Loading [MathJax]/jax/output/SVG/jax.js
Research article Special Issues

Nontrivial solutions for a fourth-order Riemann-Stieltjes integral boundary value problem

  • In this paper we study a fourth-order differential equation with Riemann-Stieltjes integral boundary conditions. We consider two cases, namely when the nonlinearity satisfies superlinear growth conditions (we use topological degree to obtain an existence theorem on nontrivial solutions), when the nonlinearity satisfies a one-sided Lipschitz condition (we use the method of upper-lower solutions to obtain extremal solutions).

    Citation: Keyu Zhang, Yaohong Li, Jiafa Xu, Donal O'Regan. Nontrivial solutions for a fourth-order Riemann-Stieltjes integral boundary value problem[J]. AIMS Mathematics, 2023, 8(4): 9146-9165. doi: 10.3934/math.2023458

    Related Papers:

    [1] Haixia Lu, Li Sun . Positive solutions to a semipositone superlinear elastic beam equation. AIMS Mathematics, 2021, 6(5): 4227-4237. doi: 10.3934/math.2021250
    [2] F. Minhós, F. Carapau, G. Rodrigues . Coupled systems with Ambrosetti-Prodi-type differential equations. AIMS Mathematics, 2023, 8(8): 19049-19066. doi: 10.3934/math.2023972
    [3] Hamza Moffek, Assia Guezane-Lakoud . Existence of solutions to a class of nonlinear boundary value problems with right and left fractional derivarives. AIMS Mathematics, 2020, 5(5): 4770-4780. doi: 10.3934/math.2020305
    [4] Chengbo Zhai, Yuanyuan Ma, Hongyu Li . Unique positive solution for a p-Laplacian fractional differential boundary value problem involving Riemann-Stieltjes integral. AIMS Mathematics, 2020, 5(5): 4754-4769. doi: 10.3934/math.2020304
    [5] Cuiying Li, Rui Wu, Ranzhuo Ma . Existence of solutions for Caputo fractional iterative equations under several boundary value conditions. AIMS Mathematics, 2023, 8(1): 317-339. doi: 10.3934/math.2023015
    [6] Yanhong Zhang, Li Chen . Positive solution for a class of nonlinear fourth-order boundary value problem. AIMS Mathematics, 2023, 8(1): 1014-1021. doi: 10.3934/math.2023049
    [7] Bouharket Bendouma, Fatima Zohra Ladrani, Keltoum Bouhali, Ahmed Hammoudi, Loay Alkhalifa . Solution-tube and existence results for fourth-order differential equations system. AIMS Mathematics, 2024, 9(11): 32831-32848. doi: 10.3934/math.20241571
    [8] Pinghua Yang, Caixia Yang . The new general solution for a class of fractional-order impulsive differential equations involving the Riemann-Liouville type Hadamard fractional derivative. AIMS Mathematics, 2023, 8(5): 11837-11850. doi: 10.3934/math.2023599
    [9] Zihan Li, Xiao-Bao Shu, Fei Xu . The existence of upper and lower solutions to second order random impulsive differential equation with boundary value problem. AIMS Mathematics, 2020, 5(6): 6189-6210. doi: 10.3934/math.2020398
    [10] Nurain Zulaikha Husin, Muhammad Zaini Ahmad . Hybridization of the shooting and Runge-Kutta Cash-Karp methods for solving Fuzzy Boundary Value Problems. AIMS Mathematics, 2024, 9(11): 31806-31847. doi: 10.3934/math.20241529
  • In this paper we study a fourth-order differential equation with Riemann-Stieltjes integral boundary conditions. We consider two cases, namely when the nonlinearity satisfies superlinear growth conditions (we use topological degree to obtain an existence theorem on nontrivial solutions), when the nonlinearity satisfies a one-sided Lipschitz condition (we use the method of upper-lower solutions to obtain extremal solutions).



    In this paper we study the existence of solutions for the following integral boundary value problem of the fourth-order differential equation

    {u(4)(t)=f(t,u(t)),0<t<1,u(0)=u(0)=u(1)=0, u(1)=10u(t)dα(t), (1.1)

    where f is a continuous function on [0,1]×R, 10u(t)dα(t) denotes the Riemann-Stieltjes integral, α is a function of bounded variation and satisfies the condition

    (H1) α(t)0,t[0,1] with 10tdα(t)[0,1).

    Boundary value problems can describe many phenomena in the applied sciences such as nonlinear diffusion, thermal ignition of gases and concentration in chemical or biological problems. There are many papers in the literature considering the existence of solutions using Leray-Schauder degree, the method of upper-lower solutions and the Guo-Krasnoselskii fixed point theorem in cones; we refer the reader to [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32] and the references cited therein. In [4] the authors used the Guo-Krasnoselskii fixed point theorem to study the existence of positive solutions of the fourth-order integral boundary value problem

    {u(4)(t)+Mu(t)=f(t,u(t),u(t)),t(0,1),u(1)=u(0)=u(1)=0,u(0)=λ10u(s)v(s)ds,

    and in [13] the authors investigated monotone positive solutions for the nonlinear fourth-order boundary value problem with integral and multi-point boundary conditions

    {u(4)(t)+f(t,u(t),u(t))=0,t(0,1),u(0)=u(1)=u(0)=0,u(0)=αξvu(s)ds+ni=1βiu(ηi),

    where fC([0,1]×R+×R+,R+) satisfies some superlinear and sublinear growth conditions. In [14] the authors studied the existence and uniqueness of positive solutions for the fourth-order m-point boundary value problem

    {u(4)(t)+αuβu=f(t,u),0<t<1,u(0)=m2i=1aiu(ξi),u(1)=m2i=1biu(ξi),u(0)=m2i=1aiu(ξi),u(1)=m2i=1biu(ξi), (1.2)

    where fC([0,1]×R+,R+) satisfies the following conditions:

    (H)Hao1  limuinfmint[0,1]f(t,u)u>λ, limu0+supmaxt[0,1]f(t,u)u<λ, and

    (H)Hao2  limu0+infmint[0,1]f(t,u)u>λ, limusupmaxt[0,1]f(t,u)u<λ, where λ is the first eigenvalue of the eigenvalue problem

    u(4)(t)+αuβu=λu

    with the boundary conditions in (1.2).

    Note all integral boundary conditions include the two-point, three-point and multi-point boundary conditions as special cases and naturally this kind of problem has interested researchers; see for example [1,2,4,8,9,11,13,19,22,24,25,26,27,28,30,31] and the references cited therein. In [11] the author studied the following nonlocal fractional boundary value problem with a Riemann-Stieltjes integral boundary condition

    {Dαu(t)+f(t,u(t))=0,t(0,1),u(0)=u(0)=0,u(1)=μu(η)+βγ[u],

    where Dα is the standard Caputo derivative, f:[0,1]×R+R+ is continuous, γ[u]=10u(s)dA(s) and in [31] the authors studied the eigenvalue problem for a class of singular p-Laplacian fractional differential equations involving the Riemann-Stieltjes integral boundary condition

    {Dβt(φp(Dαtx))(t)=λf(t,x(t)), t(0,1),x(0)=0, Dαtx(0)=0, x(1)=10x(s)dA(s),

    where Dβt and Dαt are the standard Riemann-Liouville derivatives, and f(t,x):(0,1)×(0,+)R+ is continuous.

    As is well known, due to the non-locality of fractional calculus, more and more problems in physics, electromagnetism, electrochemistry, diffusion and general transport theory can be described by the fractional calculus approach. As a new modeling tool, it has a wide range of applications in many fields. However, in the process of research, more and more scholars have found that a variety of important dynamical problems exhibit fractional-order behavior that may vary with time, space or other conditions. This phenomenon indicates that variable-order fractional calculus is a natural choice, which provides an effective mathematical framework for the description of complex mathematics. For more definitions of fractional derivatives and physical understandings, we refer the reader to [3,33,34,35].

    Motivated by the aforementioned works, in this paper we use topological degree and the method of upper-lower solutions to study the fourth-order Riemann-Stieltjes integral boundary value problem (1.1), and obtain existence theorems for nontrivial solutions and extremal solutions. Moreover, we note that the conditions in this paper are more general than (H)Hao1 and (H)Hao2. Finally, some appropriate examples to illustrate our main results are given.

    In this section motivated by the variational iteration method (see [13,Lemma 1]), we first obtain an equivalent integral equation for our problem (1.1). Let

    u(t)=t016(ts)3f(s,u(s))ds+c0+c1t+c2t2+c3t3, for some ciR,i=0,1,2,3.

    Then we have

    u(0)=c0=0, u(1)=1016(1s)3f(s,u(s))ds+c1+c2+c3=10u(t)dα(t),

    and

    u(t)=t0(ts)f(s,u(s))ds+2c2+6c3t.

    By using u(0)=u(1)=0 we obtain

    u(0)=2c2=0, u(1)=10(1s)f(s,u(s))ds+6c3=0,

    and

    c2=0,c3=1610(1s)f(s,u(s))ds.

    Note that

    u(4)(t)=f(t,u(t)) and 1016(1s)3f(s,u(s))ds+c11610(1s)f(s,u(s))ds=10u(t)dα(t),

    and hence

    c1=1610(1s)f(s,u(s))ds1016(1s)3f(s,u(s))ds+10u(t)dα(t).

    Therefore, we obtain

    u(t)=t016(ts)3f(s,u(s))ds+1016t(1s)f(s,u(s))ds1016t(1s)3f(s,u(s))ds+t10u(t)dα(t)   1016t3(1s)f(s,u(s))ds=10K(t,s)f(s,u(s))ds+t10u(t)dα(t), (2.1)

    where

    K(t,s)=16{(ts)3+t(1s)t(1s)3t3(1s),0st1,t(1s)t(1s)3t3(1s),0ts1.

    We multiply both sides of (2.1) by dα(t) and integrate over [0,1], then (note (H1))

    10u(t)dα(t)=1010K(t,s)f(s,u(s))dsdα(t)+10tdα(t)10u(t)dα(t),

    and

    10u(t)dα(t)=1110tdα(t)1010K(t,s)f(s,u(s))dsdα(t).

    Consequently, we have

    u(t)=10K(t,s)f(s,u(s))ds+t110tdα(t)1010K(t,s)f(s,u(s))dsdα(t)=10Θ(t,s)f(s,u(s))ds,

    where

    Θ(t,s)=K(t,s)+t110tdα(t)10K(t,s)dα(t).

    Lemma 2.1. K(t,s) has the following properties:

    (ⅰ) K(t,s)=10H(t,τ)H(τ,s)dτ, where

    H(t,s)={t(1s),0ts1,s(1t),0st1;

    (ⅱ) K(t,s)>0 for t,s(0,1);

    (ⅲ) 130t(1t)s(1s)K(t,s)16s(1s) for t,s[0,1];

    (ⅳ) K(t,s)16t(1t) for t,s[0,1].

    By simple calculations we obtain Lemma 2.1(ⅰ). Moreover, note that H satisfies t(1t)s(1s)H(t,s)s(1s) and H(t,s)t(1t) for t,s[0,1], so we can easily obtain Lemma 2.1 (ⅲ)–(ⅳ), so we here omit their proofs.

    Lemma 2.2. Θ(t,s) has the following properties:

    (ⅰ) Θ(t,s)>0 for t,s(0,1);

    (ⅱ) Θ(t,s)10t(1t)dα(t)30[110tdα(t)]ts(1s) for t,s[0,1];

    (ⅲ) Θ(t,s)16[1+α(1)110tdα(t)]s(1s) for t,s[0,1];

    (ⅳ) Θ(t,s)16t[1+10t(1t)dα(t)110tdα(t)] for t,s[0,1].

    These conclusions can be obtained from Lemma 2.1.

    Let E:=C[0,1],u:=maxt[0,1]|u(t)|,P:={uE:u(t)0,t[0,1]}. Then (E,) is a real Banach space and P a cone on E.

    Define a linear operator:

    (Bu)(t):=10K(t,s)u(s)ds, uE.

    Then B:EE is a completely continuous, positive, linear operator, and its spectral radius, denoted by r(B), is 1π4. Let an operator Lξ(ξ>0) be given by

    (Lξu)(t):=ξ10K(t,s)u(s)ds+t10u(t)dα(t), ξ>0.

    Now Lξ:PP is a completely continuous, linear, positive operator. Note that the spectral radius r(Lξ)ξr(B)>0. Then the Krein-Rutman theorem [17] implies that there exists φξP{0} such that

    Lξφξ=r(Lξ)φξ. (2.2)

    Define an operator A:C[0,1]C[0,1] as

    (Au)(t):=10K(t,s)f(s,u(s))ds+t10u(t)dα(t).

    It is clear that u is a solution of (1.1) if and only if Au=u, i.e.,

    10K(t,s)f(s,u(s))ds+t10u(t)dα(t)=u(t),

    and (H1) implies that

    u(t)=10Θ(t,s)f(s,u(s))ds.

    Therefore, the operator A can also be expressed as

    (Au)(t)=10Θ(t,s)f(s,u(s))ds,uE,t[0,1].

    Lemma 2.3. Let (LΘu)(t)=10Θ(t,s)u(s)ds. Then LΘ(P)P01, where

    P01={uP:u(t)t10t(1t)dα(t)5[1+10(1t)dα(t)]u,t[0,1]}.

    Proof. If uP, from Lemma 2.2(ⅲ)–(ⅳ) we have

    (LΘu)(t)=1016[1+α(1)110tdα(t)]s(1s)u(s)ds,

    and

    (LΘu)(t)1010t(1t)dα(t)30[110tdα(t)]ts(1s)u(s)ds=t10t(1t)dα(t)5[1+10(1t)dα(t)]1016[1+α(1)110tdα(t)]s(1s)u(s)dst10t(1t)dα(t)5[1+10(1t)dα(t)]LΘu.

    This completes the proof.

    Lemma 2.4. (see [10]) Let Ω be a bounded open set in a Banach space E, and T:ΩE a continuous compact operator. If there exists x0E{0} such that

    xTxμx0,xΩ,μ0,

    then the topological degree deg(IT,Ω,0)=0.

    Lemma 2.5. (see [10]) Let Ω be a bounded open set in a Banach space E with 0Ω, and T:ΩE a continuous compact operator. If

    Txμx,xΩ,μ1,

    then the topological degree deg(IT,Ω,0)=1.

    In this section, we assume that the nonlinearity f satisfies the conditions:

    (H2) fC([0,1]×R,R). Moreover, there exist three functions γiC([0,1],R+),i=1,2, and MC(R,R+) with γ2(t)0,t[0,1] such that

    f(t,x)γ1(t)γ2(t)M(x),xR,t[0,1].

    (H3) lim|x|+M(x)|x|=0.

    (H4) There exists ξ1>0 such that r(Lξ1)1 and

    lim inf|x|+f(t,x)|x|>ξ1, uniformly for t[0,1],

    (H5) There exists ξ2>0 such that r(Lξ2)<1 and

    lim sup|x|0|f(t,x)||x|ξ2, uniformly for t[0,1].

    Theorem 3.1. Suppose that (H1)–(H5) hold. Then (1.1) has at least one nontrivial solution.

    Proof. From (2.2) there exists φξ1P{0} such that Lξ1φξ1=r(Lξ1)φξ1, i.e.,

    (Lξ1φξ1)(t)=ξ110K(t,s)φξ1(s)ds+t10φξ1(t)dα(t)=r(Lξ1)φξ1(t),t[0,1]. (3.1)

    Note that r(Lξ1)1. We multiply both sides of the above equation by dα(t) and integrate over [0,1] (note (H1)) so we obtain

    10ξ110K(t,s)φξ1(s)dsdα(t)+10tdα(t)10φξ1(t)dα(t)=r(Lξ1)10φξ1(t)dα(t),

    and

    10φξ1(t)dα(t)=1r(Lξ1)10tdα(t)10ξ110K(t,s)φξ1(s)dsdα(t).

    Consequently, we have

    φξ1(t)=ξ1r(Lξ1)10K(t,s)φξ1(s)ds+tr(Lξ1)10φξ1(t)dα(t)=ξ1r(Lξ1)10K(t,s)φξ1(s)ds+tr(Lξ1)1r(Lξ1)10tdα(t)10ξ110K(t,s)φξ1(s)dsdα(t)=ξ1r(Lξ1)10Λ(t,s)φξ1(s)ds,

    where

    Λ(t,s)=K(t,s)+tr(Lξ1)10tdα(t)10K(t,s)dα(t).

    Let

    P02={uP:u(t)t10t(1t)dα(t)5[r(Lξ1)+10(1t)dα(t)]u,t[0,1]}.

    Now

    φξ1P02. (3.2)

    Indeed, from Lemma 2.1(ⅲ) we have

    φξ1(t)ξ1r(Lξ1)1016s(1s)[1+α(1)r(Lξ1)10tdα(t)]φξ1(s)ds,

    and

    φξ1(t)ξ1r(Lξ1)tr(Lξ1)10tdα(t)1010130t(1t)s(1s)dα(t)φξ1(s)ds=ξ1r(Lξ1)t10t(1t)dα(t)5[r(Lξ1)+10(1t)dα(t)]1016s(1s)[1+α(1)r(Lξ1)10tdα(t)]φξ1(s)dst10t(1t)dα(t)5[r(Lξ1)+10(1t)dα(t)]φξ1.

    Note that

    10t(1t)dα(t)5[1+10(1t)dα(t)]10t(1t)dα(t)5[r(Lξ1)+10(1t)dα(t)].

    Therefore, by Lemma 2.3 we obtain

    LΘ(P)P02. (3.3)

    By (H4), there exist ε0>0 and X0>0 such that

    f(t,x)(ξ1+ε0)|x|, for |x|>X0,t[0,1].

    For any fixed ε with ε0γ2ε>0, from (H3) there exists X1>X0 such that

    M(x)ε|x|, for |x|>X1.

    Note from (H2), we also obtain

    f(t,x)(ξ1+ε0)|x|γ1(t)γ2(t)M(x)(ξ1+ε0εγ2)|x|γ1(t),t[0,1],|x|>X1.

    Let CX1=(ξ1+ε0εγ2)X1+maxt[0,1],|x|X1|f(t,x)|,M=max|x|X1M(x), and we have

    f(t,x)(ξ1+ε0εγ2)|x|γ1(t)CX1, M(x)ε|x|+M, t[0,1],xR. (3.4)

    Note that ε can be chosen arbitrarily small, and we let

    R1>max{γ1+γ2M+CX1N12εγ2,[γ1+γ2M+CX1][(ε0εγ2)N1N2+(ξ1+ε0εγ2)N3](ε0εγ2)N1(1εγ2N2)εγ2(ξ1+ε0εγ2)N3}, (3.5)

    where

    N1=10t(1t)dα(t)5[r(Lξ1)+10(1t)dα(t)],N2=136[1+α(1)110tdα(t)],N3=16[1+10t(1t)dα(t)110tdα(t)].

    In what follows, we prove that

    uAuμφξ1, for uBR1,μ0, (3.6)

    where φξ1 is defined in (3.1), and BR1={uE:u<R1}. Suppose the contrary. Then there exist u1BR1 and μ10 such that

    u1Au1=μ1φξ1. (3.7)

    Note that μ10 (otherwise, u1 is a solution for (1.1) and the theorem is proved). Let

    ˜u1(t)=10K(t,s)[γ1(s)+γ2(s)M(u1(s))+CX1]ds+t10˜u1(t)dα(t),t[0,1].

    Then (H1) implies that

    ˜u1(t)=10Θ(t,s)[γ1(s)+γ2(s)M(u1(s))+CX1]ds.

    Note that γ1(s)+γ2(s)M(u1(s))+CX10,s[0,1], and by (3.3) we have

    ˜u1P02.

    Moreover, from (3.7) we have

    u1(t)+˜u1(t)=(Au1)(t)+˜u1(t)+μ1φξ1(t),

    i.e.,

    u1(t)+˜u1(t)=10K(t,s)[f(s,u1(s))+γ1(s)+γ2(s)M(u1(s))+CX1]ds+t10[u1(t)+˜u1(t)]dα(t)+μ1φξ1(t).

    From (H1) we get

    10[u1(t)+˜u1(t)]dα(t)=1110tdα(t)1010K(t,s)[f(s,u1(s))+γ1(s)+γ2(s)M(u1(s))+CX1]dsdα(t)   +μ1110tdα(t)10φξ1(t)dα(t).

    Hence, we have

    u1(t)+˜u1(t)=10Θ(t,s)[f(s,u1(s))+γ1(s)+γ2(s)M(u1(s))+CX1]ds   +μ1t110tdα(t)10φξ1(t)dα(t)+μ1φξ1(t).

    Note that f(s,u1(s))+γ1(s)+γ2(s)M(u1(s))+CX10,s[0,1]. Then (3.2) and (3.3) imply that

    μ1t110tdα(t)10φξ1(t)dα(t)t10t(1t)dα(t)5[r(Lξ1)+10(1t)dα(t)]μ1t110tdα(t)10φξ1(t)dα(t)

    implies that

    u1+˜u1P02. (3.8)

    Now, we estimate the norm of ˜u1. Note that (3.5) and u1=R1, from Lemma 2.2 (ⅲ) and (3.4) we have

    ˜u1(t)10Θ(t,s)[γ1(s)+γ2(s)M(u1(s))+CX1]ds16[1+α(1)110tdα(t)]10s(1s)[γ1(s)+γ2(s)(ε|u1(s)|+M)+CX1]ds136[1+α(1)110tdα(t)][γ1+γ2(εu1+M)+CX1]<R1.

    From (3.8) we have u1(t)+˜u1(t)t10t(1t)dα(t)5[r(Lξ1)+10(1t)dα(t)]u1+˜u1t10t(1t)dα(t)5[r(Lξ1)+10(1t)dα(t)](u1˜u1),t[0,1]. Note (3.5), and

    (ε0εγ2)10t(1t)dα(t)5[r(Lξ1)+10(1t)dα(t)](R1˜u1)   (ξ1+ε0εγ2)1016[1+10t(1t)dα(t)110tdα(t)][γ1(τ)+γ2(τ)M(u1(τ))+CX1]dτ(ε0εγ2)10t(1t)dα(t)5[r(Lξ1)+10(1t)dα(t)](R1136[1+α(1)110tdα(t)][γ1+γ2(εR1+M)+CX1])   ξ1+ε0εγ26[1+10t(1t)dα(t)110tdα(t)][γ1+γ2(εR1+M)+CX1]0.

    Then Lemma 2.2 (ⅳ) implies that

    (ε0εγ2)10K(t,s)[u1(s)+˜u1(s)]ds(ξ1+ε0εγ2)10K(t,s)˜u1(s)ds(ε0εγ2)10K(t,s)s10t(1t)dα(t)5[r(Lξ1)+10(1t)dα(t)](R1˜u1)ds   (ξ1+ε0εγ2)10K(t,s)10Θ(s,τ)[γ1(τ)+γ2(τ)M(u1(τ))+CX1]dτds(ε0εγ2)10K(t,s)s10t(1t)dα(t)5[r(Lξ1)+10(1t)dα(t)](R1˜u1)ds   (ξ1+ε0εγ2)10K(t,s)1016s[1+10t(1t)dα(t)110tdα(t)][γ1(τ)+γ2(τ)M(u1(τ))+CX1]dτds0,t[0,1]. (3.9)

    Therefore, from (3.4) we have

    (Au1)(t)+˜u1(t)=10K(t,s)[f(s,u1(s))+γ1(s)+γ2(s)M(u1(s))+CX1]ds+t10[u1(t)+˜u1(t)]dα(t)10K(t,s)[(ξ1+ε0εγ2)|u1(s)|γ1(s)CX1+γ1(s)+CX1]ds+t10[u1(t)+˜u1(t)]dα(t)(ξ1+ε0εγ2)10K(t,s)[u1(s)+˜u1(s)]ds+t10[u1(t)+˜u1(t)]dα(t)   (ξ1+ε0εγ2)10K(t,s)˜u1(s)dsξ110K(t,s)[u1(s)+˜u1(s)]ds+t10[u1(t)+˜u1(t)]dα(t). (3.10)

    Together with (3.7), we have

    u1(t)+˜u1(t)=(Au1)(t)+˜u1(t)+μ1φξ1(t)(Lξ1(u1+˜u1))(t)+μ1φξ1(t)μ1φξ1(t),t[0,1].

    Define

    μ=sup{μ>0:u1+˜u1μφξ1}.

    Clearly, μμ1, and u1+˜u1μφξ1. Note that Lξ1φξ1=r(Lξ1)φξ1 and we have

    u1(t)+˜u1(t)(Lξ1(u1+˜u1))(t)+μ1φξ1(t)(Lξ1μφξ1)(t)+μ1φξ1(t)=(μr(Lξ1)+μ1)φξ1(t),

    which contradicts the definition of μ(r(Lξ1)1). Therefore, (3.6) holds, and from Lemma 2.4 we obtain

    deg(IA,BR1,0)=0. (3.11)

    From (H5) there exists r1(0,R1) such that

    |f(t,x)|ξ2|x|, for |x|r1,t[0,1].

    Now for this r1, we prove that

    Auμu,uBr1,μ1. (3.12)

    Suppose the contrary. Then there exist u2Br1 and μ21 such that

    Au2=μ2u2,

    where Br1={uE:u<r1}. Consequently, we have

    |u2(t)|1μ2|(Au2)(t)|10K(t,s)|f(s,u2(s))|ds+t10|u2(t)|dα(t)ξ210K(t,s)|u2(s)|ds+t10|u2(t)|dα(t).

    Let v2(t)=|u2(t)|P,t[0,1]. Then we have

    v2(t)ξ210K(t,s)v2(s)ds+t10v2(t)dα(t)=(Lξ2v2)(t),t[0,1].

    Note that r(Lξ2)<1, which implies that (ILξ2)1 exists, and

    (ILξ2)1=I+Lξ2+L2ξ2++Lnξ2+.

    Consequently, note that (ILξ2)1:PP, and we have

    ((ILξ2)v2)(t)0v2(ILξ2)10=0.

    Hence, v2=0u2=0, and this contradicts u2Br1. Thus, (3.12) holds, and Lemma 2.5 implies that

    deg(IA,Br1,0)=1.

    Combining this with (3.11) we have

    deg(IA,BR1¯Br1,0)=deg(IA,BR1,0)deg(IA,Br1,0)=1.

    Therefore the operator A has at least one fixed point in BR1¯Br1. Equivalently, (1.1) has at least one nontrivial solution. This completes the proof.

    In this section we use the method of upper-lower solutions to study the existence of extremal solutions for (1.1). We first provide the definitions of upper and lower solutions.

    Definition 4.1. We say that uE is an upper solution of (1.1) if

    {u(4)(t)f(t,u(t)),0<t<1,u(0)=u(0)=u(1)=0, u(1)10u(t)dα(t).

    Definition 4.2. We say that uE is a lower solution of (1.1) if

    {u(4)(t)f(t,u(t)),0<t<1,u(0)=u(0)=u(1)=0, u(1)10u(t)dα(t).

    Lemma 4.3. Suppose that (H1) holds. Let uE satisfy

    {u(4)(t)+c(t)u(t)0, t(0,1),u(0)=u(0)=u(1)=0, u(1)10u(t)dα(t). (4.1)

    Then u(t)0,t[0,1]; here c(t) satisfies the condition

    (H6) π4<c(t)<c0, t[0,1], and c0:=4k40 with k0 being the smallest positive solution of the equation tank=tanhk (i.e., k03.9266 and c0950.8843).

    Proof. From [6,7,32] we introduce a result. Let Lc:WC[0,1] be defined by Lcu=u(4)+c(t)u. Then by (H6), Lc has a positive inverse, where W={uC4([0,1]):u(0)=u(1)=u(0)=u(1)=0}. In (4.1) let u(4)(t)+c(t)u(t)=z(t)0 and χ1=u(1)10u(t)dα(t)0, then we have

    {u(4)(t)+c(t)u(t)=z(t),0<t<1,u(0)=u(0)=u(1)=0,u(1)=χ1+10u(t)dα(t) (4.2)

    is equivalent to

    u(t)=10G(t,s)z(s)ds+t(χ1+10u(t)dα(t)), (4.3)

    where G is defined in [32,Lemma 2.1].

    We multiply both sides of (4.3) by dα(t) and integrate over [0,1], then (H1) enables us to obtain

    10u(t)dα(t)=1010G(t,s)z(s)dsdα(t)+10tdα(t)(χ1+10u(t)dα(t))

    and

    10u(t)dα(t)=1110tdα(t)1010G(t,s)z(s)dsdα(t)+χ1110tdα(t)10tdα(t).

    Therefore, we have

    u(t)=10G(t,s)z(s)ds+χ1t+t110tdα(t)1010G(t,s)z(s)dsdα(t)+χ1t110tdα(t)10tdα(t)=10KG(t,s)z(s)ds+χ1t110tdα(t),

    where

    KG(t,s)=G(t,s)+t110tdα(t)10G(t,s)dα(t),t[0,1].

    Note that G(t,s)0,t,s[0,1]. Then, (H1) implies that

    u(t)0,t[0,1].

    This completes the proof.

    For v0,w0E with v0(t)w0(t) for t[0,1], we denote an ordered interval:

    [v0,w0]={uE:v0(t)u(t)w0(t), t[0,1]}.

    Also, we list our other assumptions in this section.

    (H7) There exist w0,v0E which are the upper and lower solutions of problem (1.1), respectively, and v0(t)w0(t),t[0,1].

    (H8) fC([0,1]×R,R) and

    f(t,w)f(t,v)c(t)(wv) for v0(t)vww0(t),t[0,1].

    Theorem 4.4. Suppose that (H1) and (H6)–(H8) hold. Then there exist monotone iterative sequences {vn},{wn}[v0,w0] such that vnv,wnw as n uniformly in [v0,w0], and v,w are the minimal and the maximal solution of (1.1) in [v0,w0], respectively.

    Proof. We define two sequences {wn},{vn}E satisfying the following boundary value problems

    {v(4)n(t)+c(t)vn(t)=f(t,vn1)+c(t)vn1(t), 0<t<1,n=1,2,,vn(0)=vn(0)=vn(1)=0, vn(1)=10vn(t)dα(t), (4.4)

    and

    {w(4)n(t)+c(t)wn(t)=f(t,wn1)+c(t)wn1(t), 0<t<1,n=1,2,,wn(0)=wn(0)=wn(1)=0, wn(1)=10wn(t)dα(t). (4.5)

    Step 1. We prove

    v0(t)v1(t)w1(t)w0(t),t[0,1]. (4.6)

    Let x(t)=v1(t)v0(t). Then we have

    {x(4)(t)+c(t)x(t)=v(4)1(t)v(4)0(t)+c(t)v1(t)c(t)v0(t)                      f(t,v0)+c(t)v0(t)f(t,v0)c(t)v0(t)=0, 0<t<1,x(0)=v1(0)v0(0)=0,x(0)=v1(0)v0(0)=0,x(1)=v1(1)v0(1)=0,x(1)=v1(1)v0(1)10v1(t)dα(t)10v0(t)dα(t)=10x(t)dα(t). (4.7)

    From Lemma 4.3, x(t)0, i.e., v1(t)v0(t),t[0,1].

    Let y(t)=w0(t)w1(t). Then we obtain

    {y(4)(t)+c(t)y(t)=w(4)0(t)w(4)1(t)+c(t)w0(t)c(t)w1(t)                      f(t,w0)+c(t)w0(t)c(t)w0(t)f(t,w0)=0, 0<t<1,y(0)=w0(0)w1(0)=0,y(0)=w0(0)w1(0)=0,y(1)=w0(1)w1(1)=0,y(1)=w0(1)w1(1)10w0(t)dα(t)10w1(t)dα(t)=10y(t)dα(t). (4.8)

    Lemma 4.3 implies that y(t)0, i.e., w0(t)w1(t),t[0,1].

    Let h(t)=w1(t)v1(t). Then we have

    {h(4)(t)=w(4)1(t)v(4)1(t)=f(t,w0)+c(t)w0(t)c(t)w1(t)+c(t)v1(t)c(t)v0(t)+f(t,v0)          c(t)w0(t)c(t)w1(t)+c(t)v1(t)c(t)v0(t)c(t)(w0(t)v0(t)), 0<t<1,h(0)=w1(0)v1(0)=0,h(0)=w1(0)v1(0)=0,h(1)=w1(1)v1(1)=0,h(1)=w1(1)v1(1)=10w1(t)dα(t)10v1(t)dα(t)=10h(t)dα(t), (4.9)

    and thus

    {h(4)(t)+c(t)h(t)0,h(0)=h(0)=h(1)=0, h(1)=10h(t)dα(t). (4.10)

    Lemma 4.3 enable us to obtain h(t)0, i.e., w1(t)v1(t),t[0,1].

    As a result, (4.6) holds.

    Step 2. We prove that w1,v1 are upper and lower solutions of problem (1.1), respectively.

    From (H8) and (4.4) we have

    v(4)1(t)=f(t,v0)+c(t)v0(t)c(t)v1(t)=f(t,v0)+c(t)v0(t)c(t)v1(t)f(t,v1)+f(t,v1)c(t)(v1(t)v0(t))+c(t)v0(t)c(t)v1(t)+f(t,v1)=f(t,v1),

    and note that

    v1(0)=v1(0)=v1(1)=0, v1(1)=10v1(t)dα(t).

    From Definition 4.2, v1 is a lower solution for (1.1).

    From (H8) and (4.5) we have

    w(4)1(t)=f(t,w0)+c(t)w0(t)c(t)w1(t)=f(t,w0)+c(t)w0(t)c(t)w1(t)f(t,w1)+f(t,w1)c(t)(w0(t)w1(t))+c(t)w0(t)c(t)w1(t)+f(t,w1)=f(t,w1),

    and

    w1(0)=w1(0)=w1(1)=0, w1(1)=10w1(t)dα(t).

    From Definition 4.1, w1 is an upper solution for (1.1).

    Therefore, for vn1,vn,wn1,wn we can use the method in Steps 1 and 2 to obtain

    vn1(t)vn(t)wn(t)wn1(t),t[0,1],n=1,2,, (4.11)

    and wn,vnE are upper and lower solutions of problem (1.1), respectively.

    Using mathematical induction, it is easy to verify that

    v0(t)v1(t)vn(t)wn(t)w1(t)w0(t),t[0,1].

    It is easy to conclude that {vn}n=0 and {wn}n=0 are uniformly bounded in E, and from the monotone bounded theorem we have

    limnvn(t)=v(t),limnwn(t)=w(t),t[0,1].

    Step 3. We prove (1.1) has solutions.

    Note that (4.4) and (4.5) are respectively equivalent to the following integral equations

    vn(t)=10G(t,s)[f(s,vn1(s))+c(s)vn1(s)]ds+t10vn(t)dα(t),

    and

    wn(t)=10G(t,s)[f(s,wn1(s))+c(s)wn1(s)]ds+t10wn(t)dα(t).

    Let n and we have

    v(t)=10G(t,s)[f(s,v(s))+c(s)v(s)]ds+t10v(t)dα(t),

    and

    w(t)=10G(t,s)[f(s,w(s))+c(s)w(s)]ds+t10w(t)dα(τ).

    These two integral equations can be transformed into the following boundary value problems

    (4.12)

    and

    (4.13)

    i.e., v,w are solutions for (1.1).

    Step 4. We prove that v and w are extremal solutions for (1.1) in [v0,w0].

    Let u[v0,w0] be any solution for (1.1). We assume that vm(t)u(t)wm(t),t[0,1] for some m. Let p(t)= u(t)vm+1(t),q(t)=wm+1(t)u(t). Then from (1.1), (4.4) and (H8) we have

    {p(4)(t)=u(4)(t)v(4)m+1(t)f(t,u)f(t,vm+1)c(t)(u(t)vm+1(t)),t[0,1],u(0)vm+1(0)=u(0)vm+1(0)=u(1)vm+1(1)=0,u(1)vm+1(1)10u(t)dα(t)10vm+1(t)dα(t),

    and this leads to the following boundary value problem

    {p(4)(t)+c(t)p(t)0,t[0,1],p(0)=p(0)=p(1)=0,p(1)10p(t)dα(t).

    Lemma 4.3 implies that p(t)0, i.e., u(t)vm+1(t),t[0,1].

    By (1.1), (4.5) and (H8) we have

    {q(4)(t)=w(4)m+1(t)u(4)(t)f(t,wm+1)f(t,u)c(t)(wm+1(t)u(t)),t[0,1],wm+1(0)u(0)=wm+1(0)u(0)=wm+1(1)u(1)=0,wm+1(1)u(1)10wm+1(t)dα(t)10u(t)dα(t),

    and this leads to the following boundary value problem

    {q(4)(t)+c(t)q(t)0,t[0,1],q(0)=q(0)=q(1)=0,q(1)10q(t)dα(t).

    Lemma 4.3 implies that q(t)0, i.e., wm+1(t)u(t),t[0,1].

    Combining the above two cases, we have

    vm+1(t)u(t)wm+1(t), t[0,1].

    Applying mathematical induction, we obtain vn(t)u(t)wn(t) on [0,1] for any n. Taking the limit, we conclude v(t)u(t)w(t),t[0,1]. This completes the proof.

    Remark 4.1. As noted in [32], the Green's function G in (4.2) has no explicit expression, but this does not affect our result. In our study we only use its positiveness and continuity.

    Now, we provide some examples to illustrate our main results.

    Example 5.1. From (2.2) we have

    ξπ4r(Lξ)ξ36+α(1),ξ>0.

    Let α(t)=12t,t[0,1]. Then we can choose ξ1π4,ξ2(0,18) such that

    r(Lξ1)1, r(Lξ2)<1.

    Let γ1(t)ζ1(ξ1,+),γ2(t)ζ2(0,ζ1+ξ2], and f(t,x)=ζ1|x|ζ2M(x),M(x)=ln(|x|+1),xR,t[0,1]. Then lim|x|+M(x)|x|=0, and lim|x|+ζ1|x|ζ2M(x)|x|=ζ1> ξ1,lim|x|0|ζ1|x|ζ2M(x)||x|=|ζ1ζ2|ξ2. Therefore, (H1)–(H5) hold. From Theorem 3.1, (1.1) has a nontrivial solution.

    Example 5.2. Let α(t)=12t, and v0(t)=t4+2t35t,w0(t)=t42t3+5t,f(t,u)=5tu(t),t[0,1]. Then we have

    {[w0(t)](4)=245tw0(t)=f(t,w0(t)), 0<t<1,w0(0)=w0(0)=w0(1)=0, w0(1)=41.1=10(t42t3+5t)d12t,

    and

    {[v0(t)](4)=245tv0(t)=f(t,v0(t)), 0<t<1,v0(0)=v0(0)=v0(1)=0, v0(1)=41.1=10(t4+2t35t)d12t.

    Moreover,

    f(t,w)f(t,v)=5t(wv), t[0,1].

    Then (H1) and (H6)–(H8) hold. From Theorem 4.4, (1.1) has two extremal solutions.

    In this paper we use topological degree and the method of upper-lower solutions to study the existence of solutions for (1.1). When the nonlinearity satisfies some superlinear growth conditions involving the first eigenvalue corresponding to the relevant linear operator we obtain nontrivial solutions. Also, when the nonlinearity satisfies a one-sided Lipschitz condition, we use the method of upper-lower solutions to obtain extremal solutions. We also provide two iterative sequences for these solutions.

    This research was supported by the Nature Science Foundation of Anhui Provincial Education Department (Grant Nos. KJ2020A0735, KJ2021ZD0136), the Foundation of Suzhou University (Grant Nos. 2019XJZY02, szxy2020xxkc03).

    The authors declare no conflict of interest.



    [1] B. Ahmad, J. J. Nieto, A. Alsaedi, H. Al-Hutami, Boundary value problems of nonlinear fractional q-difference (integral) equations with two fractional orders and four-point nonlocal integral boundary conditions, Filomat, 28 (2014), 1719–1736. https://doi.org/10.2298/FIL1408719A doi: 10.2298/FIL1408719A
    [2] A. Alsaedi, B. Ahmad, Y. Alruwaily, S. K. Ntouyas, On a coupled system of higher order nonlinear Caputo fractional differential equations with coupled Riemann-Stieltjes type integro-multipoint boundary conditions, Adv. Differ. Equ., 2019 (2019), 474. https://doi.org/10.1186/s13662-019-2412-x doi: 10.1186/s13662-019-2412-x
    [3] N. Anjum, C. He, J. He, Two-scale fractal theory for the population dynamics, Fractals, 29 (2021), 2150182. https://doi.org/10.1142/S0218348X21501826 doi: 10.1142/S0218348X21501826
    [4] A. Cabada, R. Jebari, Existence results for a clamped beam equation with integral boundary conditions, Electron. J. Qual. Theory Differ. Equ., 2020 (2020), 70. https://doi.org/10.14232/ejqtde.2020.1.70 doi: 10.14232/ejqtde.2020.1.70
    [5] E. Cancès, B. Mennucci, J. Tomasi, A new integral equation formalism for the polarizable continuum model: Theoretical background and applications to isotropic and anisotropic dielectrics, J. Chem. Phys., 107 (1997), 3032. https://doi.org/10.1063/1.474659 doi: 10.1063/1.474659
    [6] P. Drábek, G. Holubová, On the maximum and antimaximum principles for the beam equation, Appl. Math. Lett., 56 (2016), 29–33. https://doi.org/10.1016/j.aml.2015.12.009 doi: 10.1016/j.aml.2015.12.009
    [7] P. Drábek, G. Holubová, Positive and negative solutions of one-dimensional beam equation, Appl. Math. Lett., 51 (2016), 1–7. https://doi.org/10.1016/j.aml.2015.06.019 doi: 10.1016/j.aml.2015.06.019
    [8] M. Feng, J. Qiu, Multi-parameter fourth order impulsive integral boundary value problems with one-dimensional m-Laplacian and deviating arguments, J. Inequal. Appl., 2015 (2015), 64. https://doi.org/10.1186/s13660-015-0587-6 doi: 10.1186/s13660-015-0587-6
    [9] Z. Fu, S. Bai, D. O'Regan, J. Xu, Nontrivial solutions for an integral boundary value problem involving Riemann-Liouville fractional derivatives, J. Inequal. Appl., 2019 (2019), 104. https://doi.org/10.1186/s13660-019-2058-y doi: 10.1186/s13660-019-2058-y
    [10] D. Guo, V. Lakshmikantham, Nonlinear problems in abstract cones, Academic Press, 1988.
    [11] F. Haddouchi, Positive solutions of nonlocal fractional boundary value problem involving Riemann-Stieltjes integral condition, J. Appl. Math. Comput., 64 (2020), 487–502. https://doi.org/10.1007/s12190-020-01365-0 doi: 10.1007/s12190-020-01365-0
    [12] F. Haddouchi, C. Guendouz, S. Benaicha, Existence and multiplicity of positive solutions to a fourth-order multi-point boundary value problem, Mat. Vesn., 73 (2021), 25–36.
    [13] F. Haddouchi, N. Houari, Monotone positive solution of fourth order boundary value problem with mixed integral and multi-point boundary conditions, J. Appl. Math. Comput., 66 (2021), 87–109. https://doi.org/10.1007/s12190-020-01426-4 doi: 10.1007/s12190-020-01426-4
    [14] X. Hao, N. Xu, L. Liu, Existence and uniqueness of positive solutions for fourth-order m-point boundary value problems with two parameters, Rocky Mountain J. Math., 43 (2013), 1161–1180. https://doi.org/10.1216/RMJ-2013-43-4-1161 doi: 10.1216/RMJ-2013-43-4-1161
    [15] J. H. He, A short review on analytical methods for a fully fourth-order nonlinear integral boundary value problem with fractal derivatives, Int. J. Numer. Method. H., 30 (2020), 4933–4943. https://doi.org/10.1108/HFF-01-2020-0060 doi: 10.1108/HFF-01-2020-0060
    [16] J. H. He, M. H. Taha, M. A. Ramadan, G. M. Moatimid, A combination of bernstein and improved block-pulse functions for solving a system of linear fredholm integral equations, Math. Probl. Eng., 2022 (2022), 6870751. https://doi.org/10.1155/2022/6870751 doi: 10.1155/2022/6870751
    [17] M. G. Kreǐn, M. A. Rutman, Linear operators leaving invariant a cone in a Banach space, New York: American Mathematical Society, 1950.
    [18] C. Lanczos, An iteration method for the solution of the eigenvalue problem of linear differential and integral operators, J. Res. Natl. Bur. Stand., 45 (1950), 255–282. https://doi.org/10.6028/jres.045.026 doi: 10.6028/jres.045.026
    [19] B. Liu, J. Li, L. Liu, Nontrivial solutions for a boundary value problem with integral boundary conditions, Bound. Value Probl., 2014 (2014), 15. https://doi.org/10.1186/1687-2770-2014-15 doi: 10.1186/1687-2770-2014-15
    [20] J. H. He, M. H. Taha, M. A. Ramadan, G. M. Moatimid, Improved block-pulse functions for numerical solution of mixed volterra-fredholm integral equations, Axioms, 10 (2021), 200. https://doi.org/10.3390/axioms10030200 doi: 10.3390/axioms10030200
    [21] A. Ramazanova, Y. Mehraliyev, On solvability of inverse problem for one equation of fourth order, Turkish J. Math., 44 (2020), 611–621. https://doi.org/10.3906/mat-1912-51 doi: 10.3906/mat-1912-51
    [22] F. T. Fen, I. Y. Karaca, Existence of positive solutions for fourth-order impulsive integral boundary value problems on time scales, Math. Method. Appl. Sci., 40 (2017), 5727–5741. https://doi.org/10.1002/mma.4420 doi: 10.1002/mma.4420
    [23] R. Vrabel, On the lower and upper solutions method for the problem of elastic beam with hinged ends, J. Math. Anal. Appl., 421 (2015), 1455–14685. https://doi.org/10.1016/j.jmaa.2014.08.004 doi: 10.1016/j.jmaa.2014.08.004
    [24] F. Wang, L. Liu, Y. Wu, Iterative unique positive solutions for a new class of nonlinear singular higher order fractional differential equations with mixed-type boundary value conditions, J. Inequal. Appl., 2019 (2019), 210. https://doi.org/10.1186/s13660-019-2164-x doi: 10.1186/s13660-019-2164-x
    [25] W. Wang, J. Ye, J. Xu, D. O'Regan, Positive solutions for a high-order Riemann-Liouville type fractional integral boundary value problem involving fractional derivatives, Symmetry, 14 (2022), 2320. https://doi.org/10.3390/sym14112320 doi: 10.3390/sym14112320
    [26] J. R. L. Webb, Positive solutions of nonlinear differential equations with Riemann-Stieltjes boundary conditions, Electron. J. Qual. Theory Differ. Equ., 2016 (2016), 86. https://doi.org/10.14232/ejqtde.2016.1.86 doi: 10.14232/ejqtde.2016.1.86
    [27] J. Xu, D. O'Regan, Z. Yang, Positive solutions for a nth-order impulsive differential equation with integral boundary conditions, Differ. Equ. Dyn. Syst., 22 (2014), 427–439. https://doi.org/10.1007/s12591-013-0176-4 doi: 10.1007/s12591-013-0176-4
    [28] C. Zhai, Y. Ma, H. Li, Unique positive solution for a p-Laplacian fractional differential boundary value problem involving Riemann-Stieltjes integral, AIMS Math., 5 (2020), 4754–4769. https://doi.org/10.3934/math.2020304 doi: 10.3934/math.2020304
    [29] G. Zhang, Positive solutions to three classes of non-local fourth-order problems with derivative-dependent nonlinearities, Electron. J. Qual. Theory Differ. Equ., 2022 (2022), 11. https://doi.org/10.14232/ejqtde.2022.1.11 doi: 10.14232/ejqtde.2022.1.11
    [30] X. Zhang, X. Liu, M. Jia, H. Chen, The positive solutions of fractional differential equation with Riemann-Stieltjes integral boundary conditions, Filomat, 32 (2018), 2383–2394. https://doi.org/10.2298/FIL1807383Z doi: 10.2298/FIL1807383Z
    [31] X. Zhang, L. Liu, B. Wiwatanapataphee, Y. Wu, The eigenvalue for a class of singular p-Laplacian fractional differential equations involving the Riemann-Stieltjes integral boundary condition, Appl. Math. Comput., 235 (2014), 412–422. https://doi.org/10.1016/j.amc.2014.02.062 doi: 10.1016/j.amc.2014.02.062
    [32] Y. Zhang, L. Chen, Positive solution for a class of nonlinear fourth-order boundary value problem, AIMS Math., 8 (2023), 1014–1021. https://doi.org/10.3934/math.2023049 doi: 10.3934/math.2023049
    [33] M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1 (2015), 73–85. https://doi.org/10.12785/pfda/010201 doi: 10.12785/pfda/010201
    [34] M. Al-Refai, A. M. Jarrah, Fundamental results on weighted Caputo-Fabrizio fractional derivative, Chaos Soliton. Fract., 126 (2019), 7–11. https://doi.org/10.1016/J.CHAOS.2019.05.035 doi: 10.1016/J.CHAOS.2019.05.035
    [35] A. Atangana, D. Baleanu, New fractional derivatives with non-local and non-singular kernel: Theory and applications to heat transfer model, Therm. Sci., 20 (2016), 763–769. https://doi.org/10.2298/TSCI160111018A doi: 10.2298/TSCI160111018A
  • This article has been cited by:

    1. Xinguang Zhang, Peng Chen, Hui Tian, Yonghong Wu, Upper and Lower Solution Method for a Singular Tempered Fractional Equation with a p-Laplacian Operator, 2023, 7, 2504-3110, 522, 10.3390/fractalfract7070522
    2. Kamel Bensassa, Zoubir Dahmani, Mahdi Rakah, Mehmet Zeki Sarikaya, Beam deflection coupled systems of fractional differential equations: existence of solutions, Ulam–Hyers stability and travelling waves, 2024, 14, 1664-2368, 10.1007/s13324-024-00890-6
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1959) PDF downloads(93) Cited by(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog