h(x))u(x)=λf(x,u(x)),x[0,1],u(0)=u(0)=u(1)=u(1)=0. (1.16)

    Theorem 1.3. Suppose that (H1)(H3) hold and assume that (H4)(H5) hold if μ>0 and (H6)(H7) hold if μ<0. If {uλ,μ} is a family of nontrivial solutions of problem (1.1), which are given in Theorem 1.1 and Theorem 1.2, then problem (1.16) has at least a nontrivial solution uλ for all λ>λ:=max{ΛM0,Λ21,Λ22,Λ3,Λ4}, and for any given λ>λ, uλ,μuλ, as μ0. Moreover,

    uλ2HKλ1q12,  uλ21eH0Kλ1q12,limλuλH=0=limλuλ,

    where M0 is any given positive constant,

    ΛM0=max{2eq2H02δκq22HeH1M2,δκ2H+2M0N(|δκ|p1+|δκ|p2)2M1δκq12eH0}, (1.17)
    Λ22=max{2eq2H02eH1δϕq22HM2,δϕ22M1δϕq12}, (1.18)
    Λ21=1, (1.19)
    Λ3=max{(8θCeH0(θ2)δ2)q12,(8ρDeH0(ρ2)δ2)q12}, (1.20)
    K=max{2θθ2C,2θθ2D}. (1.21)

    We organize this paper as follows. In section 2, we present the working space, some conclusions for the working space and a variant of mountain pass theorem. In section 3, we complete the proofs of Theorem 1.1, Theorem 1.2 and Theorem 1.3.

    Consider the space

    E={uH2(0,1)|u(0)=u(0)=0}, (2.1)

    where

    H2([0,1])={u:[0,1]R|u and u are absolutely continuous,uL2([0,1])}

    is the Sobolev space. E is a Hilbert space with inner product

    u,v:=10eH(x)u(x)v(x)dx,

    and norm

    uH:=(10eH(x)|u(x)|2dx)12,

    which is equivalent to the usual norm

    u:=(10|u(x)|2dx)12,

    and

    u0:=(10(|u(x)|2+|u(x)|2+|u(x)|2)dx)12.

    Lemma 2.1. ([11]) The embedding

    EC1([0,1]),

    is compact and

    uu,uu,

    for all uE.

    Remark 2.1. It is easy to obtain from Lemma 2.1 that

    uu1eH0uH,uu1eH0uH,

    where H0=mins[0,1]H(s).

    Lemma 2.2. The embedding

    EL2(0,1),

    is compact and

    u2122u122eH0uH,u212u12eH0uH,

    for all uE, where u2=(10|u(x)|2dx)12.

    Proof. The compactness of the embedding is easily proved by Lemma 2.1. Next, we prove the embedding inequalities. By H¨older's inequality, we have

    u22=10|u(x)|2dx=10|x0u(s)ds|2dx10(x0|u(s)|ds)2dx10x(x0|u(s)|2ds)dx=10x0x|u(s)|2dsdx=10ds1sx|u(s)|2dx=1210(1s2)|u(s)|2ds=1210(1s2)|s0u(τ)dτ|2ds1210(ss3)s0|u(τ)|2dτds1210(ss3)ds(10|u(τ)|2dτ)=18u2.

    Similarly,

    u22=10|u(x)|2dx=10|x0u(s)ds|2dx10(x0|u(s)|ds)2dx10x(x0|u(s)|2ds)dx10xdx(10|u(s)|2ds)=12u2.

    By Lemma 2.2, it is easy to obtain the following inequalities which is of independent interest.

    Lemma 2.3. For all uE,

    2213u0uu0.

    Let X be a Banach space. χC1(X,R) and cR. A sequence {un}X is called (PS)c sequence (named after Palais and Smale) if the sequence {un} satisfies

    χ(un)c, χ(un)0.

    Lemma 2.4. (Mountain Pass Theorem [35]) Let X be a Banach space, χC1(X,R), ωX and r>0 be such that ω>r and

    b:=infu=rχ(u)>χ(0)χ(w).

    Then there exists a (PS)c sequence with

    c:=infgΓmaxt[0,1]χ(g(t)),

    and

    Γ:={gC([0,1],X):g(0)=0,g(1)=ω}.

    For each λ>0,μR, we define the functional Jλ,μ:ER as

    Jλ,μ(u)=12u2Hλ10eH(x)F(x,u)dx+μeH(1)G(u(1)).

    It is easy to see that the assumption (H1)(H5) can not ensure that Jλ,μ is well defined on E. So we follow the method in [23]. Define m(s)C1(R,[0,1]) as an even cut-off function satisfying sm(s)0 and

    m(s)={1, if |s| (3.1)

    Define \bar{F}:[0, 1]\times\mathbb{R}\to\mathbb{R} , \bar{G}:\mathbb{R} \to \mathbb{R} as

    \begin{eqnarray} &&\bar{F}(x, u) = m(|u|)F(x, u)+(1-m(|u|))M_2|u|^{q_{2}}, \\ &&\bar{G}(u) = m(|u|)G(u)+(1-m(|u|))N_{1}|u|^{p_{1}}. \end{eqnarray}

    By (H_{1}) and the definition of \bar{F} , it is easy to obtain that \bar{F} satisfies (H_{1})' \bar{F}(x, u) is continuously differentiable in u\in \mathbb{R} for a.e. x \in [0, 1] , measurable in x for every u\in \mathbb{R} , and there exist a\in C(\mathbb{R}^+, \mathbb{R}^+) and b\in L^1([0, 1];\mathbb{R}^+) such that

    |\bar{F}(x, u)|\leq a_{0}b(x)+M_2|u|^{q_2},
    |\bar{f}(x, u)|\leq(1+m_{0})a_{0}b(x)+M_{2}q_{2}|u|^{q_{2}-1}+m_{0}M_{2}|u|^{q_{2}},

    for all u\in \mathbb{R} and a.e. x \in [0, 1] , a_{0} = \max_{s\in[0, \delta]}a(s) and m_{0} = \max_{s\in[\frac{\delta}{2}, \delta]}|m'(s)| , where \bar{F}(x, u) = \int_0^{u}\bar{f}(x, s)ds (see [22]).

    Lemma 3.1. ([22]) Assume that (H_{2}) and (H_{3}) hold. Then

    (H_{2})'

    \begin{eqnarray*} 0\le \bar{F}(x, u)\leq M_2 |u|^{q_{2}}, \ \ \;for\; all \;u\in \mathbb {R}; \end{eqnarray*}

    (H_{3})'

    \begin{eqnarray*} 0 < \theta\bar{F}(x, u)\leq \bar{f}(x, u)u, \ \ \;for\; all \;u\in \mathbb{R}/\{0\}, \end{eqnarray*}

    where \theta = \min\{q_{2}, \beta\}.

    Lemma 3.2. ([36]) Assume that (H_{4}) and (H_{5}) hold. Then

    (H_{4})'

    \begin{eqnarray*} N_{1}|u|^{p_{1}}\leq\bar{G}(u)\leq\max\{N_{1}, N_{2}\}(|u|^{p_{1}}+|u|^{p_{2}}), \ \ \;for\; all \;u\in \mathbb{R}; \end{eqnarray*}

    (H_{5})'

    \begin{eqnarray*} \bar{g}(u)u\leq\zeta\bar{G}(u), \; for\; all \;u\in \mathbb{R}/\{0\}, \end{eqnarray*}

    where \zeta = \max\{p_{1}, \gamma\} and \bar{g}(u) = \bar{G}'(u).

    Next, we define the variational functional corresponding to \bar{F} and \bar{G} as

    \begin{eqnarray} \bar{J}_{_{\lambda, \mu}}(u) = \frac{1}{2}\|u\|_H^{2}-\lambda\int^{1}_{0}e^{H(x)}\bar{F}(x, u)dx+\mu e^{H(1)}\bar{G}(u(1)), \end{eqnarray} (3.2)

    for all u\in E . It follows from Lemma 3.1 and Lemma 3.2 that \bar{J}_{\lambda, \mu}\in C^{1}(E, \mathbb{R}) and

    \begin{eqnarray} \langle\bar{J}_{\lambda, \mu}'(u), v\rangle = \int^{1}_{0}e^{H(x)}u''(x)v''(x)dx-\lambda\int^{1}_{0}e^{H(x)}\bar{f}(x, u)vdx+\mu e^{H(1)} \bar{g}(u(1))v(1), \end{eqnarray} (3.3)

    for all u, v\in E . Hence, for all u\in E , we can get

    \begin{eqnarray*} \langle\bar{J}_{\lambda, \mu}'(u), u\rangle = \|u\|_H^{2}-\lambda\int^{1}_{0}e^{H(x)} \bar{f}(x, u)udx+\mu e^{H(1)} \bar{g}(u(1))u(1). \end{eqnarray*}

    Lemma 3.3. If u is a critical point of \bar{J}_{\lambda, \mu} , then u is a weak solution of the following equation

    \begin{eqnarray} \begin{cases} u^{(4)}(x)+2h(x) u'''(x)+(h^2(x)+h'(x))u''(x) = \lambda \bar{f}(x, u(x)), \;\;\;\; x\in [0, 1], \\ u(0) = u'(0) = u''(1) = u'''(1)-\mu \bar{g}(u(1)) = 0.\\ \end{cases} \end{eqnarray} (3.4)

    Proof. If u is a critical point of \bar{J}_{\lambda, \mu} , we have

    \begin{eqnarray} \int^{1}_{0}e^{H(x)}u''(x)v''(x)dx-\lambda\int^{1}_{0}e^{H(x)}\bar{f}(x, u(x))v(x)dx+\mu e^{H(1)}\bar{g}(u(1))v(1) = 0, \end{eqnarray} (3.5)

    for all v\in H^{2}([0, 1]) . An integration by parts gives

    \begin{eqnarray} &&\int^{1}_{0}e^{H(x)}u''(x)v''(x)dx \\ && = \int^{1}_{0}e^{H(x)}u''(x)dv'(x)\\ && = e^{H(x)}u''(x)v'(x)\mid^{1}_{0}-\int^{1}_{0}\left(e^{H(x)}u'''(x)+e^{H(x)}u''(x)h(x)\right)dv(x)\\ && = e^{H(x)}u''(x)v'(x)\mid^{1}_{0}-\left(e^{H(x)}u'''(x)+e^{H(x)}u''(x)h(x)\right)v(x)\mid^{1}_{0}\\ && +\int^{1}_{0}\left(e^{H(x)}u^{(4)}(x)+2e^{H(x)}u'''(x)h(x)+e^{H(x)}u''(x)h^{2}(x)+e^{H(x)}u''(x)h'(x)\right)v(x)dx. \end{eqnarray} (3.6)

    Define

    H^{2}_{0}([0, 1]) = \{u : [0, 1]\to\mathbb{R}| u(0) = u(1) = u'(0) = u'(1) = 0\}.

    Then for any v\in H^{2}[0, 1]\cap H^{2}_{0}[0, 1] , (3.5) and (3.6) implies that

    \begin{eqnarray*} \int^{1}_{0}e^{H(x)}\left[u^{(4)}(x)+2u'''(x)h(x)+u''(x)h^{2}(x)+u''(x)h'(x)-\lambda \bar{f}(x, u(x))\right]v(x)dx = 0, \end{eqnarray*}

    and then by the arbitrary of v , we have

    \begin{eqnarray} u^{(4)}(x)+2u'''(x)h(x)+u''(x)h^{2}(x)+u''(x)h'(x) = \lambda \bar{f}(x, u(x)). \end{eqnarray} (3.7)

    Next, we prove that u satisfies the boundary condition of (3.4). For any v\in E , integrating (3.7) by parts, and by (3.5) and (3.6), we can obtain

    \begin{eqnarray*} &&\int^{1}_{0}e^{H(x)}\left(u^{(4)}(x)+2u'''(x)h(x)+u''(x)h^{2}(x)+u''(x)h'(x)-\lambda \bar{f}(x, u(x))\right)v(x)dx\nonumber\\ &&+u''(1)e^{H(1)}\left[v'(1)-h(1)v(1)\right]+\left[\mu \bar{g}(u(1))-u'''(1)\right]e^{H(1)}v(1) = 0. \end{eqnarray*}

    Then (3.7) and the arbitrary of v imply that the boundary conditions u''(1) = 0 and u'''(1)-\mu \bar{g}(u(1)) = 0 . Therefore, u is a weak solution for problem (3.4).

    Lemma 3.4. If (H_{1})-(H_{5}) hold. For all \lambda > \Lambda_{1}^{+} and \mu > 0 , \bar{J}_{\lambda, \mu} satisfies the following conditions:

    (i) there exist two positive constants d_\lambda and \nu_\lambda such that \bar{J}_{\lambda, \mu}|_{\partial B_{\nu_\lambda}}\geq d_\lambda, where B_{r} denote a ball with center 0 and radius r;

    (ii) there is \omega\in E/\bar{B}_{\nu_\lambda} such that \bar{J}_{\lambda, \mu}(\omega) < 0 .

    Proof. By Lemma 2.1 and 2.2, Lemma 3.1 and 3.2, we have

    \begin{eqnarray} \bar{J}_{_{\lambda, \mu}}(u)& = &\frac{1}{2}\|u\|^{2}_{H}-\lambda\int^{1}_{0}e^{H(x)}\bar{F}(x, u)dx+\mu e^{H(1)}\bar{G}(u(1))\\ &\geq& \frac{1}{2}\|u\|^{2}_{H}-\lambda\int^{1}_{0}e^{H(x)}\bar{F}(x, u)dx\\ &\geq&\frac{1}{2}\|u\|^{2}_{H}-\lambda e^{H_1}M_{2}\int^{1}_{0}|u|^{q_{2}}dx\\ &\geq&\frac{1}{2}\|u\|^{2}_{H}-\lambda e^{H_1}M_{2}\|u\|^{q_{2}-2}_{\infty}\int^{1}_{0}|u|^{2}dx\\ & = &\frac{1}{2}\|u\|^{2}_{H}-\lambda e^{H_1}M_{2}\|u\|^{q_{2}-2}_{\infty}\|u\|^{2}_{2}\\ &\geq&\frac{1}{2}\|u\|^{2}_{H}-\frac{\lambda M_{2}e^{H_{1}}}{8e^{\frac{q_2 H_0}{2}}}\|u\|^{q_{2}}_{H}, \end{eqnarray}

    where H_{1} = \max\limits_{x\in [0, 1]} H(x) . For any given \lambda > 0 , we choose \nu_{\lambda} = \left(\frac{2e^{\frac{q_2 H_0}{2}}}{\lambda M_{2}e^{H_{1}}}\right)^{\frac{1}{q_{2}-2}} . Then for all \|u\|_{H} = \nu_{\lambda} , we have

    \begin{eqnarray} \bar{J}_{_{\lambda, \mu}}(u)\geq d_{\lambda}: = \frac{1}{2}\nu^{2}_{\lambda}-\frac{\lambda M_{2}e^{H_{1}}}{8e^{\frac{q_2 H_0}{2}}}\nu^{q_{2}}_{\lambda} > 0. \end{eqnarray} (3.8)

    Since \kappa\in E with

    \begin{eqnarray} \|\kappa\|_{\infty}\leq 1, \end{eqnarray} (3.9)

    and

    \Lambda^{+}_{1} = \max\left\{\frac{2e^{\frac{q_2 H_0}{2}}}{M_{2}e^{H_{1}}\|\delta\kappa\|^{q_{2}-2}_{H}}, \frac{\|\delta \kappa\|^{2}_{H}+2\mu N(|\delta \kappa(1)|^{p_{1}}+|\delta \kappa(1)|^{p_{2}})} {2e^{H_{0}}M_{1}\|\delta \kappa\|^{q_{1}}_{2}}\right\}.

    Then for all \lambda > \Lambda^{+}_{1} , we have

    \|\delta \kappa\|_{H}\geq\nu_{\lambda}.

    By (3.9), we have \|\delta \kappa\|_{\infty}\leq\delta. By (H_{2}), (H_{4}) and the definitions of \bar{F} and \bar{G} , for all |u|\leq\frac{\delta}{2} , we have

    \begin{eqnarray} \bar{F}(x, u) = F(x, u)\geq M_{1}|u|^{q_{1}}, \ \ \bar{G}(u) = G(u)\leq N_{2}|u|^{p_{2}}\leq\max\{N_{1}, N_{2}\}(|u|^{p_{1}}+|u|^{p_{2}}). \end{eqnarray} (3.10)

    We also have

    \begin{eqnarray} \bar{F}(x, u) & = & m(|u|)F(x, u)+(1-m(|u|))M_{2}|u|^{q_{2}}\\ & \geq & m(|u|)M_{1}|u|^{q_1}+(1-m(|u|))M_{1}|u|^{q_{1}}\\ & = & M_{1}|u|^{q_{1}}, \end{eqnarray} (3.11)

    and

    \begin{eqnarray} \bar{G}(u)& = & m(|u|)G(u)+(1-m(|u|))N_{1}|u|^{p_{1}}\\ & \leq & G(u)+N_{1}|u|^{p_{1}}\\ & \leq & N_{2}|u|^{p_{2}}+N_{1}|u|^{p_{1}}\\ & \leq & \max\{N_{1}, N_{2}\}(|u|^{p_{1}}+|u|^{p_{2}}), \end{eqnarray} (3.12)

    for all \frac{\delta}{2} < |u|\le\delta . Hence by Hölder inequality, for all \lambda > \Lambda^{+}_{1} , we can obtain

    \begin{eqnarray} \bar{J}_{\lambda, \mu}(\delta \kappa) & = &\frac{1}{2}\|\delta \kappa\|^{2}_{H}-\lambda\int^{1}_{0}e^{H(x)}\bar{F}(x, \delta \kappa)dx+\mu e^{H(1)}\bar{G}(\delta \kappa(1))\\ &\leq&\frac{1}{2}\|\delta \kappa\|^{2}_{H}-\lambda e^{H_{0}}M_{1}\int^{1}_{0}|\delta \kappa|^{q_{1}}dx +\mu e^{H(1)}N(|\delta \kappa(1)|^{p_{1}}+|\delta \kappa(1)|^{p_{2}})\\ &\leq&\frac{1}{2}\|\delta \kappa\|^{2}_{H}-\lambda e^{H_{0}}M_{1}\|\delta\kappa\|^{q_{1}}_{2} +\mu e^{H(1)}N(|\delta \kappa(1)|^{p_{1}}+|\delta \kappa(1)|^{p_{2}})\\ & < & 0, \end{eqnarray}

    where N = \max\{N_{1}, N_{2}\} . Let \omega = \delta \kappa . Then the proof is completed.\qed

    Let \chi = \bar{J}_{\lambda, \mu} . Then for any given \lambda > \Lambda^{+}_{1} and \mu > 0 , Lemma 2.4 and Lemma 3.4 imply that \bar{J}_{\lambda, \mu} has a (PS) _{c_{\lambda, \mu}} sequence \{u_n\}: = \{u_{n, \lambda, \mu}\} , that is, there exists a sequence \{u_n\} satisfying

    \begin{eqnarray} \bar{J}_{\lambda, \mu}(u_n)\to c_{\lambda, \mu}, \quad \bar{J}_{\lambda, \mu}'(u_n)\to 0, \ \ \mbox{as } n\to \infty, \end{eqnarray} (3.13)

    where

    \begin{eqnarray} c_{\lambda, \mu}: = \inf\limits_{g\in\Gamma}\max\limits_{t\in[0, 1]}\bar{J}_{\lambda, \mu}(g(t)), \;\;\;\;\;\;\;\;\; \Gamma: = \{g\in C([0, 1], X):g(0) = 0, g(1) = \omega\}. \end{eqnarray} (3.14)

    Lemma 3.5. Suppose that (H_{1})-(H_{5}) hold. Then for any given \lambda > \Lambda^+_1 and \mu > 0 , the (PS)_{c_{\lambda, \mu}} sequence \{u_n\} has a convergent subsequence in E , that is, there exists a u_{\lambda, \mu}\in E such that \|u_n-u_{\lambda, \mu}\|_H\to 0 .

    Proof. The proof is similar to the argument in [37]. Note that \zeta < \theta , by Lemma 3.1, Lemma 3.2 and (3.13), there exists a positive constant M > 0 such that

    \begin{eqnarray} M+\|u_{n}\|_{H} &\geq&\bar{J}_{\lambda, \mu}(u_{n})-\frac{1}{\theta}\langle\bar{J}'_{\lambda, \mu}(u_{n}), u_{n}\rangle\\ & = &\frac{1}{2}\|u_{n}\|^{2}_{H}-\lambda\int^{1}_{0}e^{H(x)}\bar{F}(x, u_{n})dx+\mu e^{H(1)}\bar{G}(u_{n}(1))-\frac{1}{\theta}\|u_{n}\|^{2}_{H}\\ &&+\lambda\int^{1}_{0}\frac{1}{\theta}e^{H(x)}\bar{f}(x, u_{n})dx-\frac{\mu}{\theta} e^{H(1)}\bar{g}(u_{n}(1))u_{n}(1)\\ & = &\left(\frac{1}{2}-\frac{1}{\theta}\right)\|u_{n}\|^{2}_{H}-\lambda\int^{1}_{0}e^{H(x)}\left[\bar{F}(x, u_{n})-\frac{1}{\theta}\bar{f}(x, u_{n})u_{n}\right]dx\\ &&-\mu e^{H(1)}\left[\frac{1}{\theta}\bar{g}(u_{n}(1))u_{n}(1)-\bar{G}(u_{n}(1))\right]\\ &\geq&\left(\frac{1}{2}-\frac{1}{\theta}\right)\|u_{n}\|^{2}_{H}-\mu e^{H(1)}\left[\frac{\zeta}{\theta}\bar{G}(u_{n}(1))-\bar{G}(u_{n}(1))\right]\\ &\geq&\left(\frac{1}{2}-\frac{1}{\theta}\right)\|u_{n}\|^{2}_{H}. \end{eqnarray} (3.15)

    So the (PS)_{c_{\lambda, \mu}} sequence \{u_{n}\} is bounded in E . Then by Lemma 2.1, there exists a subsequence, denoted by \{u_{n}\} , for some u: = u_{\lambda, \mu}\in E , such that

    \begin{eqnarray} u_{n}\rightharpoonup u \;\;\; \mbox{in} \;\; E, \;\;\;\;\;\;\;\;\;\;\;\;\;\; u_{n}\rightarrow u \;\;\;\mbox{in} \;\;C^{1}([0, 1]). \end{eqnarray} (3.16)

    By (3.3), we have

    \begin{eqnarray} \langle\bar{J}'_{\lambda, \mu}(u_{n}), u_{n}-u\rangle & = &\int^{1}_{0}e^{H(x)}u''_{n}(u''_{n}-u'')dx-\lambda\int^{1}_{0}e^{H(x)}\bar{f}(x, u_{n})(u_{n}-u)dx\\ & & +\mu e^{H(1)} \bar{g}(u_{n}(1))(u_{n}(1)-u(1)). \end{eqnarray} (3.17)

    So we get

    \begin{eqnarray} &&\langle\bar{J}'_{\lambda, \mu}(u_{n})-\bar{J}'_{\lambda, \mu}(u), u_{n}-u\rangle\\ & = &\int^{1}_{0}e^{H(x)}u''_{n}(u''_{n}-u'')dx-\lambda\int^{1}_{0}e^{H(x)}\bar{f}(x, u_{n})(u_{n}-u)dx+\mu e^{H(1)}\bar{g}(u_{n}(1))(u_{n}(1)-u(1))\\ &&-\left[\int^{1}_{0}e^{H(x)}u''(u''_{n}-u'')dx-\lambda\int^{1}_{0}e^{H(x)}\bar{f}(x, u)(u_{n}-u)dx+\mu e^{H(1)}\bar{g}(u(1))(u_{n}(1)-u(1))\right]\\ & = &\int^{1}_{0}e^{H(x)}(u''_{n}-u'')^{2}dx-\lambda\int^{1}_{0}e^{H(x)}(\bar{f}(x, u_{n})-\bar{f}(x, u))(u_{n}-u)dx\\ &&+\mu e^{H(1)}(\bar{g}(u_{n}(1))-\bar{g}(u(1)))(u_{n}(1)-u(1))\\ &\geq&\|u_{n}-u\|^{2}_{H}-\lambda\int^{1}_{0}e^{H(x)}|\bar{f}(x, u_{n})-\bar{f}(x, u)||u_{n}-u|dx\\ &&-\mu e^{H(1)}\left|\bar{g}(u_{n}(1))-\bar{g}(u(1))\right|\left|u_{n}(1)-u(1)\right|. \end{eqnarray} (3.18)

    By (H_{1})' , the boundedness of \{u_{n}\} in E , and h(x)\in C^{1}([0, 1]) , we have e^{H(x)}|\bar{f}(x, u_{n})-\bar{f}(x, u)| is bounded in [0, 1] . Moreover, by u_{n}\rightarrow u in C^{1}([0, 1]) and the boundedness of e^{H(x)}|\bar{g}(u_{n}(1))-\bar{g}(u(1))| on [0, 1] , we have

    \begin{eqnarray} \lambda\int^{1}_{0}e^{H(x)}|\bar{f}(x, u_{n})-\bar{f}(x, u)||u_{n}-u|dx\rightarrow 0, \;\;\;\;\; \mu e^{H(1)}\left|\bar{g}(u_{n}(1))-\bar{g}(u(1))\right|\left|u_{n}(1)-u(1)\right|\rightarrow 0, \end{eqnarray} (3.19)

    and it is easy to see from (3.13) and (3.16) that

    \begin{eqnarray} \langle\bar{J}'_{\lambda, \mu}(u_{n})-\bar{J}'_{\lambda, \mu}(u), u_{n}-u\rangle\rightarrow 0, \;\;\;\;\;\mbox{as} \;\; n\to \infty. \end{eqnarray} (3.20)

    Therefore, by (3.18)–(3.20), we get

    \begin{eqnarray*} \|u_{n}-u\|^{2}_{H}\rightarrow 0, \;\;\;\;\; as \;\; n\to \infty. \end{eqnarray*}

    By the continuity of \bar{J}_{\lambda, \mu} , we obtain that \bar{J}_{\lambda, \mu}(u_{\lambda, \mu}) = c_{\lambda, \mu} , where c_{\lambda, \mu} is defined by (3.14). Then (3.8) implies that c_{\lambda, \mu}\geq d_{\lambda} > 0 . Hence, u_{\lambda, \mu} is a nontrivial critical point of \bar{J}_{\lambda, \mu} in E for any given \lambda > \Lambda^{+}_1 .

    Next, we will show that u_{\lambda, \mu} precisely is the nontrivial weak solution of problem (1.1) for any given \lambda > \lambda^{*}_{+} . In order to get this, we need to make an estimate for the critical level c_{\lambda, \mu} . We introduce the functional \widetilde{I}_{\lambda, \mu}: E\to \mathbb{R} as follows

    \widetilde{I}_{\lambda, \mu}(u) = \frac{1}{2}\|u\|^{2}_{H}-\lambda e^{H_{0}}M_{1}\int^{1}_{0}|u|^{q_{1}}dx+\mu e^{H(1)}N(|u|^{p_{1}}+|u|^{p_{2}}).

    Lemma 3.6. Suppose (H_{1})-(H_{5}) hold. Then for all \lambda\geq \max\{\Lambda^{+}_{1}, \Lambda^{+}_{2}\} and \mu > 0 , we have

    c_{\lambda, \mu}\leq C_{*}\lambda^{-\frac{1}{q_{1}-2}}+C_{**}\mu,

    where C_{*} and C_{**} are defined by (1.7) and (1.8), respectively.

    Proof. Define f_i:[0, \infty)\to \mathbb{R} , i = 1, 2, 3 , by

    \begin{eqnarray} & & f_{1}(s) = \frac{s^{2}}{2}\|\kappa_{1}\|^{2}_{H}-\lambda^{\frac{1}{q_{1}}}\frac{s^{2}}{2}\|\kappa_{1}\|_H^{2}, \\ & & f_{2}(s) = \mu e^{H(1)}N(s^{p_{1}}|\kappa_{1}|^{p_{1}}+s^{p_{2}}|\kappa_{1}|^{p_{2}}), \\ & & f_{3}(s) = -\lambda e^{H_{0}}M_{1}s^{q_{1}}\int^{1}_{0}|\kappa_{1}|^{q_{1}}dx+\lambda^{\frac{1}{q_{1}}}\frac{s^{2}}{2}\|\kappa_{1}\|_H^{2}, \end{eqnarray}

    where \kappa_1 = \delta \kappa and \kappa is defined in (3.9). Then f_{1}(s)+f_{2}(s)+f_3(s) = \widetilde{I}_{\lambda, \mu}(s \kappa_1) . Let

    f'_{3}(s) = -\lambda e^{H_{0}}M_{1}q_{1}\|\kappa_{1}\|^{q_{1}}_{{q_{1}}}s^{q_{1}-1}+\lambda^{\frac{1}{q_{1}}}\|\kappa_{1}\|_H^{2}s = 0.

    Thus for each given \lambda > 0 , we have s = \left(\dfrac{\lambda^{\frac{1}{q_{1}}}\|\kappa_1\|_H^{2}}{\lambda e^{H_{0}}M_1 q_{1} \|\kappa_1\|_{L^{q_{1}}}^{q_{1}}}\right)^{\frac{1}{q_{1}-2}}. Then

    \max\limits_{s\geq0}f_{3}(s) = \left(\dfrac{1}{2(M_1e^{H_{0}}q_{1})^{\frac{2}{q_{1}-2}}}-\dfrac{e^{H_{0}}M_1}{(e^{H_{0}}M_1q_{1})^{\frac{q_{1}}{q_{1}-2}}}\right) \left(\dfrac{\|\kappa_1\|_H}{\|\kappa_1\|_{{q_{1}}}}\right)^{\frac{2q_{1}}{q_{1}-2}}\lambda^{-\frac{1}{q_{1}-2}}.

    Obviously, f_1(0) = 0 and

    \begin{eqnarray} f'_{1}(s) & = &\|\kappa_{1}\|^{2}_{H}s-\lambda^{\frac{1}{q_{1}}}\|\kappa_{1}\|_H^{2}s. \end{eqnarray}

    So if \lambda > \Lambda^{+}_{2} = 1 , f_1(s) is decreasing on s\in [0, 1] and then f_{1}(s) < 0 for all s\in [0, 1] . Moreover, for all \mu > 0 , we can get

    \max\limits_{s\in[0, 1]}f_{2}(s)\leq\mu e^{H_1}N(\|\kappa_{1}\|^{p_{1}}_{\infty}+\|\kappa_{2}\|^{p_{2}}_{\infty}).

    By (3.9), we have

    \begin{eqnarray} \|s\kappa_{1}\|_{\infty}\leq\|\delta \kappa\|_{\infty}\leq\delta, \end{eqnarray} (3.21)

    for all s \in [0, 1] . So for all \lambda > \Lambda^{+}_{2} , by (3.10) (3.12) , we have

    \begin{eqnarray*} & & c_{\lambda, \mu} \leq \max\limits_{s \in[0, 1]}\bar{J}_{\lambda, \mu}(s \kappa_1) \leq \max\limits_{s \in[0, 1]}\widetilde{I}_{\lambda}(s \kappa_1) \leq \max\limits_{s \in[0, 1]}f_{1}(s)+\max\limits_{s\in[0, 1]}f_{2}(s)+\max\limits_{s\geq0}f_{3}(s)\nonumber\\ & & \leq \max\limits_{s\in[0, 1]}f_{2}(s)+\max\limits_{s\geq0}f_{3}(s) = \left(\dfrac{1}{2(M_1e^{H_{0}}q_{1})^{\frac{2}{q_{1}-2}}}-\dfrac{M_1e^{H_{0}}}{(e^{H_{0}}M_1q_{1})^{\frac{q_{1}}{q_{1}-2}}}\right) \left(\dfrac{\|\kappa_1\|_H}{\|\kappa_1\|_{q_{1}}}\right)^{\frac{2q_{1}}{q_{1}-2}}\lambda^{-\frac{1}{q_{1}-2}}\nonumber\\ &&+\mu e^{H_1}N(\|\kappa_{1}\|^{p_{1}}_{\infty}+\|\kappa_{2}\|^{p_{2}}_{\infty})\nonumber\\ & & \leq\left(\dfrac{1}{2(M_1e^{H_{0}}q_{1})^{\frac{2}{q_{1}-2}}}-\dfrac{M_1e^{H_{0}}}{(e^{H_{0}}M_1q_{1})^{\frac{q_{1}}{q_{1}-2}}}\right) \left(\dfrac{\|\kappa_1\|_{H}}{\|\kappa_1\|_{2}}\right)^{\frac{2q_{1}}{q_{1}-2}}\lambda^{-\frac{1}{q_{1}-2}}+\mu e^{H_1}N\left(e^{-\frac{H_0p_1}{2}}\|\kappa_{1}\|_H^{p_{1}}+e^{-\frac{H_0p_2}{2}}\|\kappa_{2}\|_H^{p_{2}}\right)\nonumber\\ & & = C_*\lambda^{-\frac{1}{q_{1}-2}}+C_{**}\mu. \end{eqnarray*}

    Proof of Theorem 1.1. Note that u_{\lambda, \mu} is a critical point of \bar{J}_{\lambda, \mu} with critical value c_{\lambda, \mu} . Since \langle \bar{J}'(u_{\lambda, \mu}), u_{\lambda, \mu}\rangle = 0 , similar to the argument in (3.15) and by Lemma 3.6, we have

    \begin{eqnarray} \|u_{\lambda, \mu}\|^{2}_{H}\leq\frac{2\theta}{\theta-2}\bar{J}_{\lambda, \mu}(u_{\lambda, \mu}) = \frac{2\theta}{\theta-2}c_{\lambda, \mu} \leq\frac{2\theta}{\theta-2}(C_{*}\lambda^{-\frac{1}{q_{1}-2}}+C_{**}\mu). \end{eqnarray} (3.22)

    Note that \mu\in (0, \mu_*) , where \mu_* is defined by (1.10). If

    \lambda > \Lambda^{+}_{3}: = \left[\frac{8\theta C_{*}}{(\theta-2)e^{H_{0}}\delta^{2}-8\theta C_{**}\mu}\right]^{q_{1}-2},

    then by Remark 2.1 and (3.22), we have

    \begin{eqnarray} \|u_{\lambda, \mu}\|_{\infty}\leq\frac{1}{\sqrt{e^{H_0}}}\|u_{\lambda, \mu}\|_H\leq\frac{\delta}{2}. \end{eqnarray} (3.23)

    So for all \lambda > \Lambda^{+}_{3} and all x\in[0, 1] ,

    |u_{\lambda, \mu}(x)|\leq\|u_{\lambda, \mu}\|_{\infty}\leq\frac{\delta}{2},

    and then

    \bar{F}(x, u(x)) = F(x, u(x)), \ \ \bar{G}(u(1)) = G(u(1)).

    Furthermore, for all v\in E , we have

    \bar{J}_{\lambda, \mu}(u_{\lambda, \mu}) = J_{\lambda, \mu}(u_{\lambda, \mu}) = c_{\lambda, \mu} > 0, \;\;\; \langle\bar{J}'_{\lambda, \mu}(u_{\lambda, \mu}), v\rangle = \langle J'_{\lambda, \mu}(u_{\lambda, \mu}), v\rangle = 0.

    Thus, u_{\lambda, \mu} is precisely the nontrivial weak solution of problem (1.1) when \lambda > \lambda^{*}_{+}: = \max\{\Lambda^{+}_{1}, \Lambda^{+}_{2}, \Lambda^{+}_{3}\} .

    Next, we discuss the connection between \mu , \lambda and \Lambda^{+}_{i}(i = 1, 2, 3) .

    (a_{1}) If \mu\rightarrow0^{+} , we have

    \begin{eqnarray} &&\Lambda^{+}_{1}\longrightarrow\Lambda_{11} = \max\left\{\frac{2e^{\frac{ q_2 H_0}{2}}}{M_{2}e^{H_{1}}\|\delta\kappa\|^{q_{2}-2}_{H}}, \frac{\|\delta \kappa\|^{2}_{H}} {2e^{H_{0}}M_{1}\|\delta \kappa\|^{q_{1}}_{2}}\right\}, \\ &&\Lambda^{+}_{2}\to\Lambda_{21} = 1, \\ &&\Lambda^{+}_{3}\to\Lambda_{31} = \left[\frac{8\theta C_{*}}{(\theta-2)e^{H_{0}}\delta^{2}}\right]^{q_{1}-2}, \end{eqnarray}

    which shows that if \mu\to 0^+ , then \lambda_+^*\to \lambda_* , where \lambda_* is defined by (1.9). Hence, if \mu is small enough, the range of \lambda can be extended to (\lambda_*, \infty) .

    (a_{2}) If \mu\rightarrow \mu_{*}^{-} , we have

    \begin{eqnarray} &&\Lambda^{+}_{1}\longrightarrow\max\left\{\frac{2e^{\frac{ q_2 H_0}{2}}}{M_{2}e^{H_{1}}\|\delta\kappa\|^{q_{2}-2}_{H}}, \frac{4\theta C_{**}\|\delta \kappa\|^{2}_{H}+(\theta-2)\delta^{2}e^{H_{0}} N(|\delta \kappa(1)|^{p_{1}}+|\delta \kappa|^{p_{2}})}{8\theta C_{**}e^{H_{0}}M_{1}\|\delta \kappa\|^{q_{1}}_{2}}\right\}, \\ &&\Lambda^{+}_{2}\longrightarrow 1, \\ &&\Lambda^{+}_{3}\longrightarrow +\infty, \end{eqnarray}

    and then \lambda\rightarrow +\infty , which means that if \mu is close to \mu_{*} , problem (1.1) has a nontrivial weak solution when \lambda is sufficiently large.

    Finally, by (a_{1}), (a_{2}), (3.22) and (3.23) , it is easy to obtain that

    \begin{eqnarray*} &&\lim\limits_{\mu\rightarrow0^{+}\atop\lambda\rightarrow +\infty}\|u_{\lambda, \mu}\|_{H} = 0 = \lim\limits_{\mu\rightarrow0^{+}\atop\lambda\rightarrow +\infty}\|u_{\lambda, \mu}\|_{\infty}, \\ &&\sqrt{e^{H_{0}}}\lim\limits_{\mu\rightarrow0^{+}\atop\lambda\rightarrow \lambda_{*}}\|u_{\lambda, \mu}\|_{\infty} \leq\lim\limits_{\mu\rightarrow0^{+}\atop\lambda\rightarrow \lambda_{*}}\|u_{\lambda, \mu}\|_H\leq\sqrt{\frac{2\theta C_{*}}{\theta-2}}\lambda_{*}^{-\frac{1}{2(q_{1}-2)}}, \nonumber\\ &&\sqrt{e^{H_{0}}}\lim\limits_{\mu\rightarrow \mu_{*}^{-}\atop\lambda\rightarrow +\infty}\|u_{\lambda, \mu}\|_{\infty} \leq\lim\limits_{\mu\rightarrow \mu_{*}^{-}\atop\lambda\rightarrow +\infty}\|u_{\lambda, \mu}\|_{H}\leq\frac{\delta}{2}\sqrt{e^{H_{0}}}. \end{eqnarray*}

    By (3.1), we define \bar{\bar{G}}:\mathbb{R}\rightarrow \mathbb{R} as

    \bar{\bar{G}}(u) = m(|u|)G(u)+(1-m(|u|))\eta_{2}|u|^{\alpha_{2}}.

    Similar to Lemma 3.1, we have the following conclusion.

    Lemma 3.7. Assume (H_{6})-(H_{7}) hold. Then

    (H_{6})'

    \begin{eqnarray*} 0\leq\bar{\bar{G}}(u)\leq\eta_{2}|u|^{\alpha_{2}}, \;\;\;\;for\; all \;u\in \mathbb{R}; \end{eqnarray*}

    (H_{7})'

    \begin{eqnarray*} 0\leq\varrho\bar{\bar{G}}(u)\leq\bar{\bar{g}}(u)u, \;\;\;\;for\; all \;u\in \mathbb{R}/\{0\}, \end{eqnarray*}

    where \varrho = \min\{\alpha_{2}, \xi\}, \; \; \; \bar{\bar{g}}(u) = \bar{\bar{G}}'(u).

    Next, we define the variational functional corresponding to \bar{F} and \bar{\bar{G}} as

    \bar{\bar{J}}_{\lambda, \mu}(u) = \frac{1}{2}\|u\|^{2}_{H}-\lambda\int^{1}_{0}e^{H(x)}\bar{F}(x, u)dx+\mu e^{H(1)}\bar{\bar{G}}(u(1)),

    for all u\in E . By Lemma 3.1 and Lemma 3.7, we have \bar{\bar{J}}_{\lambda, \mu}\in C^{1}(E, \mathbb{R}) and

    \begin{eqnarray*} \langle\bar{\bar{J}}'_{\lambda, \mu}(u), v\rangle = \int^{1}_{0}e^{H(x)}u''(x)v''(x)dx-\lambda\int^{1}_{0}e^{H(x)}\bar{f}(x, u)vdx+\mu e^{H(1)}\bar{\bar{g}}(u(1))v(1), \end{eqnarray*}

    for all u, v\in E . Hence

    \begin{eqnarray*} \langle\bar{\bar{J}}'_{\lambda, \mu}(u), u\rangle = \|u\|^{2}_{H}-\lambda\int^{1}_{0}e^{H(x)}\bar{f}(x, u)udx+\mu e^{H(1)}\bar{\bar{g}}(u(1))u(1), \end{eqnarray*}

    for all u\in E.

    Lemma 3.8. If (H_{1})-(H_{3}) , (H_{6}) and (H_{7}) hold. If \lambda > \max\{\Lambda_{1}^{-}, \Lambda_4^{-}\} and \mu < 0 , then \bar{\bar{J}}_{\lambda, \mu} satisfies the following conditions:

    (i) there exist two positive constants d_{\lambda, \mu} and \rho_{\lambda, \mu} such that \bar{\bar{J}}_{\lambda, \mu}|_{\partial B_{\rho_{\lambda, \mu}}}\geq d_{\lambda, \mu};

    (ii) there is \omega\in E/\bar{B}_{\rho_{\lambda, \mu}} such that \bar{\bar{J}}_{\lambda, \mu}(\omega) < 0 .

    Proof. By Lemma 2.1 and 2.2, Remark 2.1 and Lemma 3.7, we have

    \begin{eqnarray} \bar{\bar{J}}_{_{\lambda, \mu}}(u)& = &\frac{1}{2}\|u\|^{2}_{H}-\lambda\int^{1}_{0}e^{H(x)}\bar{F}(x, u)dx+\mu e^{H(1)}\bar{\bar{G}}(u(1))\\ &\geq& \frac{1}{2}\|u\|^{2}_{H}-\lambda e^{H_1}M_{2}\int^{1}_{0}|u|^{q_{2}}dx+\mu e^{H(1)}\eta_{2}|u(1)|^{\alpha_{2}}\\ &\geq&\frac{1}{2}\|u\|^{2}_{H}-\lambda e^{H_1}M_{2}\|u\|^{q_{2}-2}_{\infty}\int^{1}_{0}|u|^{2}dx+\mu e^{H(1)}\eta_{2}\|u\|^{\alpha_{2}}_{\infty}\\ &\geq&\frac{1}{2}\|u\|^{2}_{H}-\frac{\lambda M_{2}e^{H_{1}}}{8e^{\frac{ q_2 H_0}{2}}}\|u\|^{q_{2}}_{H}+\frac{\mu e^{H(1)}\eta_{2}}{e^{\frac{\alpha_{2} H_{0}}{2}}}\|u\|^{\alpha_{2}}_{H}. \end{eqnarray}

    Note that \lambda > \Lambda_4^- = \frac{2e^{\frac{q_2 H_0}{2}}}{M_2e^{H_1}} . If we take \|u\|_H = \rho_{\lambda, \mu}: = \left(\frac{2e^{\frac{q_{2}H_{0}}{2}}}{\lambda e^{H_{1}}M_{2}-8\mu e^{H(1)}\eta_{2}}\right)^{\frac{1}{q_{2}-2}} , then \|u\|_H < 1 . Thus for all u\in \partial B_{\rho_{\lambda, \mu}} , we have

    \begin{eqnarray} \bar{\bar{J}}_{_{\lambda, \mu}}(u) & \geq & \frac{1}{2}\|u\|^{2}_{H}-\frac{\lambda M_{2}e^{H_{1}}}{8e^{\frac{ q_2 H_0}{2}}}\|u\|^{q_{2}}_{H}+\frac{\mu e^{H(1)}\eta_{2}}{e^{\frac{\alpha_{2} H_{0}}{2}}}\|u\|^{q_{2}}_{H}\\ & = & d_{\lambda, \mu}: = \frac{1}{2}\rho^{2}_{\lambda, \mu}-\frac{\lambda e^{H_{1}}M_{2}-8\mu e^{H(1)}\eta_{2}}{8e^{\frac{q_{2}H_{0}}{2}}}\rho^{q_{2}}_{\lambda, \mu} > 0. \end{eqnarray} (3.24)

    We choose \phi\in E such that

    \begin{eqnarray} \|\phi\|_{\infty}\leq 1. \end{eqnarray} (3.25)

    Note that

    \Lambda^{-}_{1} = \max\left\{\frac{2e^{\frac{q_{2}H_{0}}{2}}}{M_{2}e^{H_{1}}\|\delta \phi\|_H^{q_{2}-2}} +\frac{8\mu \eta_{2}e^{H(1)}}{M_{2}e^{H_{1}}}, \frac{\|\delta \phi\|^{2}_{H}}{2M_{1}e^{H_{0}}\|\delta \phi\|^{q_{1}}_{2}}\right\}.

    For all \lambda > \Lambda^{-}_{1} , we have

    \|\delta\phi\|_H\geq\rho_{\lambda, \mu}.

    By (3.25), we have \|\delta \phi\|_{\infty}\leq\delta . By (H_{2}) , (H_{4}) and the definition of \bar{F} and \bar{\bar{G}} , for all |u|\leq\frac{\delta}{2} , we have

    \begin{eqnarray} \bar{F}(x, u) = F(x, u)\geq M_{1}|u|^{q_{1}} , \ \ \bar{\bar{G}}(u) = G(u)\geq\eta_{1}|u|^{\alpha_{1}}. \end{eqnarray} (3.26)

    We also have

    \begin{eqnarray} \bar{F}(x, u) & = &m(|u|)F(x, u)+(1-m(|u|))M_{2}|u|^{q_{2}}\\ &\geq&m(|u|)M_{1}|u|^{q_{1}}+(1-m(|u|))M_{1}|u|^{q_{1}}\\ & = &M_{1}|u|^{q_{1}}, \end{eqnarray} (3.27)

    and

    \begin{eqnarray} \bar{\bar{G}}(u) & = &m(|u|)G(u)+(1-m(|u|))\eta_{2}|u|^{\alpha_{2}}\\ &\geq&m(|u|)\eta_{1}|u|^{\alpha_{1}}+(1-m(|u|))\eta_{1}|u|^{\alpha_{1}}\\ & = &\eta_{1}|u|^{\alpha_{1}}, \end{eqnarray} (3.28)

    for all \frac{\delta}{2} < |u| < \delta . Hence, by Hölder inequality, for any \lambda > \Lambda^{-}_{1} , we have

    \begin{eqnarray} \bar{\bar{J}}_{\lambda, \mu}(\delta\phi) & = &\frac{1}{2}\|\delta \phi\|^{2}_{H}-\lambda\int^{1}_{0}e^{H(x)}\bar{F}(x, \delta \phi)dx+\mu e^{H(1)}\bar{\bar{G}}(\delta \phi(1))\\ &\leq&\frac{1}{2}\|\delta \phi\|^{2}_{H}-\lambda M_{1}e^{H_{0}}\int^{1}_{0}|\delta \phi|^{q_{1}}dx\\ &\leq&\frac{1}{2}\|\delta \phi\|^{2}_{H}-\lambda M_{1}e^{H_{0}}\|\delta\phi\|^{q_{1}}_{2}\\ & < & 0. \end{eqnarray}

    Let \omega = \delta \phi . Then the proof is completed.

    Let \chi = \bar{J}_{\lambda, \mu} . Then for any given \lambda > \max\{\Lambda^{-}_{1}, \Lambda^{-}_{4}\} , Lemma 2.4 and Lemma 3.8 imply that \bar{\bar{J}}_{\lambda, \mu} has a (PS) _{c_{\lambda, \mu}} sequence \{u_n\}: = \{u_{n, \lambda, \mu}\} , that is, there exists a sequence \{u_n\} satisfying

    \begin{eqnarray} \bar{\bar{J}}_{\lambda, \mu}(u_n)\to c_{\lambda, \mu}, \quad \bar{\bar{J}}_{\lambda, \mu}'(u_n)\to 0, \ \ \mbox{as } n\to \infty, \end{eqnarray} (3.29)

    where

    \begin{eqnarray} c_{\lambda, \mu}: = \inf\limits_{g\in\Gamma}\max\limits_{t\in[0, 1]}\bar{\bar{J}}_{\lambda, \mu}(g(t)), \;\;\;\;\;\;\;\;\; \Gamma: = \{g\in C([0, 1], X):g(0) = 0, g(1) = \omega\}. \end{eqnarray} (3.30)

    Lemma 3.9. Suppose that (H_{1})-(H_{3}) , (H_{6}) and (H_{7}) hold. Then for any given \lambda > \max\{\Lambda^{-}_{1}, \Lambda^{-}_{4}\} and \mu < 0 , the (PS)_{c_{\lambda, \mu}} sequence \{u_{n}\} has a convergent subsequence in E, that is, there exists a u_{\lambda, \mu}\in E such that \|u_{n}-u_{\lambda, \mu}\|_{H}\to 0 .

    Proof. Note that \rho = \min\{\theta, \varrho\} . By Lemma 3.1, Lemma 3.7 and (3.29), there exists a positive constant M > 0 such that

    \begin{eqnarray} M+\|u_{n}\|_{H} &\geq&\bar{\bar{J}}_{\lambda, \mu}(u_{n})-\frac{1}{\rho}\langle\bar{\bar{J}}'_{\lambda, \mu}(u_{n}), u_{n}\rangle\\ & = &\frac{1}{2}\|u_{n}\|^{2}_{H}-\lambda\int^{1}_{0}e^{H(x)}\bar{F}(x, u_{n})dx+\mu e^{H(1)}\bar{\bar{G}}(u_{n}(1))-\frac{1}{\rho}\|u_{n}\|^{2}_{H}\\ &&+\lambda\int^{1}_{0}e^{H(x)}\frac{1}{\rho}\bar{f}(x, u_{n})u_{n}dx-\frac{\mu}{\rho}e^{H(1)}\bar{\bar{g}}(u_{n}(1))u_{n}(1)\\ & = &\left(\frac{1}{2}-\frac{1}{\rho}\right)\|u_{n}\|^{2}_{H}-\lambda\int^{1}_{0}e^{H(x)}\left[\bar{F}(x, u_{n})-\frac{1}{\rho}\bar{f}(x, u_{n})u_{n}\right]dx\\ &&-\mu e^{H(1)}\left[\frac{1}{\rho}\bar{\bar{g}}(u_{n}(1))u(1)-\bar{\bar{G}}(u_{n}(1))\right]\\ &\geq&\left(\frac{1}{2}-\frac{1}{\rho}\right)\|u_{n}\|^{2}_{H}-\lambda\int^{1}_{0}e^{H(x)}\left[\bar{F}(x, u_{n})-\frac{\theta}{\rho}\bar{F}(x, u_{n})\right]dx\\ &&-\mu e^{H(1)}\left[\frac{\varrho}{\rho}\bar{\bar{G}}(u_{n}(1))-\bar{\bar{G}}(u_{n}(1))\right]\\ &\geq&\left(\frac{1}{2}-\frac{1}{\rho}\right)\|u_{n}\|^{2}_{H}. \end{eqnarray} (3.31)

    So the (PS)_{c_{\lambda, \mu}} sequence \{u_{n}\} is bounded in E , when n\to\infty . The rest proof is similar to the argument in Lemma 3.5.

    By the continuity of \bar{\bar{J}}_{\lambda, \mu} , we obtain that \bar{\bar{J}}_{\lambda, \mu}(u_{\lambda, \mu}) = c_{\lambda, \mu} , where c_{\lambda, \mu} is defined by (3.30). Then (3.24) implies that c_{\lambda, \mu}\geq d_{\lambda, \mu} > 0 . Hence u_{\lambda, \mu} is a nontrivial critical point of \bar{\bar{J}}_{\lambda, \mu} in E for any given \lambda > \max\{\Lambda^{-}_1, \Lambda^{-}_4\} .

    Next, we will show that u_{\lambda, \mu} precisely is the nontrivial weak solution of problem (1.1) for any given \lambda > \lambda^{*}_{-} . In order to get this, we need to make an estimate for the critical level c_{\lambda, \mu} . We introduce the functional \bar{I}_{\lambda, \mu}: E\to \mathbb{R} as follows

    \bar{I}_{\lambda, \mu}(u) = \frac{1}{2}\|u\|^{2}_{H}-\lambda M_{1}e^{H_{0}}\int^{1}_{0}|u|^{q_{1}}dx+\mu e^{H(1)}\bar{\bar{G}}(u(1)).

    Lemma 3.10.Suppose (H_{1})-(H_{3}) , (H_{6}) and (H_{7}) hold. Then for all \lambda > \max\{\Lambda^{-}_{1}, \Lambda^{-}_{2}, \Lambda^{-}_{4}\} and \mu < 0 , we have

    c_{\lambda, \mu}\leq D_{*}\lambda^{-\frac{1}{q_{1}-2}},

    where D_{*} is defined by (1.14).

    Proof. Define k_i:[0, \infty)\to \mathbb{R} , i = 1, 2, 3 , by

    \begin{eqnarray} & & k_{1}(s) = \|\phi_{1}\|^{2}_{H}\frac{s^{2}}{2}-\lambda^{\frac{1}{q_{1}}}\|\phi_{1}\|_H^{2}\frac{s^{2}}{2}, \\ & & k_{2}(s) = \mu e^{H(1)}\bar{\bar{G}}(s\phi_{1}(1)), \\ & & k_{3}(s) = -\lambda M_{1}e^{H_{0}}s^{q_{1}}\int^{1}_{0}|\phi_{1}|^{q_{1}}dx+\lambda^{\frac{1}{q_{1}}}\|\phi_{1}\|_H^{2}\frac{s^{2}}{2}, \end{eqnarray}

    where \phi_1 = \delta \phi and \phi is defined in (3.25). Then k_{1}(s)+k_{2}(s)+k_3(s) = \bar{I}_{\lambda, \mu}(s \phi_1) . Let

    k'_{3}(s) = -\lambda M_{1}e^{H_{0}}q_{1}\|\phi_{1}\|^{q_{1}}_{{q_{1}}}s^{q_{1}-1}+\lambda^{\frac{1}{q_{1}}}\|\phi_{1}\|_H^{2}s = 0.

    Thus for each given \lambda > 0 , we have s = \left(\dfrac{\lambda^{\frac{1}{q_{1}}}\|\phi_1\|_H^{2}}{\lambda e^{H_{0}}M_1 q_{1} \|\phi_1\|_{{q_{1}}}^{q_{1}}}\right)^{\frac{1}{q_{1}-2}}. Then

    \max\limits_{s\geq0}k_{3}(s) = \left(\dfrac{1}{2(M_1e^{H_{0}}q_{1})^{\frac{2}{q_{1}-2}}}-\dfrac{M_1e^{H_{0}}}{(e^{H_{0}}M_1q_{1})^{\frac{q_{1}}{q_{1}-2}}}\right) \left(\dfrac{\|\phi_1\|_H}{\|\phi_1\|_{{q_{1}}}}\right)^{\frac{2q_{1}}{q_{1}-2}}\lambda^{-\frac{1}{q_{1}-2}}.

    Obviously, f_1(0) = 0 and

    \begin{eqnarray} k'_{1}(s) & = &\|\phi_{1}\|^{2}_{H}s-\lambda^{\frac{1}{q_{1}}}\|\phi_{1}\|_H^{2}s. \end{eqnarray}

    So if \lambda > \Lambda^{-}_{2} = 1 , k_1(s) is decreasing on s\in[0, 1] and then k_{1}(s)\le0 . Moreover, obviously,

    \max\limits_{s\in[0, 1]}k_{2}(s)\leq0.

    By (3.25), we have

    \begin{eqnarray} \|s\phi_{1}\|_{\infty}\leq\|\delta \phi\|_{\infty}\leq\delta \end{eqnarray} (3.32)

    for all s \in [0, 1] . Then for all \lambda > \max\{\Lambda^{-}_{1}, \Lambda^{-}_{2}, \Lambda^{-}_{4}\} , by (3.26)–(3.27), we have

    \begin{eqnarray*} & & c_{\lambda, \mu} \leq \max\limits_{s \in[0, 1]}\bar{\bar{J}}_{\lambda, \mu}(s \phi_1) \leq \max\limits_{s \in[0, 1]}\bar{I}_{\lambda}(s \phi_1) \leq \max\limits_{s \in[0, 1]}k_{1}(s)+\max\limits_{s\in[0, 1]}k_{2}(s)+\max\limits_{s\geq0}k_{3}(s)\nonumber\\ & & \leq \max\limits_{s\geq0}k_{3}(s) = \left(\dfrac{1}{2(M_1e^{H_{0}}q_{1})^{\frac{2}{q_{1}-2}}}-\dfrac{M_1e^{H_{0}}}{(e^{H_{0}}M_1q_{1})^{\frac{q_{1}}{q_{1}-2}}}\right) \left(\dfrac{\|\phi_1\|_H}{\|\phi_1\|_{{q_{1}}}}\right)^{\frac{2q_{1}}{q_{1}-2}}\lambda^{-\frac{1}{q_{1}-2}}\\ & & \leq\left(\dfrac{1}{2(M_1e^{H_{0}}q_{1})^{\frac{2}{q_{1}-2}}}-\dfrac{M_1e^{H_{0}}}{(e^{H_{0}}M_1q_{1})^{\frac{q_{1}}{q_{1}-2}}}\right) \left(\dfrac{\|\phi_1\|_H}{\|\phi_1\|_{2}}\right)^{\frac{2q_{1}}{q_{1}-2}}\lambda^{-\frac{1}{q_{1}-2}}\nonumber\\ & & = D_*\lambda^{-\frac{1}{q_{1}-2}}. \end{eqnarray*}

    Proof of Theorem 1.2. Note that u_{\lambda, \mu} is a critical point of \bar{\bar{J}}_{\lambda, \mu} with critical value c_{\lambda, \mu} . Since \langle \bar{\bar{J}}'(u_{\lambda, \mu}), u_{\lambda, \mu}\rangle = 0 , similar to the argument in (3.31) and by Lemma 3.10, we have

    \begin{eqnarray} \|u_{\lambda, \mu}\|^{2}_{H}\leq\frac{2\rho}{\rho-2}\bar{\bar{J}}_{\lambda, \mu}(u_{\lambda, \mu}) = \frac{2\rho}{\rho-2}c_{\lambda, \mu} \leq\frac{2\rho}{\rho-2}D_{*}\lambda^{-\frac{1}{q_{1}-2}}. \end{eqnarray} (3.33)

    Since

    \lambda > \Lambda^{-}_{3}: = \left[\frac{8\rho D_{*}}{(\rho-2)\delta^{2}e^{H_{0}}}\right]^{q_{1}-2},

    by Remark 2.1 and (3.33), we have

    \begin{eqnarray} \|u_{\lambda, \mu}\|_{\infty}\leq\frac{1}{\sqrt{e^{H_0}}}\|u_{\lambda, \mu}\|_H\leq\frac{\delta}{2}. \end{eqnarray} (3.34)

    So for all \lambda > \Lambda^{-}_{3} , we have

    |u_{\lambda, \mu}(x)|\leq\|u_{\lambda, \mu}\|_{\infty}\leq\frac{\delta}{2}, \;\;\; \mbox{for all }x\in[0, 1],

    and then

    \bar{F}(x, u(x)) = F(x, u(x)), \;\;\;\; \bar{\bar{G}}(u(1)) = G(u(1)).

    Furthermore, for all v\in E , we have

    \bar{\bar{J}}_{\lambda, \mu}(u_{\lambda, \mu}) = J_{\lambda, \mu}(u_{\lambda, \mu}) = c_{\lambda, \mu} > 0, \;\;\; \langle\bar{\bar{J}}'_{\lambda, \mu}(u_{\lambda, \mu}), v\rangle = \langle J'_{\lambda, \mu}(u_{\lambda, \mu}), v\rangle = 0.

    Thus, u_{\lambda, \mu} is precisely the nontrivial weak solution of problem (1.1) when \lambda > \lambda^{*}_{-}: = \max\{\Lambda^{-}_{1}, \Lambda^{-}_{2}, \Lambda^{-}_{3}, \Lambda^{-}_{4}\} .

    Next, we discuss the connection between \mu, \lambda and \Lambda^{-}_{i}(i = 1, 2, 3, 4) . If \mu\rightarrow0^{-} , we can get

    \begin{eqnarray} &&\Lambda^{-}_{1}\to\Lambda_{22}: = \max\left\{\frac{2e^{\frac{q_{2}H_{0}}{2}}}{M_{2}e^{H_{1}}\|\delta \phi\|^{q_{2}-2}} , \frac{\|\delta \phi\|^{2}_{H}}{2M_{1}e^{H_{0}}\|\delta \phi\|^{q_{1}}_{2}}\right\}, \\ & & \Lambda^{-}_{2} = \Lambda_{21}: = 1, \\ &&\Lambda^{-}_{3} = \Lambda_{23}: = \left[\frac{8\rho D_{*}}{(\rho-2)\delta^{2}e^{H_{0}}}\right]^{q_{1}-2}, \\ & & \Lambda^{-}_{4} = \Lambda_4: = \frac{2e^{\frac{q_2 H_0}{2}}}{M_2e^{H_1}}, \end{eqnarray}

    which shows that if \mu\to 0^{-} , then \lambda^{*}_{-}\to \Lambda_{*}. Hence, if |\mu| is small enough, the range of \lambda can be extended to (\Lambda_{*}, \infty) , where \Lambda_{*} is defined by (1.15).

    Finally, by (3.33) and (3.34) , it is easy to see that (1.11)–(1.13) hold.

    Let \{u_n: = u_{\lambda, \mu_n}\}\subset E be the critical points of \bar{J}_{\lambda, \mu_{n}} (if \mu_n > 0 ) and \widetilde{J}_{\lambda, \mu_{n}} (if \mu_n < 0 ) with respect to c_{\lambda, \mu_{n}} . Then we have

    \begin{eqnarray*} & & \bar{J}_{\lambda, \mu_{n}}(u_{n}) = \frac{1}{2}\|u_{n}\|_H^{2}-\lambda\int^{1}_{0}e^{H(x)}\bar{F}(x, u_{n})dx+\mu_{n}e^{H(1)}\bar{G}(u_n(1)) = c_{\lambda, \mu_{n}}, \ \ \ \mbox{if }\mu_n > 0, \\ & & \widetilde{J}_{\lambda, \mu_{n}}(u_{n}) = \frac{1}{2}\|u_{n}\|_H^{2}-\lambda\int^{1}_{0}e^{H(x)}\bar{F}(x, u_{n})dx+\mu_{n}e^{H(1)}\widetilde{G}(u_n(1)) = c_{\lambda, \mu_{n}}, \ \ \ \mbox{if }\mu_n < 0, \end{eqnarray*}

    and

    \begin{eqnarray} & & \langle\bar{J}'_{\lambda, \mu_{n}}(u_{n}), v\rangle = 0, \ \ \mbox{if }\mu_n > 0, \end{eqnarray} (3.35)
    \begin{eqnarray} & & \langle\widetilde{J}'_{\lambda, \mu_{n}}(u_{n}), v\rangle = 0, \ \ \mbox{if }\mu_n < 0, \end{eqnarray} (3.36)

    for all v\in E . Define the functional \bar{J}_{\lambda}:E\to \mathbb{R} as

    \bar{J}_{\lambda}(u) = \frac{1}{2}\|u\|_H^{2}-\lambda\int^{1}_{0}e^{H(x)}\bar{F}(x, u)dx.

    Obviously, \bar{J}_{\lambda, \mu_{n}}(u_{n})\to \bar{J}_{\lambda}(u_n) as \mu_n\to 0^+ and \widetilde{J}_{\lambda, \mu_{n}}(u_{n})\to \bar{J}_{\lambda}(u_n) as \mu_n\to 0^- . Moreover, it is easy to see that the critical point of \bar{J}_\lambda is a weak solution of the following elastic beam equation

    \begin{eqnarray} \begin{cases} u^{(4)}(x)+2h(x) u'''(x)+(h^2(x)+h'(x))u''(x) = \lambda \bar{f}(x, u(x)), \;\;\;\; x\in [0, 1], \\ u(0) = u'(0) = u''(1) = u'''(1) = 0. \end{cases} \end{eqnarray} (3.37)

    Next, we prove that \{u_{n}\} is a bounded (PS) sequence of \bar{J}_{\lambda} . Since \mu_n\to 0 , there exists a positive constant N_0 such that -M_0\le\mu_n\le M_0 for all n\ge N _0 . Note that \Lambda^{+}_{1} is decreasing to \Lambda_{11} as \mu_n\to 0^+ and q_1 > 2 . Then Lemma 3.6 implies that

    \begin{eqnarray} c_{\lambda, \mu_n}\leq C_{*}\left(\max\{\Lambda^{+}_{1}, \Lambda^{+}_{2}\}\right)^{-\frac{1}{q_{1}-2}}+C_{**}\mu_n\leq C_{*}\left(\max\{\Lambda_{11}, \Lambda_{21}\}\right)^{-\frac{1}{q_{1}-2}}+C_{**}M_0, \end{eqnarray} (3.38)

    for all n\ge N_0 and all \lambda > \max\{\Lambda_{M_0}, \Lambda_{21}\}\ge \max\{\Lambda^{+}_{1}, \Lambda^{+}_{2}\} , where \Lambda_{M_0} is defined by (1.17). Moreover, since \Lambda^{-}_{1} is increasing to \Lambda_{22} as \mu_n\to 0^- , we have

    \Lambda^{-}_{1}\ge \Lambda_{-M_0}: = \max\left\{\frac{2e^{\frac{q_{2}H_{0}}{2}}}{M_{2}\|\delta \phi\|_H^{q_{2}-2}e^{H_{1}}} +\frac{-8M_0\eta_{2}e^{H(1)}}{M_{2}e^{H_{1}}}, \frac{\|\delta \phi\|_H^{2}}{2M_{1}\|\delta \phi\|^{q_{1}}_{2}e^{H_{0}}}\right\},

    for all n\ge N_0 . Then Lemma 3.10 implies that

    \begin{eqnarray} c_{\lambda, \mu_n}\leq C_{*}(\max\{\Lambda_{1}^-, \Lambda_{2}^-\})^{-\frac{1}{q_{1}-2}}\le C_{*}(\max\{\Lambda_{-M_0}, \Lambda^{-}_{2}\})^{-\frac{1}{q_{1}-2}}, \end{eqnarray} (3.39)

    for all n\ge N_0 and all \lambda > \max\{\Lambda_{22}, \Lambda_{21}\}\ge \max\{\Lambda^{-}_{1}, \Lambda^{-}_{2}, \Lambda^{-}_{4}\} . (3.38) and (3.39) imply that c_{\lambda, \mu_n} is bounded for all n\ge N_0 and all \lambda > \max\{\Lambda_{M_0}, \Lambda_{21}, \Lambda_{22}, \Lambda^{-}_{4}\} . Then it follows from (3.22) and (3.33) that there exists a positive constant K_0 such that \|u_n\|_H\le K_0 for all n\ge N_0 . Thus we have

    \begin{eqnarray} \|u_n\|_H\le K_1: = \max\{K_0, \|u_1\|_H, \cdots, \|u_{N_0-1}\|_H\}, \end{eqnarray} (3.40)

    for all n and all \lambda > \max\{\Lambda_{M_0}, \Lambda_{21}, \Lambda_{22}, \Lambda^{-}_{4}\} . By (3.40), (H2) ' and Remark 2.1, it is easy to see that \bar{J}_{\lambda}(u_n) is bounded.

    If \mu_n > 0, then by (3.35), for any given v \in E , we have

    \begin{eqnarray} \langle\bar{J}'_{\lambda}(u_{n}), v\rangle & = & \int^{1}_{0}e^{H(x)}u''_{n}v''dx-\lambda\int^{1}_{0}e^{H(x)}\bar{f}(x, u_{n})vdx\\ & = & \int^{1}_{0}e^{H(x)}u''_{n}v''dx-\lambda\int^{1}_{0}e^{H(x)} \bar{f}(x, u_{n})vdx+\mu_{n}e^{H(1)}\bar{g}(u_{n}(1))v(1)-\mu_{n}e^{H(1)}\bar{g}(u_{n}(1))v(1)\\ & = & \langle\bar{J}'_{\lambda, \mu_{n}}(u_{n}), v\rangle-\mu_{n}e^{H(1)}\bar{g}(u_{n}(1))v(1)\\ & = & -\mu_{n}\bar{g}(u_{n}(1))v(1). \end{eqnarray} (3.41)

    Since \mu_n\to 0^+ as n\to \infty , the continuity of g , Remark 2.1, (3.40) and (3.41) imply that

    \begin{eqnarray} \bar{J}'_{\lambda}(u_{n})\rightarrow 0 \mbox{ as } n\rightarrow \infty. \end{eqnarray} (3.42)

    Similarly, if \mu_n < 0, we also have

    \begin{eqnarray} \widetilde{J}'_{\lambda}(u_{n})\rightarrow 0 \mbox{ as } n\rightarrow \infty. \end{eqnarray} (3.43)

    Hence, \{u_{n}\} is a bounded (PS) sequence of \bar{J}_{\lambda} . By make a standard procedure for \bar{J}_{\lambda} (see [37]), we can obtain a convergent subsequence, still denoted by \{u_{n}\} , such that u_{n}\to u_{\lambda} for some u_{\lambda}\in E . Consequently, by (3.42), we have \bar{J}_{\lambda}'(u_\lambda) = 0 and \bar{J}_{\lambda}(u_n)\to\bar{J}_{\lambda}(u_\lambda): = c_\lambda as n\to \infty , which shows that u_\lambda is a critical point of \bar{J}_{\lambda}(u) . Moreover, it follows from (3.8) and (3.24) that

    \begin{eqnarray} & & c_{\lambda} = \bar{J}_{\lambda}(u_{\lambda}) = \lim\limits_{n\rightarrow \infty}\bar{J}_{\lambda}(u_{n}) = \lim\limits_{n\rightarrow \infty}\bar{J}_{\lambda, \mu_{n}}(u_{n}) = \lim\limits_{n\rightarrow \infty}c_{\lambda, \mu_n}\geq d_{\lambda} > 0, \ \ \mbox{if }\mu_n > 0, \end{eqnarray} (3.44)

    and

    \begin{eqnarray} & & c_{\lambda} = \bar{J}_{\lambda}(u_{\lambda}) = \lim\limits_{n\rightarrow \infty}\bar{J}_{\lambda}(u_{n}) = \lim\limits_{n\rightarrow \infty}\widetilde{J}_{\lambda, \mu_{n}}(u_{n}) = \lim\limits_{n\rightarrow \infty}c_{\lambda, \mu_n} \geq \lim\limits_{n\to \infty} d_{\lambda, \mu_n}\\ & & = \lim\limits_{n\to\infty}\left[\frac{1}{2}\left(\frac{e^{\frac{q_{2}H_{0}}{2}}}{e^{H_{1}}M_{2}\lambda-8\mu_n\eta_{2}e^{H(1)}}\right)^{\frac{2}{q_{2}-2}}-\left(\frac{M_{2}e^{H_{1}}\lambda}{8e^{\frac{q_{2}H_{0}}{2}}} -\frac{\mu_n\eta_{2}e^{H(1)}}{e^{\frac{q_{2}H_{0}}{2}}}\right)\left(\frac{e^{\frac{q_{2}H_{0}}{2}}}{M_{2}e^{H_{1}}\lambda-8\mu_n\eta_{2}e^{H(1)}}\right)^{\frac{q_2}{q_{2}-2}}\right]\\ & & = \frac{1}{2}\left(\frac{e^{\frac{q_{2}H_{0}}{2}}}{M_{2}e^{H_{1}}\lambda}\right)^{\frac{2}{q_{2}-2}}-\left(\frac{M_{2}e^{H_{1}}\lambda}{8e^{\frac{q_{2}H_{0}}{2}}}\right)\left(\frac{e^{\frac{q_{2}H_{0}}{2}}}{M_{2}e^{H_{1}}\lambda}\right)^{\frac{q_2}{q_{2}-2}} > 0, \quad \mbox{if }\mu_n < 0, \end{eqnarray} (3.45)

    which implies that u_{\lambda} is a nontrivial. It follows from Lemma 3.6 and Lemma 3.10 that

    \begin{eqnarray} c_{\lambda} = \lim\limits_{\mu_n\rightarrow0^+}c_{\lambda, \mu_n}\le C_{*}\lambda^{-\frac{1}{q_{1}-2}}, \quad c_{\lambda} = \lim\limits_{\mu_n\rightarrow0^-}c_{\lambda, \mu_n}\le D_{*}\lambda^{-\frac{1}{q_{1}-2}}. \end{eqnarray} (3.46)

    Then similar to the argument in (3.22) and (3.33) with \mu = 0 , we can obtain that

    \begin{eqnarray*} & &\|u_\lambda\|_H^2\le\frac{2\theta}{\theta-2} c_\lambda\le\frac{2\theta}{\theta-2}\max\left\{C_{*}\lambda^{-\frac{1}{q_{1}-2}}, D_{*}\lambda^{-\frac{1}{q_{1}-2}}\right\}. \end{eqnarray*}

    Hence, we have

    \begin{eqnarray} \|u_\lambda\|_H^2\le K_{*}\lambda^{-\frac{1}{q_{1}-2}}, \;\;\;\; \mbox{as } \mu\to 0. \end{eqnarray} (3.47)

    Then when \lambda > \lambda^{*} = \max\{\Lambda_{M_0}, \Lambda_{21}, \Lambda_{22}, \Lambda_{3}, \Lambda_{4}^{-}\} , where \Lambda_3 is defined by (1.20) and K_{*} is defined by (1.21), Remark 2.1 implies that

    \begin{eqnarray} \|u_\lambda\|_\infty^2\le \frac{1}{e^{H_0}}\|u_\lambda\|_H^2\le \frac{1}{e^{H_0}} \cdot K_{*}\lambda^{-\frac{1}{q_{1}-2}}\le \frac{\delta^2}{4}. \end{eqnarray} (3.48)

    Hence, \bar{F}(x, u_\lambda) = F(x, u_\lambda) . Thus u_{\lambda} is a nontrival solution of Eq (1.16) if

    \lambda > \lambda^{*} = \max\{\Lambda_{M_0}, \Lambda_{21}, \Lambda_{22}, \Lambda_{3}, \Lambda_{4}^{-}\},

    and by (3.47) and (3.48), it is easy to see that

    \lim\limits_{\lambda\rightarrow \infty}\|u_{\lambda}\|_H = 0 = \lim\limits_{\lambda\rightarrow \infty}\|u_{\lambda}\|_{\infty}.

    The proof is completed.

    Some sufficient conditions about existence of a nontrivial solution for Eq (1.1) are obtained. (1.1) is a generalization of (1.2) and (1.3) which can be used to describe the static equilibrium of an elastic beam. The nonlinear terms F and G are assumed to satisfy (H1) - (H7) which are some growth conditions only near the origin. The concrete lower bounds of the parameter \lambda are given for the cases \mu > 0 and \mu < 0 , respectively. Finally, in Theorem 1.3, the concentration phenomenon of \{u_{\lambda, \mu}\} is revealed as \mu\to 0 .

    This project is supported by Yunnan Ten Thousand Talents Plan Young & Elite Talents Project and Candidate Talents Training Fund of Yunnan Province (No. 2017HB016).

    The authors declare that they have no conflicts of interest.



    [1] C. B. Zhai, R. P. Song, Q. Q. Han, The existence and the uniqueness of symmetric positive solutions for a fourth-order boundary value problem, Comput. Math. Appl., 62 (2011), 2639–2647. doi: 10.1016/j.camwa.2011.08.003. doi: 10.1016/j.camwa.2011.08.003
    [2] B. Yang, Maximum principle for a fourth order boundary value problem, Differ. Equ. Appl., 9 (2017), 495–504. doi: 10.7153/dea-2017-09-33. doi: 10.7153/dea-2017-09-33
    [3] E. Alves, E. Arnaut, L. A. P. Gomes, M. B. S. Cortes, A note on iterative solutions for a nonlinear fourth order oder, Bol. Soc. Paran. Mat., 27 (2009), 15–20. doi: 10.5269/bspm.v27i1.9062. doi: 10.5269/bspm.v27i1.9062
    [4] A. Cabada, R. Precup, L. Saavedra, S. A. Tersian, Multiple positive solutions to a fourth-order boundary-value problem, Electron. J. Differ. Eq., 2016 (2016), 1–18.
    [5] G. Bonanno, A. Chinnì, S. A. Tersian, Existence results for a two point boundary value problem involving a fourth-order equation, Electron. J. Qual. Theo., 33 (2015), 1–9.
    [6] A. Hadjian, M. Ramezani, Existence of infinitely many solutions for fourth-order equations depending on two parameters, Electron. J. Differ. Eq., 2017 (2017), 1–10.
    [7] X. D. Wang, Infinitely many solutions for a fourth-order differential equation on a nonlinear elastic foundation, Bound. Value Probl., 2013 (2013), 1–10. doi: 10.1186/1687-2770-2013-258. doi: 10.1186/1687-2770-2013-258
    [8] L. Yang, H. B. Chen, X. X. Yang, The multiplicity of solutions for fourth-order equations generated from a boundary condition, Appl. Math. Lett., 24 (2011), 1599–1603. doi: 10.1016/j.aml.2011.04.008. doi: 10.1016/j.aml.2011.04.008
    [9] E. Alves, T. F. Ma, M. L. Pelicer, Monotone positive solutions for a fourth order equation with nonlinear boundary conditions, Nonlinear Anal. Theor., 71 (2009), 3834–3841. doi: 10.1016/j.na.2009.02.051. doi: 10.1016/j.na.2009.02.051
    [10] W. X. Wang, Y. P. Zheng, H. Yang, J. X. Wang, Positive solutions for elastic beam equations with nonlinear boundary conditions and a parameter, Bound. Value Probl., 2014 (2014), 1–17. doi: 10.1186/1687-2770-2014-80. doi: 10.1186/1687-2770-2014-80
    [11] S. Heidarkhani, F. Gharehgazlouei, Existence results for a boudary value problem involving a fourth-order elastic beam equation, J. Nonlinear Funct. Anal., 28 (2019), 1–15. doi: 10.23952/jnfa.2019.28. doi: 10.23952/jnfa.2019.28
    [12] M. R. H. Tavani, A. Nazari, Existence of positive solutions for a perturbed fourth-order equation, Kragujev. J. Math., 45 (2021), 623–633. doi: 10.46793/KgJMat2104.623H. doi: 10.46793/KgJMat2104.623H
    [13] M. R. H. Tavani, Existence results for a perturbed fourth-order equation, J. Indones. Math. Soc., 23 (2017), 55–65. doi: 10.22342/jims.23.2.498.76-86. doi: 10.22342/jims.23.2.498.76-86
    [14] S. Heidarkhani, M. Ferrara, A. Salari, M. Azimbagirad, A variational approach to perturbed elastic beam problems with nonlinear boundary conditions, Math. Rep., 18 (2016), 573–589.
    [15] Y. P. Song, A nonlinear boundary value problem for fourth-order elastic beam equations, Bound. Value Probl., 2014 (2014), 1–11. doi: 10.1186/s13661-014-0191-6. doi: 10.1186/s13661-014-0191-6
    [16] M. Jleli, B. Samet, Existence and uniqueness of positive solutions to a fourth-order two-point boundary-value problem, Electron. J. Differ. Eq., 2013 (2013), 1–10.
    [17] M. Tuz, The existence of symmetric positive solutions of fourth-order elastic beam equations, Symmetry, 11 (2019), 121. doi: 10.3390/sym11010121. doi: 10.3390/sym11010121
    [18] Q. A. Dang, Q. L. Dang, Existence results and iterative method for a fully fourth-order nonlinear integral boundary value problem, Numer. Algor., 85 (2020), 887–907. doi: 10.1007/s11075-019-00842-3. doi: 10.1007/s11075-019-00842-3
    [19] H. Djourdem, S. Benaicha, N. Bouteraa, Existence and iteration of monotone positive solution for a fourth-order nonlinear boundary value problem, Fundam. J. Math. Appl., 1 (2018), 205–211. doi: 10.33401/fujma.418934. doi: 10.33401/fujma.418934
    [20] X. M. Zhang, M. Q. Feng, Positive solutions of singular beam equations with the bending term, Bound. Value Probl., 2015 (2015), 1–12. doi: 10.1186/s13661-015-0348-y. doi: 10.1186/s13661-015-0348-y
    [21] L. Yang, C. F. Shen, Existence of positive solutions for a fourth-order m-point boundary value problem, J. Funct. Space., 2015 (2015), 1–8. doi: 10.1155/2015/928105. doi: 10.1155/2015/928105
    [22] D. Y. Kang, C. L. Liu, X. Y. Zhang, Existence of solutions for Kirchhoff-Type fractional Dirichlet problem with p-Laplacian, Mathematics, 8 (2020), 106. doi: 10.3390/math8010106. doi: 10.3390/math8010106
    [23] D. G. Costa, Z. Q. Wang, Multiplicity results for a class of superlinear elliptic problems, P. Am. Math. Soc., 133 (2005), 787–794. doi: 10.1090/S0002-9939-04-07635-X. doi: 10.1090/S0002-9939-04-07635-X
    [24] A. R. Li, J. B. Su, Existence and multiplicity of solutions for Kirchhoff-type equation with radial potentials in \mathbb{R}^{3}, Z. Angew. Math. Phys., 66 (2015), 3147–3158. doi: 10.1007/s00033-015-0551-9. doi: 10.1007/s00033-015-0551-9
    [25] E. S. Medeiros, U. B. Severo, On the existence of signed solutions for a quasilinear elliptic problem in \mathbb{R}^{N}, Mat. Contemp., 32 (2007), 193-205.
    [26] N. S. Papageorgiou, V. D. Radulescu, D. D. Repov, Double-phase problems with reaction of arbitrary growth, Z. Angew. Math. Phys., 69 (2018), 1–21. doi: 10.1007/s00033-018-1001-2. doi: 10.1007/s00033-018-1001-2
    [27] Y. Xu, Z. Tan, D. Sun, Multiplicity results for a nonlinear elliptic problem involving the fractional Laplacian, Acta Math. Sci., 36 (2016), 1793–1803. doi: 10.1016/S0252-9602(16)30106-0. doi: 10.1016/S0252-9602(16)30106-0
    [28] T. S. He, Z. A. Yao, Z. H. Sun, Multiple and nodal solutions for parametric Neumann problems with nonhomogeneous differential operator and critical growth, J. Math. Anal. Appl., 449 (2017), 1133–1151. doi: 10.1016/j.jmaa.2016.12.020. doi: 10.1016/j.jmaa.2016.12.020
    [29] Q. Zhang, Existence of fast homoclinic solutions for a class of second-order damped vibration systems, Bound. Value Probl., 2018 (2018), 1–13. doi: 10.1186/s13661-018-0995-x. doi: 10.1186/s13661-018-0995-x
    [30] Q. Zhang, Y. Li, Existence and multiplicity of fast homoclinic solutions for a class of nonlinear second-order nonautonomous systems in a weighted Sobolev space, J. Funct. Space., 2015 (2015), 495040. doi: 10.1155/2015/495040. doi: 10.1155/2015/495040
    [31] Q. Zhang, Existence and multiplicity of fast homoclinic solutions for a class of damped vibration problems with impulsive effects, Abstr. Appl. Anal., 2014 (2014), 960276. doi: 10.1155/2014/960276. doi: 10.1155/2014/960276
    [32] X. Y. Zhang, Infinitely many solutions for a class of second-order damped vibration systems, Electron. J. Qual. Theo., 2013 (2013), 1–18.
    [33] X. Wu, S. X. Chen, K. M. Teng, On variational methods for a class of damped vibration problems, Nonlinear. Anal. Theor., 68 (2008), 1432–1441. doi: 10.1016/j.na.2006.12.043. doi: 10.1016/j.na.2006.12.043
    [34] Q. Zhang, C. Gan, T. Xiao, Z. Jia, Some results of nontrivial solutions for Klein-Gordon-Maxwell systems with local super-quadratic conditions, J. Geom. Anal., 31 (2021), 5372–5394. doi: 10.1007/s12220-020-00483-2. doi: 10.1007/s12220-020-00483-2
    [35] M. Willem, Minimax theorems, Springer Science & Business Media, 1997.
    [36] J. Xie, X. Y. Zhang, C. L. Liu, D. Y. Kang, Existence and multiplicity of solutions for a class of damped-like fractional differential system, AIMS Mathematics, 5 (2020), 4268–4284. doi: 10.3934/math.2020272. doi: 10.3934/math.2020272
    [37] T. F. Ma, Positive solutions for a beam equation on a nonlinear elastic foundation, Math. Comput. Model., 39 (2004), 1195–1201. doi: 10.1016/j.mcm.2004.06.001. doi: 10.1016/j.mcm.2004.06.001
  • This article has been cited by:

    1. Saurabh Tomar, Mehakpreet Singh, Higinio Ramos, Abdul‐Majid Wazwaz, Development of a new iterative method and its convergence analysis for nonlinear fourth‐order boundary value problems arising in beam analysis, 2022, 0170-4214, 10.1002/mma.8992
    2. Minggang Xia, Xingyong Zhang, Junping Xie, Existence and multiplicity of solutions for a fourth-order differential system with instantaneous and non-instantaneous impulses, 2023, 21, 2391-5455, 10.1515/math-2022-0553
    3. Abdelkader Lamamri, Iqbal Jebril, Zoubir Dahmani, Ahmed Anber, Mahdi Rakah, Shawkat Alkhazaleh, Fractional calculus in beam deflection: Analyzing nonlinear systems with Caputo and conformable derivatives, 2024, 9, 2473-6988, 21609, 10.3934/math.20241050
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2803) PDF downloads(124) Cited by(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog